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Abstract 
Unmanned vehicles have been the focus of active research on autonomous motion planning, both 
deliberative and reactive.  However, they are fundamentally limited in their autonomy by an 
inability to independently reason about, prioritize, and change the goals they pursue.  We describe 
two new projects in which we are incorporating goal autonomy on unmanned vehicle platforms.  
We will apply the Goal-Driven Autonomy (GDA) model to permit our vehicles to reason about 
their objectives and discuss how properties of the domains affect the application of GDA. 

1.  Introduction 
Unmanned vehicles are often used to explore and act in regions that are dangerous or otherwise 
undesirable for humans to visit.  Many unmanned vehicles are remotely operated: Rather than 
acting autonomously using onboard control systems, they act directly on control commands from 
human operators to execute their missions.  Remote operation may be desirable in some 
circumstances (e.g., to maximize control over the safety of an unusually valuable vehicle, such as 
a Mars rover).  However, in many instances we would prefer that unmanned vehicles operate 
without human input, which would reduce operator load, avoid human error in operating the 
vehicles, and allow the vehicles to continue pursuing their missions when out of contact with 
human operators. 

Most efforts to provide greater autonomy for unmanned vehicles have focused on a problem 
we refer to as motion autonomy, the primary example of which is to navigate autonomously to a 
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desired location or to follow a prescribed route (e.g., Tan, Sutton, & Chudley, 2004; Wooden et 
al., 2010).  Although motion autonomy techniques are broadly adaptable and allow robotic 
vehicles to autonomously accomplish many desired tasks, they do not allow vehicles to 
dynamically self-select goals to pursue or to re-prioritize their existing goals.  This limits motion 
autonomy to predictable environments, as changes in the environment or previously unobserved 
facts may require an agent to select new objectives or mission parameters to act correctly. 
 To address this, we describe two new efforts to enrich unmanned vehicles’ reasoning with goal 
autonomy: the ability to dynamically formulate, prioritize, and assign goals1.  Enabling the 
vehicle to decide what goal it should accomplish in any given situation, in addition to existing 
techniques for achieving those goals autonomously, allows the vehicle to act correctly in a 
broader range of situations without supervision.  This is especially valuable in long-duration 
missions in dynamic environments, where the vehicle is likely to encounter a variety of situations 
too complex to enumerate a priori.  For instance, a maritime vehicle on a long mission may 
encounter a broad range of underwater hazards and opportunities for investigation in 
unpredictable configurations.  To provide the ability to select appropriate goals in a wide range of 
situations, we will apply Goal-Driven Autonomy (GDA), a model for responding to unexpected 
occurrences by formulating and reprioritizing goals (Molineaux, Klenk, & Aha, 2010a). 

In one project, Autonomous Behavior Technology for Unmanned Underwater Vehicles, we 
will apply the GDA model to an underwater vehicle, providing it the decision-making ability 
necessary to conduct long duration, independent missions with varying objectives.  In another 
project, Autonomous Systems Integration, we will apply the GDA model to the task of plume-
tracking, in which ground and air vehicles must cooperate to discover the source of an airborne 
contaminant, while also collecting and transferring power to avoid disruption of activity from loss 
of battery reserves. 

GDA has previously been applied in several simulated test domains inspired by real-world 
scenarios (Molineaux et al., 2010a) as well as game environments (Weber, Mateas, & Jhala, 
2012; Jaidee, Muñoz-Avila, & Aha, 2013).  However, the projects presented here, although 
currently in simulation, will be our first application of GDA on real-world robots or vehicles. 

In this paper, we present an overview of GDA, discuss the parameters of the application 
domains, present initial architectures for both projects, and discuss aspects of applying goal 
autonomy to situated agents and integrating goal autonomy with motion autonomy in two very 
different problem domains. 

2.  An Overview of Goal-Driven Autonomy 

Goal-Driven Autonomy (GDA) (Figure 1) is a model for online planning with reasoning about 
goal formulation and management (Molineaux et al., 2010a).  It extends Nau’s (2007) model of 
online planning, using the Controller to create and pursue new goals when unexpected events 
occur in complex environments (e.g., stochastic, partially-observable).   

The GDA Controller uses the Planner to create a plan to achieve the current goal 𝑔 from the 
current state 𝑠0.  The Planner outputs to the Controller a sequence of actions < 𝑎1, … ,𝑎𝑛 > to 
execute, and a corresponding sequence of expected states < 𝑥1, … , 𝑥𝑛 >, where 𝑥𝑛 is a goal state 
for 𝑔. 
                                                 
1 We use “goal autonomy” rather than “goal reasoning” throughout, to distinguish from “motion 

autonomy.” 
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As the Controller executes the plan in the state transition environment, it performs a four-step 
cycle to manage goals in response to unexpected events: 

1. Discrepancy detection:  After the Controller executes action 𝑎𝑖, the Discrepancy Detector 
compares the new observed state 𝑠𝑖 to the corresponding expectation 𝑥𝑖.  If they differ, a 
discrepancy has occurred and the GDA model attempts to explain and resolve it. 

2. Discrepancy explanation:  If discrepancies between the new state and the expectation are 
detected, the Explanation Generator attempts to create an explanation of the discrepancies. 

3. Goal formulation:  The Goal Formulator creates new goals that are appropriate given the 
explanation. 

4. Goal management:  Finally, the Goal Manager prioritizes and selects among the Pending 
Goals, including new goals from the Goal Formulator.  The selected goal is then given to the 
Planner to generate a new plan and expectations. 

3.  Related Work 

Related work on autonomy focuses on the areas of goal autonomy, which addresses management 
of the agent’s objectives, and motion autonomy, which addresses tasks such as safely moving a 
vehicle from one position to another.   

Although the projects presented here represent our first efforts to use the GDA model on 
situated vehicles, GDA has been used in the past to control simulated agents.  The ARTUE agent 
has been used to guide simulated vehicles inspired by Mars rovers (Wilson, Molineaux, & Aha 
2013) as well as teams of simulated naval vessels (Molineaux et al., 2010a), but has never been 
integrated with dynamic motion controllers for real robots.  EISBot (Weber et al., 2012), GRL 
(Jaidee, Muñoz-Avila, & Aha, 2012), and GDA-C (Jaidee et al., 2013) have all been used to 
successfully control all or part of a player’s forces in real-time strategy games, a form of 
centralized direction for multi-agent systems.  We present an architecture for centralized 
direction, but our system must interface with group control algorithms designed to prevent 
collisions while allowing several agents to work toward a common goal. 

Other types of goal autonomy have also been used to control simulated agents.  The ICARUS 
cognitive architecture (Choi, 2011) has been applied to simulated car-driving domains with a 

Figure 1: The Goal-Driven Autonomy (GDA) conceptual model. 
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reactive goal-management component that introduces new goals taken from a long-term goal 
memory, given general and domain-specific conditions.  Coddington’s (2006) MADBot 
architecture, which can introduce new goals when domain-specific motivational thresholds are 
exceeded, has been used to control simulated ground-vehicle robots. 

Goal autonomy systems have also received attention on robotic platforms.  Dora the Explorer 
(Hawes et al., 2011) is a robot with goal autonomy capabilities, but is limited to goals focused on 
exploring and categorizing its environment.  The SapaReplan planner has been used in the 
DIARC robotic-control architecture (Schermerhorn et al., 2009) to allow a robotic agent to 
optionally pursue soft goals by taking advantage of ungrounded opportunities in the environment, 
which it models using simulated objects called counterfactuals.  However, SapaReplan can 
pursue such soft goals only temporarily and must not allow them to interfere with its required 
hard goals.  This contrasts with our use of GDA, which permits the indefinite suspension of goals. 

An alternative means of encoding multiple objectives onto an autonomous platform is the use 
of correct-by-construction controller synthesis.  Kress-Gazit, Fainekos, and Pappas (2009) present 
a technique for specifying multiple goals and the conditions required to achieve them as Linear 
Temporal Logic (LTL) formulas.  These formulas are used to generate a Finite-State Automaton 
(FSA) controller that is guaranteed to eventually accomplish all specified goals, assuming the 
required conditions are met and the environment meets defined expectations.  However, the 
computational cost of constructing the FSA grows exponentially with the number of goals and 
conditions, and requires pre-specification of goals for all situations in which the robot must 
act.  Thus, for large problems this framework requires a goal manager to provide a receding 
horizon for the controller as in (Wongpiromsarn, Topcu, & Murray, 2009).  Livingston, Murray, 
and Burdick (2012) and Sarid, Xu, and Kress-Gazit (2012) introduce limited forms of goal 
formulation that respond competently to unexpected states and surprising opportunities, 
respectively, for synthesized controllers.  Using controllers generated from LTL formulas will 
allow a task planner to plan atomic actions that can be decomposed into multiple LTL-level goals, 
and ensure that agents that are assigned complex, multi-stage tasks will complete them or provide 
information about unexpected states in the environment. 

Approaches to autonomous control for underwater vehicles can be broadly classed into 
deliberative and reactive motion planning.  Deliberative approaches variously use, among others, 
genetic algorithms (Alvarez, Caiti, & Onken, 2004), rapidly-exploring random trees (Tan et al., 
2004), A* search over discretized environments (Garau, Alvarez, & Oliver, 2005), and gradient-
descent optimization over cost functions (Kruger, Stolkin, Blum, & Briganti, 2007).  Plaku and 
McMahon (2013) address simultaneous task and motion planning for underwater vehicles using 
LTL task specifications with sampling-based deliberative methods to avoid the complexity of 
guaranteed correctness.  Reactive, or local, planning approaches are particularly useful in regions 
that are large or not well-mapped.  Virtual potential fields (Khatib, 1985) are a common reactive 
system.  Antonelli et al. (2001) alleviate the risk of this approach “trapping” a vehicle in local 
minima by adding a supervisor module to modify the vehicle’s behavior based on the 
environment’s geometry.  While most of these approaches assume holonomic vehicle models, 
Apker and Potter (2012) describe a means of encoding a vehicle’s dynamic constraints to improve 
performance and reliability.  However, unlike our work, these systems address motion autonomy 
rather than the problem of goal autonomy.   

The IvP Helm (Benjamin et al., 2010) provides a reactive UUV controller based on multi-
objective optimization rather than potential fields, and exhibits limited goal autonomy by 
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changing modes based on the state.  However, it does not reason about goals the vehicle should 
accomplish in the environment. 

Research on autonomy for individual air and ground vehicles is more mature than for 
underwater vehicles, and recent work has focused on guiding groups of vehicles to accomplish 
given tasks.  Several authors have explored combining potential fields with FSAs to allow their 
systems to react to state changes by changing agent objectives.  Mather and Hsieh (2012) apply 
this approach to robots engaged in surveillance tasks.  Worcester, Rogoff, and Hsiehm (2011) 
develop a finite state representation of a construction task, and use a centralized system to 
partition its components among a team of robots.  Martinson and Apker (2012) describe a 
physics-inspired FSA that operates in the robots’ behavior space, changing the way they generate 
motion commands from potential fields depending on their proximity to a target and navigation 
quality. In contrast to this body of work, we instead focus on goal autonomy, and discuss 
applications of these methods to teams of unmanned vehicles in Section 5. 

4.  Application Domains  

4.1  Long-Duration Underwater Autonomy 

Autonomously-controlled unmanned underwater vehicles (UUVs) have been used for underwater 
exploration (Antonelli et al., 2001), observation and inspection of underwater structures 
(Antonelli et al., 2001), scientific observation (Binney, Krause, & Sukhatme, 2010), and mine 
countermeasures (LePage & Schmidt, 2002).  However, these missions typically are of short 
duration (at most eight to sixteen hours) and operate over a small region. 

In our first project we will apply GDA to autonomously direct a UUV on unsupervised long-
duration missions.  These missions could eventually last weeks or months.  Long-term missions 
may require the vehicle to pursue different goals at different times, such as goals related to 
transiting to a region, avoiding other vessels, surveying oceanic geography, detecting mines and 
other manufactured obstacles, and taking oceanographic measurements.  The ocean environment 
is highly unpredictable, and a UUV on a long-duration mission must be able to react intelligently 
to unexpected events and objects.  Throughout the course of a mission a UUV may need to 
change its objectives, or even abort its mission, due to unforeseen environmental hazards, 
underwater barriers, encounters with other vehicles, or failures of onboard systems. 

These missions may motivate goal autonomy.  Although motion autonomy could correctly 
guide the vehicle on any task selected in response to such anomalies, goal autonomy provides the 
ability to select goals generally and dynamically without reference to a human operator.  Because 
an at-sea UUV has very limited communication with human operators, the vehicle must make 
goal decisions autonomously. 

For example, consider a UUV taking oceanographic measurements (e.g., water salinity) over 
a region, when a surface vessel enters its area and stops.  If the measurements are being taken 
near the ocean surface, attempting to take them at or near the new vessel’s position may risk 
collision.  While motion autonomy systems can likely minimize risk and maximize data quality, 
they cannot consider the broader implications of the vessel’s arrival and how best to respond.  If it 
is a friendly vessel, it may be appropriate for the UUV to surface, broadcast that scientific 
measurements are being taken, and request that the vessel vacate the area.  If the UUV is a 
military vehicle operating in contested or unfriendly waters, and the vessel is not friendly, it may 
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be appropriate to halt and silence the UUV to avoid detection.  If in open waters, the UUV may 
be correct to abort the data-collection mission and notify its operator of the surface vessel’s 
approach.  Goal-driven autonomy is a general model for generating appropriate responses to 
unplanned situations, and is therefore well-suited to the control of unmanned vehicles at sea. 

Key challenges in this domain include: 

• Unpredictable environments:  Existing deliberative motion autonomy techniques for UUVs 
require advance knowledge of the environment in which the path will be planned while 
existing reactive motion autonomy techniques respond to unknown environments 
unpredictably.  Both present challenges in long duration missions where a UUV may venture 
into waters that are not well-charted or for which there are no reliable data on currents. 
Furthermore, deliberative techniques have difficulty planning for dynamic obstacles whose 
motion may not be well understood, while reactive techniques can complicate the task of 
detecting discrepancies that occur during motion plan execution. 

• Computational constraints: The CPUs that our agent will use to control the UUV are not 
powerful, and necessitate an emphasis on computationally efficient solutions. 

• Uncertain environment state:  The lack of many sensors often found on ground vehicles and 
other robots (e.g., for localization, visual inspection, range-finding), combined with noisy 
readings from sensors that are available, presents unique challenges. 

4.2  Airborne Contaminant Detection 

Unmanned air vehicles (UAVs) are used in remote sensing, scientific research, and search-and-
rescue applications.  Unmanned ground vehicles (UGVs) can be used to explore and act in 
situations that are dangerous to humans, such as in contaminated waste cleanup and explosive 
ordnance disposal missions, and to provide logistics support, such as carrying equipment. 

In our second project, we will apply GDA to direct a team of UAVs equipped with aerosol 
sensors and UGVs with support equipment that includes landing pads, UAV rechargers, and solar 
panels.  We know that the environment is bounded and that autonomous navigation is possible, 
but make no assumptions about initial plume locations, availability of traversable paths for the 
UGVs, or locations of brightly lit areas for solar recharging.  This problem combines motion 
planning, task scheduling, and resource allocation in an unknown environment.  

Conventional motion autonomy methods require a complete output specification for each 
vehicle given possible sensor inputs.  In our scenario this is computationally intractable given the 
potential number of vehicles, sensors, and actions.  Using GDA to make goal and task level 
decisions permits the synthesis of controllers that encode a limited number of relevant responses 
given the current goal, thus making the motion autonomy problem tractable. 

Unlike the UUV domain, in the UAV/UGV domain we must control several vehicles to 
cooperatively achieve goals.  However, if goal decisions are decentralized among vehicles, each 
vehicle would need to model all its teammates’ possible goals and plans, or risk interference with 
teammates pursuing different goals.  By centralizing GDA to coordinate the vehicles, we can 
guarantee all vehicles will pursue the same goal at any given time, and that the goal will be 
achieved based on guarantees offered by lower-layer controllers.  This leads to the key challenges 
for GDA implementation in this domain: 

• Motion abstraction: The GDA Controller must direct multiple autonomous vehicles to 
accomplish tasks requiring solutions to continuous-motion problems.  Multiple vehicles must 
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autonomously carry out these tasks without interfering with each other, a problem too 
computationally intensive to solve at the GDA level.  Hence, we require abstract 
representations of the continuous motion problems that are suitable for computation at the 
goal autonomy layer, while supporting goal decisions that can be used as a basis for planning 
and controller synthesis for individual vehicles. 

• Individual discrepancies:  Although vehicles are directed in coordinating teams to achieve 
goals, discrepancies can still occur on the individual level (e.g., one vehicle’s battery may run 
low due to malfunction).  Our solution must manage goals and vehicle task assignments to 
permit responses to each vehicle’s discrepancies, while using abstracted representations of 
goals as team activities that can be continued in spite of individual discrepancies. 

5.  Applying Goal-Driven Autonomy 

GDA is well-equipped for its usual role in providing goal autonomy in task-planning domains.  
However, applying GDA in robotic vehicle domains requires appropriate abstractions from 
motion guidance to task-level actions.  In this section we describe different approaches to this 
multi-layered abstraction in our underwater autonomy and airborne contaminant domains. 

Factors such as environment predictability and the need for cooperation affect how GDA 
should be implemented and applied in a given domain.  For single vehicles operating in dynamic 
or poorly specified environments (e.g., Mars rovers or singleton UUVs), each sense-act cycle 
represents an opportunity to reevaluate and adjust the agent’s goals with respect to the most 
recent state.  Loosely coordinated teams, particularly those working closely with humans, benefit 
from a concurrent control and planning architecture in which the system’s goals are drawn from a 
limited set of easily interrupted goals whose supporting tasks can be learned offline 
(Talamadupula et al., 2011).  In contrast, tightly coordinated teams require team members to 
behave in a predictable manner so that their teammates can respond appropriately.  In this 
context, each individual’s behaviors for achieving goals should be guaranteed; hence, such 
systems can benefit from correct-by-construction controller synthesis (per team member).  In this 
case, goal interruption must occur safely, which requires extra time to make sure that each team 
member can safely interrupt its current goal and start another.  This delay decreases the reactivity 
of the goal autonomy layer. 

The granularity of atomic actions available to the GDA Controller can vary from simple (e.g., 
“go to x, y, z”) to complex (e.g., “supply landing sites for the UAVs and recharge their batteries”).  
This granularity depends on properties of the underlying control layers, which in turn depend on 
environment predictability and team coordination required.  We present examples at opposite 
extremes of these domain properties, and note how these impact the granularity of the goals used. 

5.1  Autonomous Behavior Technology for UUVs 

While there is a large body of work on UUV motion autonomy, current approaches do not have 
the ability to reason about goals.  In our planned approach, GDA will allow a UUV to respond 
with appropriate actions to unexpected situations whenever the vehicle’s current set of goals is no 
longer satisfactory. 
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5.1.1  Integration with Motion Autonomy Systems 

Deliberative motion autonomy techniques for UUVs require advance knowledge of the 
environment in which the path will be planned, any currents that must be taken into account, and 
the future motion of dynamic obstacles.  In a long-duration mission, a UUV may venture into 
waters that are not well-charted or for which there are no reliable data on currents.  Dynamic 
obstacles may include other vessels that are engaged in unpredictable maneuvering, or whose 
motion is not well-understood at the time of planning because sensor data are not conclusive.  
Without such useful constraints on the guidance problem, deliberative path planning alone may 
not be appropriate for a UUV on a long-duration mission. 

We will apply the MOOS-IvP autonomy architecture (Benjamin et al., 2010) to provide 
suitable path guidance.  MOOS is a message-passing middleware system with a centralized 
publish-subscribe model.  IvP Helm is a behavior-based MOOS application that chooses a desired 
heading, speed, and depth for the vehicle in a reactive manner to generate collision-free 
trajectories.  Unlike potential field methods, IvP Helm uses an interval programming technique 
that optimizes over an arbitrary number of objective functions to generate desired heading, speed, 
and depth values and activate or deactivate sensor payloads. 

We developed a new GDA agent architecture based on ARTUE (Molineaux et al., 2010a), are 
using it to control a UUV in simulation, and will later apply it to control our UUV.  The GDA 
Controller will direct the vehicle to perform various tasks (e.g., sensing, navigation) while 
preserving its ability to navigate partially unknown or poorly mapped environments.  It will 
accomplish this by activating and deactivating specified IvP Helm behaviors and altering the 
parameters of active behaviors.  While IvP Helm can make these decisions independently, it is a 
reactive mechanism and cannot deliberate about what goal the vehicle should pursue, which is the 
focus of GDA.  Figure 2 depicts our agent architecture, where GDA will direct goal autonomy, 
IvP Helm will provide motion guidance, and Bluefin’s Huxley control architecture will execute 
low-level control. 

 The UUV domain has few constraints on the environment, which distinguishes it from the 
contaminant detection domain, where we will use a constrained environment and abstractions to 

Figure 2: The GDA agent architecture for controlling a UUV with MOOS-IvP. 
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provide guarantees of motion controller correctness.  The ocean is large, sparsely mapped, and 
dynamic.  Therefore, it is not possible to provide guaranteed-correct motion control (Kress-Gazit 
et al., 2009).  Furthermore, unlike the controllers we use on the UAVs, IvP Helm cannot 
independently recognize that a navigational failure has taken place. 

To allow IvP Helm independent control over motion while preserving the GDA Controller’s 
ability to recognize anomalous situations, we are developing an abstraction that replaces expected 
states in our Discrepancy Detector with semantically richer expectations.  This will allow our 
agent to ignore certain values or expect values in some range between actions, and to resolve 
intervals between actions by checking conditions during execution rather than computing the 
expected duration of a process from a domain model.  This would allow the goal reasoner to, for 
example, expect position values to fall within some range until a motion is completed or some 
other unexpected event (e.g., a barrier) triggers a discrepancy.  Using this technique affords better 
separation of responsibilities between the goal autonomy layer and the motion autonomy layer.  It 
also offers improved performance by eliminating discrepancies caused by allowing the motion 
autonomy layer to independently execute motion tasks and by obviating precise modeling of 
vehicle motion and other lower-level processes during planning. 

5.1.2  Modeling Uncertainty 

Our current model of discrepancies assumes that observations are not noisy.  This assumption 
does not hold in real-world environments, where sensors are noisy and sometimes faulty, which 
can cause uncertainty in observations and the estimated state.  The discrepancy model also 
assumes that observations occur at precise times relative to actions taken (i.e., either immediately 
after one action or immediately after the amount of time necessary for an event to occur as 
predicted by the domain model).  This second assumption is also unrealistic: the sampling rate of 
the sensors may not correspond precisely to the timeline of the expected states, and the 
transmission and reception of the data by asynchronous processes that lack maximum-update-
time guarantees may interfere with the timely delivery of the state observation.  Hence, when 
detecting discrepancies, observations may not correspond exactly to expected states as generated 
by a planner, though they may be closely correlated. 

To address these issues, we intend to improve our new expectations model by introducing a 
probabilistic model that assigns a distribution to each value or range in an expectation.  This will 
allow for computing a likelihood value for each observed state, which can be used to detect 
discrepancies (i.e., under some conditions, a low likelihood for an observation may indicate a 
high probability that it is anomalous). 

5.2  Autonomous Systems Integration 

In this project, we will apply GDA to the problem of controlling a team of UAVs and UGVs to 
locate the source for a plume of airborne particles.  While the maneuvering of sensors for plume 
source location has been previously studied (Spears, Thayer, & Zarzhitsky, 2009), little work has 
been done on providing autonomous support for such a team.  We will apply goal autonomy to 
simultaneously coordinate search operations and logistics support, including safe landing zones 
and recharging stations. 
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5.2.1  Integration with Motion Autonomy Systems 

We use a hierarchical approach for implementing team motion autonomy that involves three 
decision layers.  The highest layer uses GDA to select mission goals.  The GDA Controller uses a 
SHOP2PDDL+ planner (Molineaux, Klenk, & Aha, 2010b) to produce a sequence of actions and 
associated safety conditions.  The bounded nature of the UAVs’ flight envelope guarantees that 
this planner will generate achievable plans, which are executed by an FSA on each vehicle to 
allow local trajectory planning, execution, and discrepancy detection.  To increase robustness to 
agent failure and reduce the size of the FSA, we are employing the Physicomimetics swarm 
control algorithm (Apker & Potter, 2012) to reactively generate vehicle trajectories. 

To bridge between high-level goals and low-level tasks in the GDA Controller, we will use 
LTL as a translation mechanism between decision layers.  LTL controller synthesis has been used 
to automatically produce verifiable FSA controllers to accomplish complex tasks on autonomous 
robots (Kress-Gazit et al., 2009).  In this approach, the GDA Controller will generate a set of 
complex actions and constraints for each agent's motion autonomy system, and the LTL 
Controller will generate simpler actions (e.g., “go to 〈𝑥, 𝑦, 𝑧〉”) for the agent’s guidance system.  
This contrasts with previous approaches, which required LTL tasks to be pre-specified, or 
required pre-specified templates that can assign newly-discovered areas of interest as new 
destination goals (Sarid et al., 2012).  

For a group of collaborating robots, the LTL controller synthesis problem quickly becomes 
infeasible. We are addressing this by using goal autonomy to alleviate this state-space explosion 
problem by supplementing the mission goal with smaller, short term goals with mission 
constraints. That is, we will use it to decompose the complete task specification into smaller, local 
specifications for individual or small teams of UxVs, thus limiting the goals that are within the 
scope of the task.  This could reduce an infeasible task into smaller, more computationally 
efficient tasks for the LTL synthesizer. 

The FSA that LTL synthesis creates can be used by the GDA Controller to detect unexpected 
events during operation.  Discrepancies can be detected by comparing the FSA’s expected state 
with the agent’s observed state. 

Finally, the FSA is guaranteed to satisfy its underlying task specification, which provides a 
valuable check to ensure that the goals selected by the GDA Controller do not conflict with each 
other or with the mission’s safety constraints.  This guarantee on the FSA’s behavior assumes that 
the environment acts as expected, and that the robot’s sensors and actuators operate without error.  
We can relax these assumptions by using Johnson and Kress-Gazit’s (2012; 2013) method for 
analyzing the behavior of an LTL-synthesized controller, which tolerates errors in the sensing and 
actuation of the robot. After creating a probabilistic model of the robot’s interaction with the 
environment, their method uses model checking to find the probability that the robot exhibits a 
particular behavior (defined by an LTL formula). This will be used by the Discrepancy Explainer 
to diagnose the perceived discrepancy. 

5.2.2  Controlling a Team of Vehicles 

In the contaminant detection domain, several UAVs and UGVs must coordinate to locate the 
contaminant’s source.  While the vehicles are expected to execute maneuvers independently, their 
efforts should be centrally coordinated to complete the mission quickly and with minimal mutual 
interference.  Therefore, the GDA Controller must coordinate the vehicles’ efforts.  Our strategy 
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for solving this problem assigns the UAVs to follow plumes of contaminants to their source and 
uses UGVs in a support role. 

Figure 3 depicts our prototype architecture, which uses the MASON simulation toolkit (Luke, 
2005) to simulate vehicle motion and chemical-plume dynamics.  The mission goal is to detect 
possible plume locations.  Initially, the planner assigns all UAVs to small groups and directs each 
group to investigate a possible plume, or remain in reserve.  Each group’s plume assignment is 
passed to a separate intermediate level planner, which creates a lawnmower search pattern to 
follow.  (In our future work, we will replace this with LTL-synthesized controllers.)  All of the 
UAVs use Physicomimetics motion planning to jointly investigate each location in the pattern for 
evidence of a plume.   

The discrepancies that we currently model concern unexpectedly low UAV battery states, 
suspected plume locations, and task completion signals from groups or individual agents.  When a 
discrepancy is encountered, the GDA Controller reassesses its goals and forms new plans.  For 
instance, if an agent’s battery charge becomes crucially low, then the GDA Controller will assign 
a new goal for the agent to recharge its battery, and will change the group’s composition by 
tasking other vehicles to continue searching for plumes.  Later, we will model anomalies such as 
opportunities to deploy solar panels, which may interfere with UAV transport or landing 
operations, and winds that interfere with UAV flight and aerosol sensor performance. 

We will integrate UGVs in this domain.  They will transport UAVs to contaminated regions, 
harvest energy for battery power, and recharge the UAVs’ batteries during operations.  Launch, 
landing, search patterns, and battery charging involve precise, coordinated motion control that 
can be achieved only in favorable conditions.  This requires guarantees on the agents’ behavior 
throughout a maneuver, which is an ideal application of LTL control.  The GDA Controller 
complements this by managing higher level goals, scheduling these operations, and determining 
their locations. 
  

Figure 3. The GDA architecture for controlling the UAVs. 
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6.  Discussion 

We based our implementation decisions on the degree of predictability in each environment and 
the need for agent cooperation.  These vary substantially between our two projects. 

6.1  Environment predictability 

Ocean currents, ship traffic, and underwater features are generally unknown in advance of 
deployment.  As a result, any motion autonomy algorithm that makes specific guarantees is bound 
to fail in the UUV domain.  There is little benefit in the UUV domain to synthesizing a guidance 
system more complex than a MOOS-IvP behavior, as the GDA Controller may frequently select 
new goals when more accurate states become available. 

In contrast, the plume detection environment can be observed and accurately predicted over 
short time scales, allowing synthesis of controllers that are guaranteed to perform well in those 
conditions.  At longer time scales, much of the environment is static or repetitive (e.g., areas of 
sun vs. shade), allowing a planner to schedule complex tasks with a high probability of success.  
The GDA Controller will detect fewer discrepancies in this environment and will be more 
focused on managing the team's resources. 

The plume detection mission benefits from abstractions of the environment and agent 
behavior that are possible in predictable environments. These abstractions allow goal autonomy 
to largely ignore issues of motion autonomy. 

6.2  Need for cooperation 

The UUV domain involves a single vehicle that has little or no interaction with other agents, and 
reasons about only a few constraints (e.g., to avoid goal oscillations).  This frees GDA to make 
highly independent decisions about the vehicle’s activity by selecting the best available goal for 
its current state.  This level of independence permits a direct connection between GDA and the 
guidance systems, with no need for a controller-synthesis step. 

Cooperation is the defining feature of the plume detection domain.  As a result, no individual 
agent can be allowed to replan its actions in a way that interferes with its peers.  This forces goal 
autonomy to a central node whose role is restricted to issuing clearly defined instructions that will 
be used to synthesize low-level controllers (FSAs) for each team member.  These extra layers of 
abstraction will allow goal autonomy to coordinate the team’s behaviors to ensure that no 
hardware will be lost unexpectedly, although it will introduce delays between selecting and 
implementing new goals. 

Architecture decisions involving cooperative agents need to balance closeness of cooperation 
with the agents’ ability to respond to new information quickly.  A continuum of cooperation 
options exists, varying from agents that cluster closely (to form coherent arrays) to fully 
independent agents.  With less cooperation, fewer abstractions are required between GDA and 
low-level control, while close cooperation requires more abstractions and, implicitly, a more 
predictable environment to allow those abstractions. 
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7.  Conclusion 

In this paper we described initial architectures and proposed models for projects in which goal 
autonomy (i.e., the GDA model) will be used to control unmanned vehicles.  We identified 
different modeling requirements in the application of GDA to situated agents depending on 
certain domain properties, which affect the capabilities afforded to GDA by lower level layers in 
the autonomy architecture.  In particular, the granularity of actions that are atomic for the GDA 
Controller varies widely according to the computational complexity of motion and the guarantees 
provided by lower level systems. 

In the contaminant detection domain, the motion of a team of vehicles toward a location 
where sensing will take place must be carefully coordinated so as to avoid collisions or other 
interference.  Solving this guidance problem (i.e., finding waypoints that each individual should 
follow) in the goal autonomy layer would be computationally infeasible.  However, specialized 
guidance techniques combined with domain-specific controllers, can reduce computational 
complexity.  Hence, in the contaminant detection domain, the abstraction level of the GDA 
Controller’s actions must be at least as high as instructions for each team of vehicles to follow. 

In contrast, we do not require coordination of many individual agents in the UUV domain.  
Therefore, the GDA Controller’s plans can be more concrete (e.g., specify a sequence of 
waypoints for the vehicle to follow).  Furthermore, the unpredictability of the ocean environment 
requires that GDA detect discrepancies without the aid of guarantees as provided by the LTL 
controllers in the contaminant detection domain.  To support GDA discrepancy detection, 
behaviors implemented by lower level systems should be as predictable as possible.  This 
reinforces our belief that the GDA Controller’s actions should be simpler in this domain. 

Thus, when designing a goal autonomy robotic controller, the required granularity of the 
actions will be dictated by the available reactive and abstraction layers.  Highly granular actions 
improve predictability but impose a higher computational burden on the GDA Controller.  More 
abstract actions reduce this computational burden, but generally require more time to safely 
coordinate goal changes, reducing system reactivity.  They also require more predictable 
environments for low level controllers. 

As we progress to more complex tasks and control of non-simulated vehicles, we will 
develop and implement new models for GDA that address the issues of real-world situated 
agents.  We have argued these models are needed (e.g., probabilistic expectation models for 
discrepancy detection).  We expect to create compelling demonstrations of goal autonomy for 
controlling unmanned robotic vehicles after these models are in place. 
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