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Abstract 
Goal-directed behavior is a hallmark of intelligence. While the majority of artificial intelligence 
research assumes goals are static and externally provided, many real-world applications involve 
unanticipated changes in the environment that may require changes to the goals themselves. Goal 
reasoning, which emphasizes the explicit representation of goals, their automatic formulation and 
dynamic management, is considered an important aspect of high-level autonomy. Building from 
these three basic requirements, we describe and apply a framework for surveying research related 
to goal reasoning that focuses on triggers and methods for goal formulation and goal management. 
We also summarize current research and highlight potential areas of future work. 

1.  Introduction 
It is generally acknowledged that goal-directed behavior is a hallmark of intelligence (Newell & Simon 
1972; Schank & Abelson 1977). Goal-directed behavior has usually been interpreted as autonomy of 
actions - an intelligent agent should be able to reason about actions in an autonomous manner in order to 
change the state of the world (including itself) as a means to satisfying a given goal. On the one hand, this 
interpretation has provided a clear focus, guiding much AI research from early problem solvers to modern 
day automated planners. On the other hand, it has also limited the reach and richness of AI systems by 
ignoring goals; it is often assumed that an external user or system is responsible for providing goals that 
remain static over a problem-solving episode. Goal reasoning (e.g., Norman & Long, 1996; Cox, 2007; 
Hawes, 2011; Klenk, Molineaux, & Aha, 2013; Jaidee, Muñoz-Avila, & Aha, 2013) challenges this 
interpretation and strives for autonomy of goals – in addition to autonomy of actions, an intelligent agent 
should be aware of its own goals and deliberate upon them. As we start to consider designs for intelligent 
systems that are more autonomous and use multiple interacting competencies to solve a wider variety of 
problems in the real world, it becomes increasingly difficult to ignore the issue of goal reasoning. 

To illustrate the importance of goal reasoning for intelligent behavior, consider a fishing craft in the 
Gulf of Mexico. While carrying out a plan to achieve the goal of catching fish, the fishermen receive 
reports of an explosion on a nearby offshore oil rig. Upon hearing the reports, the fishermen change their 
goal from “catch fish” to “rescue the rig’s workers”. This goal change results in a far superior outcome, 
rescued workers, but is outside the scope of the original mission, catching fish. 

In this paper, we present a preliminary analysis of research related to goal reasoning in the context of 
planning and problem-solving. (Due to space limitations, we do not also examine research on the role of 
goals in human and machine learning (e.g., Leake 1991; Leake & Ram 1995).) We begin by describing 
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the Goal Reasoning Analysis Framework (GRAF) and use it to focus on the tasks of goal formulation and 
goal management. Next we survey approaches and techniques for these tasks in terms of this framework. 
Finally, we briefly discuss current goal reasoning research and highlight potential areas for future work. 

2.  Goal Reasoning Analysis Framework (GRAF) 
Because the notion of goal reasoning is polymorphous and often interpreted and applied differently in 
different research contexts, it is productive to think about a common framework for analyzing and 
comparing the various techniques and approaches related to goal reasoning. We propose the Goal 
Reasoning Analysis Framework (GRAF) as a first step in this direction. We develop this framework by 
first identifying the following three minimum requirements for goal reasoning. 

Explicit goals: First, the system should explicitly represent and reason about goals. 

Goal formulation: Second, the system should be able to formulate goals. Once we require an intelligent 
system to have explicit goals, we require processes that can generate or identify and select them 
dynamically. We shall refer to these processes as goal formulation processes. Where goals come from is 
often overlooked in intelligent system, which motivated us to address it in this survey. 

Goal management: Third, the system should manage goals and select the ones that should be acted upon. 
An independent goal formulation process can lead to multiple goals. Therefore we require some form of 
management system that accepts goals produced by goal formulation processes, selects which goal(s) 
should be pursued (with reference to any ongoing goal-directed behavior), and triggers the appropriate 
plan generation mechanism to achieve the selected goal. If the goal formulation processes produce goals 
dynamically, asynchronously and in parallel, the management system must accept and manage new goals 
in this manner too. It should not block the operation of the goal formulation processes, as this would 
interfere with the system’s ability to respond to new situations. 

This set of requirements is consistent with those proposed by Hawes (2011). There is a fourth core 
requirement: the system should generate goal-directed behavior from a collection of goals and available 
resources. However, to simplify, we will ignore this requirement and assume that it is fulfilled by a 
planner with its execution system.  

Our framework, GRAF (Table 1), is obtained by applying the five questions What, Where, Why, 
When and How to the three requirements of explicit goals, goal formulation and goal management. 

Table 1. A tabular representation of GRAF. 

                  Questions 
Requirements What Where Why When How 

Explicit goals Representation Source    
Goal formulation   Rationale Triggers Methods 
Goal management     Methods 

What is a goal? This applies to the requirement of explicit goals and refers to the nature and 
representation of a goal. Explicit goals can be of two kinds. A declarative goal is a description of the state 
of the world which is sought and a procedural goal is a set of intended tasks to be solved. Consensus has 
it that most declarative goals are attainment goals. These are states an agent should achieve through plan 
execution. Declarative goals can also include maintenance and prevention goals, which refer to states to 
maintain over time or to prevent from occurring. Given our assumption that the required process which 
translates goals into behavior is a planning system, the nature of a goal and how it is explicitly 
represented in a system depends on that planner. 

Where does a goal come from? This also applies to the requirement of explicit goals and refers to a goal’s 
source. We identify three sources of goals: external, self, and hybrid. The goals can be supplied to the 
intelligent system by an external source in the environment (e.g., user or peer agents). Goals can also be 
self-initiated by the goal formulation process. While a majority of intelligent system designs assume the 
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former, goal reasoning architectures focus on the latter. For the sake of completion, we also envision a 
hybrid situation where the goals can be both externally and internally initiated. 

Why self-formulate a goal? This is applicable to the requirement of goal formulation. One reason to 
formulate goals is rational anomaly response: to better respond to developing situations that threaten an 
agent’s interests. A second reason is graceful degradation: while the current goals may no longer be 
achievable, intelligent action may be achieved by degrading them (e.g., “submitting a full report” is 
predicted to fail given the time constraints, but “submitting a draft report” may be achievable). A third 
reason for goal formulation is better future performance: we want intelligent systems to avoid dead-ends 
with respect to the current goals, and also to avoid states that jeopardize goal achievement in the future. 
Furthermore, it may be desirable to take actions that increase the system’s capabilities for more actions 
and more potential goals. A fourth reason for goal formulation is societal norms: as the scope of the 
agent’s operation becomes broader and its lifespan longer, humans that interact with autonomous agents 
will have expectations about their behavior. Goals have to be accommodated to meet those expectations. 

When is a goal formulated? This also applies to the requirement of goal formulation and refers to triggers 
for goal formulation. Typically, goal formulation is considered when an anomaly is detected and/or the 
system is self-motivated to explore its actions in the world.  

How are goals formulated? This applies to the requirement of goal formulation and refers to methods for 
achieving the function of goal formulation. 

How are goals managed? This also applies to the requirement of goal management and refers to methods 
for achieving the function of goal management. 

In this survey, we primarily focus on the questions of When and How. That is, our emphasis is on 
triggers of goal formulation, methods for goal formulation, and methods for goal management. 

3.  Triggers for Goal Formulation 
Typically, goal formulation can occur when an anomaly is detected and/or the system is self-motivated to 
explore its actions in the world. In most current implementations a goal is formulated when no active goal 
exists and the intelligent system is self-motivated to pursue additional goals, or an active goal exists but 
an anomaly is detected, and pursuing alternate goals is considered advantageous in light of the anomaly.  
Because a majority of existing approaches are anomaly-driven, we will focus on the latter. A non-
exhaustive list of anomalies could include: 

• An active plan fails (or is predicted to fail or perform suboptimally) and no contingency plan exists. 
• An affordance is perceived (i.e., pursue a better goal that the agent was considering but hadn't been 

able to pursue). 
• An opportunity is detected (i.e., pursue a better goal that the agent wasn't planning to pursue). 
• An internal drive of a system requires attention (e.g., a battery’s energy level is low and the system 

has an internal drive to maintain its energy level). 

Anomaly triggered goal formulation requires a discussion about how anomalies are detected. Anomaly 
detection typically relies on various kinds of monitoring processes, including the following: 

• Plan monitoring: One source of information for detecting anomalies comes from the plan itself. 
Changes in the environment may prevent the execution of a plan’s future actions. In plan monitoring, 
the agent monitors the plan’s execution by assessing whether its remaining actions’ preconditions are 
satisfied in the current state or achievable as an effect of a preceding planned action. If not, a plan 
fails. Similarly, plans may also fail because an agent’s actions do not achieve their intended effects. 
Action monitoring algorithms ensure that the last action was successfully executed (i.e., the effects of 
the action are true in the environment). 

In addition to monitoring the validity of plans during execution, research has identified methods 
for monitoring plan optimality during execution. Fitz & McIlraith (2007) define plan optimality and 
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describe a state space planner that monitors the utility of the current plan with respect to alternatives 
using a variant of A* search. In this context, the agent should replan when it predicts that the plan will 
fail or execute sub-optimally.  

Plan failure has been the subject of replanning and plan repair in traditional AI planning research 
from the beginning (Russell & Norvig, 2003). For example, Darmok implements action monitoring in 
an online case-based planner for a real-time strategy (RTS) game (Ontañon et al., 2010). If an action 
fails, Darmok extends its current plan with new actions to satisfy the failed action’s goal. Also 
focusing on replanning, HOTRiDE employs action monitoring in simulated noncombatant evacuation 
operation planning (Ayan et al., 2007). When an action fails, HOTRiDE uses a dependency graph to 
determine which task decompositions are no longer valid and must be replanned. 

When a plan fails or is predicted to fail (or be suboptimal), replanning systems try to generate 
new plans or repair existing plans using the original goal. In contrast, goal reasoning systems instead 
reason about their goals and try to formulate new goals. For example, ARTUE (Klenk et al., 2013) 
finds discrepancies (for discrete states) using a set difference operation between the expected and 
observed literals. For continuous states, the observed and expected value of each fluent is compared; a 
discrepancy is considered to occur whenever their values differ by more than 0.1% of the (absolute) 
observed value. When a discrepancy is detected, its anomaly response mechanism performs anomaly 
explanation and goal formulation. 

• Periodic monitoring: Instead of focusing solely on the current plan and its execution, agents may 
monitor the entire environment to determine if new goals should be considered. In periodic 
monitoring, the agent considers the current state at set intervals. Periodic monitoring is frequently 
used in systems that perform real-time response. For example, Burkhard et al. (1998) illustrate how 
Belief-Desire-Intention (BDI) agents (Rao & Georgeff, 1995) monitor the environment for changes in 
their beliefs. Their RoboCup soccer agents receive new sensor information every 300ms. PROSOCS 
uses a sensing, revision, planning, and execution cycle to periodically monitor the environment 
(Mancarella et al., 2005). At the start of each cycle, new sensor information is received that can 
inform execution, plan revision, and future planning. A final example is the cognitive architecture 
ICARUS, which executes periodic monitoring during its recognize-act cycle (Langley & Choi, 2006). 

• Expectation monitoring: Expectations are driven by experience from problem solving or interacting 
with an environment. Problem-solving experience can set expectations that can be monitored. A 
change in expectations can then trigger changes in behavior. For example, Veloso, Pollack and Cox 
(1998), in their rationale-based plan monitoring architecture, showed that plan rationales often 
include expectations that result in the adoption of the current plan at the expense of an alternative 
plan. Such expectations lead to (1) generating monitors that represent environmental features which 
affect plan rationale, (2) deliberating, whenever a monitor fires, about whether to respond to it, and 
(3) transforming plans as warranted by modifying goals. Expectation-driven goal-oriented behavior 
based on problem-solving experience is a hallmark of Schank’s approach to intelligent systems 
(Schank 1982; Schank & Owens 1987), which is highly relevant to goal reasoning. 

Agents can also learn a model of how the environment changes through experience from 
interacting with their environment. Expectation monitoring uses this model to assess the nature and 
relevance of a discrepancy. In robotic navigation, Bouguerra, Karlsson, and Saffiotti (2008) used 
semantic knowledge to generate expectations concerning objects that may be encountered during plan 
execution. For example, when moving into a living room, the robot expects to see objects typical to 
that location (e.g., a TV, a sofa). From a cognitive science perspective, INTRO uses a rule-based 
model to generate expectations and detect discrepancies in a Wumpus World environment (Cox, 
2007). Kurup et al. (2012) introduce a cognitive model of expectation-driven behavior in ACT-R. It 
generates future states called expectations, matches them to observed behavior, and reacts when a 
difference exists between them.  

Expectation monitoring can be implemented using anomaly recognition techniques. Typically, 
these approaches can be divided into three groups: (1) signature detection, which matches the current 
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situation to known deviant patterns, (2) anomaly detection, which compares the current situation to 
baseline patterns, and (3) hybrid methods, which include both (Patcha & Park, 2007). 

• Domain-specific monitoring: Monitoring for expectation failures is difficult in environments whose 
future states are difficult to predict. Therefore, some agents utilize domain-specific monitoring 
strategies, which periodically test values of specified state variables during plan execution. Many 
researchers use domain-specific monitoring to directly link unanticipated states to new goals. In a 
simulated rover domain, MADBot uses motivations to monitor specified values in the environment 
(e.g., when the battery’s charge falls below 50%, a new goal is created to recharge it) (Coddington, 
2006). M-ARTUE (Wilson, Molineaux, & Aha, 2013) similarly represents drives to direct goal 
formulation. While MADBot uses domain-specific drives, M-ARTUE does not represent motivations 
using domain knowledge, and is not limited to generating goals for achieving threshold values. Dora 
the Explorer (Hawes et al., 2011) encodes motivators that formulate goals related to exploring space 
and determining the function of rooms, similar to M-ARTUE’s exploration motivator. However, 
Dora’s functions are also domain-specific. Finally, Hawes’s (2011) survey of motivation frameworks 
defines goal management and goal formulation in terms of goal generators or drives. It relates many 
systems in terms of these concepts, and proposes a design for future “motive management 
frameworks”.  

• Object-based monitoring: In domain-specific monitoring, the monitors specify particular state 
variables. Object-based monitoring also includes the set of objects in the environment. The detection 
of new objects may interrupt plans or cause the creation of new goals. Object-based monitoring 
systems specify which types of new objects to consider as discrepancies. Goldman (2009) describes 
an HTN planner with universally quantified goals that uses loops and other control structures to plan 
for sets of entities whose cardinality is unknown at planning time. Similarly, Cox and Veloso (1998) 
and Veloso, Pollack, and Cox (1998) also discuss and implement universally quantified goals where 
some objects (and hence goals) are not known. Dora generates a goal to explore each newly detected 
room (Hanheide et al., 2010). Open world quantified goals extend these approaches to include 
knowledge about how new objects may be detected (Talamadupula et al., 2010). For example, in an 
urban search and rescue task, plans must be generated to locate objects that are unknown prior to 
execution (i.e., the victims). In real-time games like GRUE (Gordon & Logan, 2004), a more typical 
approach for this kind of monitoring is by authoring game AI using a teleo-reactive program (TRP) 
(Benson & Nilsson, 1995). TRPs dictate which actions to take in specific world states (e.g., if the 
agent is running past a weapon it does not have, then it should pick up the weapon). 

4.  Methods for Goal Formulation 

We identify six types of goal formulation methods based on the knowledge they use. 

• State-Based Goal Formulation: The most straightforward method for generating goals is to pre-
specify links between specific state variables and specific goals. Consider a helicopter’s low-fuel 
indicator light. When it flashes, the agent pilot may generate a goal to refuel. The new goal depends 
solely on a single variable in the current state (i.e., the low-fuel indicator).  

These approaches are typically applied in fully observable environments. For example, game 
designers who have complete access to the environment can use behavior trees (Champandard, 2007) 
to control non-player characters; this is done in many modern video games. To increase reusability 
and make plans interruptible, Cutumisu & Szafron (2009) use multiple behavior trees to control 
characters interacting in a restaurant. Working with the internal state of the rover, AgentSpeak-MPL 
(Meneguzzi & Luck, 2007) uses motivations to formulate new goals when the value of particular 
state variables drops below individual thresholds. ICARUS (Choi 2010) uses a reactive goal 
management procedure to nominate and prioritize new top-level goals in which <condition, goal> 
pairs in long-term goal memory are considered for nomination at every reasoning step. This 
resembles rule-based goal-formulation, as used in ARTUE (Klenk et al. 2013). M-ARTUE (Wilson et 
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al. 2013) includes a motivation subsystem that formulates goals based on the psychological notion of 
drives, which constitute a hierarchy of heuristic functions representing both external and internal 
needs. M-ARTUE differs from ARTUE only in the way goals are formulated; instead of using 
reactive rules, it uses domain independent heuristics to evaluate potential goals. This approach is 
similar in spirit to CLARION’s goal formulation mechanism (Sun, 2009), where drives are 
represented sub-symbolically and they set the level of activation for explicit goals according to the 
world state. The primary difference between M-ARTUE and CLARION is that the representations of 
internal needs are domain independent and domain dependent, respectively. 

• Interactive Goal Formulation: In realistic domains it is often infeasible to provide goal formulation 
knowledge for every situation. To address this, T-ARTUE (Powell, Molineaux, & Aha, 2011) and 
EISBot (Weber, Mateas, & Jhala, 2012) learn this knowledge from humans: T-ARTUE learns from 
criticism and answers to queries, while EISBot learns from human demonstrations. Each provides a 
domain-independent method for acquiring formulation knowledge, but neither system reasons about 
internal needs alongside external goals. Although based on the GDA model, GDA-C (Jaidee et al. 
2013) differs substantially from ARTUE and M-ARTUE. GDA-C learns its goal selection function 
using Q-learning. While this increases autonomy, it employs a domain dependent reward function; 
indirectly, GDA-C’s goal selection strategy is guided by a human. 

• Object-Based Goal Formulation: While specifying a goal for each state provides an agent designer 
with considerable control over an agent’s actions, these methods are inflexible and difficult to author. 
To promote reuse and flexibility, several systems rely on rules or schemas that specify how to 
formulate goals for a range of possible states. One important problem this solves is the generation of 
goals in response to the discovery of new objects in the environment that were unknown at planning 
time. Consider a robot on a search and rescue mission. Prior to plan execution, the number of rooms 
to search is unknown. Goal formulation allows the robot to formulate an initial plan to detect rooms, 
and then assert new goals to search the rooms as they are located. 

Recently, several researchers have proposed extensions to goal specifications to account for 
unknown objects. For example, goal generators produce goals when new objects are detected that 
satisfy a set of conditions (Hanheide et al., 2010). For example, when a new region is detected by a 
mobile robot, a goal will be generated to identify that region. In addition to generating goals based on 
newly detected objects, open-world quantified goals provide information about sensing actions for 
planning (Talamadupula et al., 2010). Each of these approaches extends the goal specification to 
specify the importance of the newly generated goal. 

• Belief-Based Goal Formulation: In addition to the observed state, an agent may formulate goals 
using its beliefs about the current state. Representing knowledge about the environment that is not 
directly observed, beliefs are generally output by an inference process such as explanation or state 
elaboration. For example, on observing a lightning strike, an agent might infer a belief that a storm is 
approaching. This belief could lead to the formulation of a goal to seek shelter. 

Recent work has demonstrated the effectiveness of this approach in dynamic environments. After 
using explanation to update its beliefs, ARTUE uses rules to specify how to formulate goals based on 
the observed state and the agent’s beliefs (Molineaux et al., 2010). An alternative method for 
generating beliefs is through state elaboration. Using forward inference rules over the observed state, 
ICARUS creates a set of beliefs, which are used by reactive goal management to nominate goals from 
long term memory for use in a simulated driving task (Choi, 2010). 

• Case-Based Goal Formulation: Case-based goal formulation stores applicable goals in cases. 
During goal formulation, a case matching the cue is retrieved and the associated goal is reused in the 
current situation. For example, when a submarine disappears, an agent pilot might remember a 
previous situation in which searching for the submarine with a helicopter was a useful goal to pursue.  

Case-based goal formulation methods differ in their retrieval cues and types of goals generated. 
In EISBot (Weber, Mateas, & Jhala, 2010), the current state is used as a cue to retrieve a gameplay 
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trace, which is a state sequence recorded from an expert’s game play. EISBot selects a future state 
from the trace as the current goal. It performed well in StarCraft games against the built-in AI and 
human players. In another strategy game, CB-gda uses observed discrepancies as a retrieval cue to 
generate task goals (Muñoz-Avila et al., 2010). Each of these approaches requires minimal 
knowledge engineering as the retrieved cases may be automatically collected by observing human-
provided traces of activities. 

• Explanation-Based Goal Formulation: While the methods described above require knowledge 
engineering for each possible goal, an alternative approach focuses on explaining a discrepancy when 
generating a goal. When the observed discrepancy may prevent the agent from achieving its goals, 
the agent can generate a new goal by reasoning over its explanation. Consider a helicopter that is 
losing fuel. An agent pilot might explain this anomaly by inferring a leak in the fuel tank. Using this 
explanation, a goal could be generated to stop this leak. 

Explanation-based methods use the explanation to generate goals. For example, INTRO (Cox, 
2007) generates a goal by negating the antecedent of the explanation. In the Wumpus World domain, 
the discrepancy of the screaming wumpus would yield a goal to negate their hunger. In pervasive 
diagnosis, goals are generated to collect information based on the current diagnosis of faults in the 
device (Kuhn et al., 2008). The purpose is to generate plans to achieve production goals while 
refining its explanation for any faults. By focusing on the syntax of the explanation, these approaches 
can be easily applied to new domains. 

Here we discuss four types of methods for explanation generation in response to an anomaly. 

a. Propositional Causal Models: In such models, p causes q implies that p is always followed by q. 
A causal model is typically encoded as a set of rules, provided by a domain expert, which is used 
to infer the cause underlying a set of observations. This approach is exemplified by expert 
systems, such as the MYCIN medical diagnosis system (Shortliffe, 1976). Another deterministic 
approach uses truth-maintenance systems (Forbus & de Kleer, 1993), where facts are either 
assumptions provided to the system or consequences computed by a set of rules. For any 
consequence, it is possible to trace the rules and assumptions that support it. 

Intelligent agents have used deterministic causal models to improve their performance in 
problem-solving domains and simulated environments. For example, using explanation-based 
learning (DeJong, 1993), CASCADE applied overly-general rules to model human learning in 
physics problem solving (VanLehn et al., 1992). The goal reasoning agent ARTUE uses an 
abductive explanation (Josephson & Josephson, 1994) process to assume hidden facts that could 
cause a discrepancy (Molineaux et al., 2010). Using the environment model, ARTUE selects 
assumptions that, if true in the prior state, would predict the discrepancy d and the current state. 

b. Probabilistic Explanation Models: Unlike deterministic models, probabilistic explanation 
models explicitly quantify uncertainty. In probabilistic models, p causes q implies that the 
occurrence of q increases the probability of p. Probabilistic explanation typically uses graphical 
models, such as Bayesian networks (Pearl, 2000), to determine the likely causes of individual 
propositions. These models rely on conditional independence between causes and the subjective 
probabilities can be learned by applying Bayes’ rule with experience and a given prior 
probability. A probabilistic model of a ship explosion would include facts describing the 
likelihood of an explosion given a gas leak (or a fuel leak) as high, and the prior probability of a 
gas leak as higher than the prior probability of a torpedo. An agent would reason from this model 
that both a gas leak and a torpedo are possible explanations, with a gas leak being more likely. 

Probabilistic models have been adopted in many AI subfields. In planning under uncertainty, 
the environment is frequently modeled as a partially observable Markov decision process 
(Kaelbling, Littman, & Cassandra, 1998). A typical agent using this model will update an internal 
belief state after each action, which characterizes the probability of the agent being in each 
possible environment state. The update of this belief state is a form of explanation in which the 
observations are explained to result from a given state trajectory. From a goal reasoning 
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perspective, pervasive diagnosis maintains a set of probabilities indicating the likelihood that 
each potential system fault has occurred based on prior observations (Kuhn et al., 2008). 

c. Qualitative Explanation Models: This kind of model provides an alternative approach for 
describing uncertainty by allowing an agent to reason about changes to continuous quantities 
without using precise quantitative measurements. Quantity q1 is qualitatively proportional to 
quantity q2 if, all things being equal, an increase in q1 causes an increase in q2 (Forbus, 1984). A 
qualitative model may explain a ship explosion as the result of a decrease in the engine oil 
pressure that caused its temperature to rise above its flashpoint.  

Qualitative models are useful in domains where numerical models are unknown, inaccurate, 
or computationally expensive. For example, MAYOR (Fasciano, 1996) explains its expectation 
failures in managing a simulated city using a qualitative economic model (e.g., high crime 
decreases housing demand). Using a different qualitative economic model for cities, Hinrichs and 
Forbus (2007) use qualitative explanations to overcome local maxima in a worker placement task 
in the Freeciv turn-based strategy game. 

d. Example-specific Explanation Models: Due to the difficulty of obtaining complete and correct 
models from domain experts (Watson, 1997), another approach is to rely on example-specific 
models, which are easier to elicit from experts. An expert may state that p causes q for a 
particular situation(s), and this knowledge may be used inductively to infer p′ as a cause for q′ in 
a new situation. For example, when faced with a new situation, case-based reasoning (Leake & 
McSherry, 2005) and analogical reasoning (Falkenhainer et al., 1989) approaches retrieve a 
similar example and reuse its example-specific explanation. Examples may be labeled with a 
cause, which can allow supervised learning approaches to infer causes for new instances 
(Mitchell, 1997). To explain a ship’s explosion, an agent may recall another ship that was sunk by 
a submarine’s torpedo and conclude that an enemy submarine is within range of the ship.  

The transfer of example-specific models has been used to improve the performance of AI 
systems. PHINEAS (Falkenhainer, 1988) creates analogies between qualitative behaviors to 
transfer explanatory models in physical domains. META-AQUA uses explanation patterns (Cox 
2007), which are a type of case for explaining expectation violations. Muñoz-Avila and Aha 
(2004) define a taxonomy of explanation types pertinent to case-based planning for games. 

5.  Methods for Goal Management 
In goal reasoning, agents may need to consider many goals. Given a set of pending goals, goal 
management selects which goal(s) should be pursued. Goal management can be a continuous ongoing 
process or triggered by certain events. For example, Veloso, Pollack and Cox (1998) discuss the use of 
rationale-based planning monitors as triggers for goal change, while Jones et al. (1999) represent goals as 
operators which are triggered at run-time by rules that match predefined states and sensor readings.  

We identify seven types of plan-invariant methods (i.e., approaches that focus solely on pending 
goals) for goal management. They differ in how they store pending goals and how they select which goals 
to pursue. Shapiro et al. (2012) provide formal semantics for goal management by dropping or modifying 
intentions in the context of BDI agents, some of which are applicable to the methods discussed below. 

• Replacement: Replacement remembers and plans for one goal at a time; if a new goal arises, it 
immediately replaces the existing goal. These approaches are useful when the set of goals is small, 
and the agent actively switches between them. For example, in Baltes’s (2002) RoboCup soccer 
agent, the agent switches frequently between offense and defense based on the state of the field. 

• Stack (consider execution history): In lieu of strict replacement, an agent may use a stack to 
manage its goals. In this approach, the execution history is taken into account: a newly generated goal 
is accomplished first, after which the agent pursues the pending goals beginning with the goal that 
was being pursued when the most recent goal was generated. This is a common approach in cognitive 
architectures and other agents focused on long term execution. For example, both SOAR (Laird, 
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2008) and ACT-R (Anderson & Lebiere, 1998) agents have used this strategy to manage their goals 
in a wide range of domains. The same strategy is employed by the rover agents discussed previously 
(Coddington, 2006). 

• Rule-based (consider the state): In rule-based goal management systems, a set of rules is used to 
change the system’s active goals. Each rule is a condition-action pair, where a condition is a 
statement about an event or a world state that, if true, results in an action to modify (e.g., add, drop, 
change) the current goals. 

Rule-based approaches have been used in reactive-planning agent architectures. While typical 
BDI agents (Rao & Georgeff, 1995) change their procedural goals as a result of observed events, 
CANPlan illustrates how observed events can trigger declarative goals that can be reasoned about 
using planning (Sardina & Padgham, 2010). Extending the semantics, the abstract agent language 
CAN specifies abstract goal states (pending, waiting, active, and suspended) for three different types 
of goals (achievement, task, and maintenance) and transitions among them (Harland et al., 2010). 

• Oversubscription planning (consider quantitative goals): Classical planning focuses on generating 
plans that achieve a conjunctive set of goals. If no such plan exists, then classical planning fails. 
Oversubscription planning (Smith, 2004) relaxes this all-or-nothing constraint, and instead focuses on 
generating plans that achieve the “best” subset of goals (i.e., the plan that gives the maximum trade-
off between total achieved goal utility and total incurred action cost). While rule-based approaches do 
not include quantitative information in the goals themselves or how they are evaluated in a given 
state, oversubscription planning includes quantitative information in goals. This goal management 
strategy requires that each goal have an associated utility and each action have an estimated cost.  

While this greatly increases the computational complexity of finding an optimal plan, some 
heuristic approaches have been used for oversubscription planning. For example, heuristic Partial 
Satisfaction Planning approaches have been shown to generate plans of similar quality to optimal 
plans (van den Briel et al., 2004). Much of the research in this area has focused on describing the soft 
constraints that impact action costs and goal utilities. For example, goal dependencies (Do et al., 
2007) involve constraints among goals (e.g., mutually exclusive goals), further complicating the goal 
selection process. While most oversubscription approaches do not consider changes to the agent’s 
goals during execution, Han & Barber (2005) introduce a desire-space framework that accounts for 
goal dependencies. A desire-space is a Markov decision process (Sutton & Barto, 1998) in which 
each node is a set of achieved goals and the links between them are costs of a macro-operator that 
achieves the goals in the destination node. This enables the application of decision theory to 
determine which goals are worth the cost of achieving. Cushing, Benton, and Kambhampati (2008) 
describe an extension of oversubscription planning that includes replanning, which is cast as a 
process of reselecting goals. Each top-level goal is associated with rewards and penalties. Rewards 
are accrued when objectives are achieved and penalties otherwise. Newly arriving goals are modeled 
as rewards while existing plan commitments are modeled as penalties. The planner continually 
improves its current plan in an anytime fashion, while monitoring to see if any selected goal is still 
appropriate. Replanning occurs whenever a situation deviates significantly from the model, causing 
the selection of a new set of objectives. 

• Spreading activation (consider execution history and state): While the prior methods use only the 
time of the goal’s formulation to determine the planner’s goals, spreading activation methods 
determine the most relevant goals using the current context of the agent’s working memory. In this 
approach, goals are associated with concepts in a semantic network. The concepts currently in 
working memory spread activation through the network to individual goals. The goal with the highest 
activation is selected for consideration by the agent. Motivated by psychological results which 
indicate that a goal stack insufficiently models human goal processing, some researchers have 
extended ACT-R’s goal management system to select goals based on spreading activation in its 
declarative memory (Anderson & Douglass, 2001; Altmann & Trafton, 2002). Activation is spread 
between goals and cues based on associative links, which are formed when they enter working 
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memory at the same time. This view of goal reasoning emphasizes the role of the environment to 
supply cues that activate the appropriate goals. 

• Priority queue (domain specific methods that incorporate execution history and state to 
prioritize goals): Priority queues generalize spreading activation to allow the ordering of goals along 
any preference metric (i.e., for each goal a number can be generated by some method using the 
current beliefs about the environment).  The highest scoring goal is the one that should be pursued. 
Unlike the priority queue data structure, these approaches allow the priority of goals to change after 
being added to the queue. Therefore, each time an agent selects new goals, it must recompute the 
existing goals’ priorities using its current beliefs about the environment. 

This approach has been used in research systems in robotics and game AI, some of which reason 
with learned priorities. For example, goal intensity allows a simulated rover agent to order its goals 
using the goals themselves and its beliefs about the environment (Meneguzzi & Luck, 2007). In 
robotics, the affective goal management method (Scheutz & Schermerhorn, 2009) maintains a recent 
history of previous successes and failures for each action type and uses these to estimate the expected 
utility for each goal. Instead of focusing solely on successes and failures, some systems incorporate 
appraisal theories (Roseman & Smith 2001). For example, the FearNot! framework selects goals 
related to the strongest emotions (Aylett, Dias, & Paiva, 2006), and SOAR 9 uses appraisals for 
intrinsically motivated reinforcement learning (Marinier, van Lent, & Jones, 2010). In game AI, 
GRUE (Gordon & Logan 2004) allows for concurrent goals to be pursued, but does so in a non-
compensatory manner (i.e., goals with higher priorities receive preference for resources over all other 
goals). Similarly, the multi-queue approach to behavior trees (Cutumisu & Szafron, 2009) makes use 
of qualitative priorities between types of goals, and uses quantitative distinctions within each 
grouping to select the current goals. Young and Hawes’s (2012) work on using evolutionary 
approaches to determine the priorities of high-level tasks in QUORUM also fits into this approach. 

• Goal transformation: Goal transformation involves changing the current goals to enable plan 
generation (Cox & Veloso, 1998). Research on this topic has focused on defining the space of transfer 
formations and methods for applying them. For example, Cox & Veloso (1998) create a taxonomy of 
13 goal transformations and demonstrate how they allow for graceful performance degradation in an 
air superiority planning task (e.g., in air combat planning, if insufficient resources are available to 
destroy a bridge, a new goal to damage the bridge can be generated). Goal Morph introduces costs 
and utilities to goal transformations in a web service composition application (Vukovic & Robinson, 
2005). After constraining the space of applicable transformations using the context, Goal Morph 
applies the transformation that yields the goals with the highest utility. 

6.  Discussion 
Goal formulation determines how an agent responds to an explained discrepancy. Many discrepancies do 
not require goal change. That is, the agent may continue executing the same plan, or it may generate a 
new plan for the same goals. While pure replanning approaches, such as FF-Replan, have been effective 
in many domains, they are susceptible to failures due to execution dead-ends (i.e., states from which the 
current goals cannot be achieved) (Yoon, Fern, & Givan, 2007). In addition to providing information 
about the environment, discrepancies may present threats to current or future plans, opportunities or 
obligations. One reason to formulate goals is to respond to developing situations that threaten the agent’s 
interests, similar to the function of maintenance goals (Dastani, van Riemsdijk, & Meyer, 2006). There 
are other reasons for formulating goals: (1) graceful degradation, (2) improved future performance, and 
(3) societal norms. These other reasons have not been investigated sufficiently in goal reasoning research, 
which provides opportunities for future work. 

With its focus on dynamic, uncertain, and open environments, goal reasoning seeks to increase 
autonomy through a knowledge intensive process. Therefore, goal formulation should not rely solely on 
the observed state, but also on the agent’s beliefs about the environment, as in (Molineaux et al., 2010). In 
addition, it is difficult to specify all potential goals for an agent. Therefore, an important area of future 
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research is to reduce the knowledge engineering burden by learning goal formulation methods, as in 
(Weber et al., 2010). 

The need to consider competing goals is a primary motivation for goal reasoning. Simple replacement 
and stack approaches are well understood, but are too inflexible for more complex tasks. When planning 
failures occur, autonomous behavior requires a graceful degradation of performance, which may be 
achieved (at least partially) through existing oversubscription planning and goal transformation 
approaches. While oversubscription planning endows an agent with a rational method for selecting goals 
based on utility, it is insufficient when the set of goals is dependent on the agent’s continuing 
observations of the environment (i.e., goals are subject to change at plan execution time). Approaches 
combining goal transformations with a definition of goal utility captured in a priority queue appear to be 
promising for handling larger classes of problems. 

Future research should also investigate the interaction of goal reasoning components with traditional 
planning systems. Due to the separation of goal reasoning from planning, it should be possible to 
integrate a single goal reasoning method with multiple planners. Given that a state, a goal, and an 
environment model constitute a planning problem, it is worth exploring whether particular goal reasoning 
methods favor particular planners. In conducting this survey, we observed that the same or similar goal 
reasoning components may be used with the tasks of HTN planning (Molineaux et al., 2010) and the 
state-based goals used in many planning approaches (Hanheide et al., 2010). This suggests that goal 
reasoning is a distinct process worthy of independent investigation. 

Evaluating goal reasoning systems is inherently difficult. AI researchers have produced many 
discussions on agent evaluation strategies (Kaminka & Burghart, 2007). In ablation experiments (e.g. 
Molineaux et al., 2010), a system’s performance is evaluated through a series of trials during which 
components are removed to measure their contribution to the entire system. While there has been some 
research on discrepancy detection, explanation, goal formulation, and goal management, evaluating how 
each component performs within integrated intelligent systems will inform the design of future systems. 
Alternatively, Cassimatis, Bello, and Langley (2008) suggest comparing intelligent systems via metrics 
for capabilities, breadth, and parsimony. These metrics can provide evaluations based on a different view. 
Given the scope of the claims made about goal reasoning agents, a wide array of evaluation 
methodologies is needed to assess them. 

7.  Conclusion 
Goal reasoning is motivated by four challenges to traditional planning approaches: 

• Nondeterministic partially observable environments: An agent’s observations of the current state are 
incomplete and the results of its actions are not deterministic. Furthermore, the environment may 
exhibit unbounded indeterminacy: it is not possible to fully enumerate the future states as a result of 
an agent’s actions. 

• Dynamic environments: The environment changes as a result of actions executed by the agent, events 
in the environment, or actions executed by other agents. 

• Incomplete knowledge: In complex real-world domains, contingencies arise frequently but the 
knowledge of those contingencies may be limited. Furthermore, during execution, environment 
changes may present unidentifiable world states. 

• Knowledge engineering: Capturing complete planning knowledge in complex real-world domains 
may require capturing wickedly large models for exogenous change, a prohibitively large number of 
contingencies, and probabilistic effects of actions. These can each present tremendous knowledge 
engineering challenges. 

To enable intelligent action in these types of situations, we propose that agents should formulate and 
reason about their goals based on environmental changes. Goal reasoning is expected to provide two 
benefits to intelligent agents. First, goal reasoning should enable agents to better respond to unexpected 
circumstances. Second, goal reasoning should decrease the knowledge engineering burden in complex 
real-world domains for a given system by shifting the burden from capturing knowledge for exhaustive 
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planning to that of coding models used by goals reasoning, which we conjecture to be an inherently 
simpler task. While there is some initial evidence supporting each claim (Handheide et al., 2010; 
Molineaux et al., 2010; Muñoz-Avila et al., 2010; Weber et al., 2010), further investigations are required. 

As intelligent systems execute for longer periods without human intervention on a wide range of 
tasks, it becomes increasingly difficult to pre-specify all its possible goals and contingencies. Therefore, 
the current state-of-the-art relies on human operators to oversee an agent’s execution on narrower tasks. 
But due to the proliferation of robotic and software agents in work, social, and residential environments, 
utilizing omnipresent human operators is not a viable option. Also, creating many systems for narrower 
tasks is inefficient and poses a usability challenge as people interact with each new system. Advances in 
goal reasoning should alleviate these bottlenecks to promote intelligent system development and 
deployment by increasing an agent’s autonomy. 
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