

Bounded Expectations for Discrepancy Detection

in Goal-Driven Autonomy

Mark A. Wilson
1
, James McMahon

2
, and David W. Aha

1

1Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC
2Physical Acoustics Branch; Naval Research Laboratory, Code 7130; Washington, DC

Abstract

Goal-Driven Autonomy (GDA) is a model for online
planning extended with dynamic goal selection. GDA has
been investigated in the context of numerous abstract
planning domains, and there has been recent interest in
applying GDA to control unmanned vehicles. In robotic
domains, certain continuous state features from sensor data
must be modeled for reasoning. However, modeling these
features precisely during planning and execution monitoring
may be problematic, due to the inefficiency of computing
exact values or sensitivity to noise. We present PHOBOS, a
Hierarchical Task Network planner with bounded
expectations, which we apply with a GDA agent in an
underwater vehicle domain. Bounded expectations allow an
agent to plan and detect discrepancies more efficiently and
with fewer false discrepancies (i.e., detected but
semantically meaningless differences from expectations
during execution). We describe an initial simulation study
that supports this claim.

1. Introduction

While there is a large body of work on motion and task

planning for autonomous underwater vehicles (AUVs),

current approaches are not designed to reason about self-

selected goals, which may hinder the vehicle’s ability to

act without human supervision. To address this

shortcoming, we are augmenting the planning processes of

an AUV with goal reasoning: the ability to dynamically

formulate, prioritize, and assign goals.. This is valuable in

long duration missions in complex environments, such as

the AUV domain, where the agent is likely to encounter

unpredictable hazards and opportunities too complex to

enumerate a priori. The ability to choose an appropriate

goal to pursue enables an agent to select useful actions in a

broader range of situations without supervision.

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We will use Goal-Driven Autonomy (GDA), a model

that responds to unexpected situations by formulating and

reprioritizing goals (Molineaux, Klenk, and Aha 2010a), to

control an AUV with goal reasoning. We posit that GDA

will enable an AUV to conduct long duration, independent

missions with varying objectives. GDA has previously

been applied in simulated domains inspired by real-world

scenarios (Molineaux et al. 2010a) and game environments

(Weber, Mateas, and Jhala 2012; Jaidee, Muñoz-Avila, and

Aha 2013), where it has performed well in comparison to

alternative approaches such as dynamic replanning. Our

AUV control task is one of the first applications of GDA in

support of a hardware platform. However, in this paper we

focus on challenges related to task planning and

discrepancy detection in the AUV domain and leave

evaluation of GDA as an AUV control technology for

future work.

During plan execution, a GDA agent detects

discrepancies (i.e., unexpected situations) by monitoring

the world state and comparing it to expectations. Our agent

is inspired by ARTUE (Molineaux et al. 2010a), which

uses predicted states from its planner as expectations. We

describe other methods for creating expectations in §3.

 To apply GDA on an AUV for long-term missions, we

must model continuous state features that cannot be

adequately discretized or represented symbolically (e.g.,

the AUV’s location). Existing task planning techniques can

model these values’ continuous change in a plan, enabling

discrepancy detection throughout execution. However,

these approaches typically use precise descriptions of

continuous changes, which can require extensive domain

engineering and lead to false discrepancies (i.e.,

discrepancies that do not affect task execution or goal

suitability) and other undesirable consequences in

uncertain domains.

 ARTUE uses the SHOP2PDDL+ planner (Molineaux,

Klenk, and Aha 2010b) to model nonlinear continuous

effects while employing Hierarchical Task Network (HTN)

planning techniques (Erol, Hendler, and Nau 1994). HTN

planners can quickly generate plans using detailed

representations of complex domains. However, the PDDL+

model (Fox and Long 2006) employed in SHOP2PDDL+ uses

precise descriptions of continuous effects, which can lead

to the issues described above. We instead present

PHOBOS (Planner for HTN Objectives with Bounding

OperatorS), a variant of SHOP (Nau et al. 1998) that

abstracts state features during planning by allowing

operator effects to set bounds (i.e., constraints) on

continuous values. We demonstrate its utility as a planner

for our GDA agent in AUV simulation studies.

In §2, we describe the GDA model and our architecture

for applying it on an AUV. Related work is described in

§3. We explain our novel method for planning and

discrepancy detection in §4, describe our empirical study

in §5, and discuss future research tasks in §6 before

concluding.

2. GDA and AUV Control

2.1 The GDA Conceptual Model

GDA is a goal reasoning model for online planning in

autonomous agents (Klenk, Molineaux, and Aha 2013).

Figure 1 illustrates GDA as an extension of Nau’s (2007)

model of online planning. The GDA Controller interacts

with a Planner and a State Transition System , which is a

tuple 〈 〉 with states , actions , exogenous events

 , and state transition function () that

describes how an action or event transforms the

environment. In stochastic or partially observable

environments, the agent has only partial models of , ,

and . During execution, the Controller receives

observations , which are representations of .

The Planner takes as input a planning problem

〈 〉, where is a model of , is the current

observation representing the current state , and is a

goal from the set of all possible goals . The Planner

outputs (1) a plan , which is a sequence of plan operators

(i.e., actions and events) , and (2) a

corresponding sequence of expectations
 , where each is the expectation that

should follow when the corresponding action or event in

the sequence takes place.

The Controller takes as input initial observation ,

initial goal , and , and sends them to the Planner to

generate plan and expectations . The Controller

forwards ’s actions to for execution and processes the

resulting observations.

During plan execution, the Controller performs the

following operations:

• Discrepancy detection: GDA detects a discrepancy d

by comparing with , which corresponds to the

most recent in current plan .

• Explanation generation: Given , , and , this

operation hypothesizes one or more explanations of the

discrepancy’s cause .

• Goal formulation: Resolving a discrepancy may

warrant a change in the current goal(s). This operation may

formulate a goal in response to , given and .

• Goal management: Formulating a goal may warrant its

immediate focus or removal of some existing goals. Given

a set of pending goals and new goal , this

operation may update (e.g., by adding or deleting

other pending goals) and then select the next goal

to be given to the Planner.

2.2 GDA Architecture for AUV Control

In our hybrid control architecture, the GDA Controller

monitors the AUV’s state and directs the AUV to perform

sensing and navigation tasks, delegating them to lower-

level control components. To address the challenges of

motion control in dynamic environments that may be only

partially known a priori, we employ the reactive MOOS-

IvP autonomy architecture (Benjamin et al. 2010), a widely

used, open source robotic control framework. MOOS is a

message-passing suite with a centralized publish-subscribe

model. The MOOS application IvP Helm is a behavior-

based controller that sets navigation parameters to generate

collision-free trajectories, using an interval programming

technique that optimizes over behaviors’ objective

functions.

 The GDA Controller executes plans by activating,

deactivating, and changing parameters of IvP Helm

behaviors. (While IvP Helm can alter behaviors reactively,

it cannot deliberate about what goal the vehicle should

pursue, which is the focus of GDA.) Figure 2 depicts our

Figure 1: The GDA Conceptual Model

agent architecture, which includes Huxley, the low-level

control software provided by the AUV’s manufacturer,

Bluefin Robotics.

3. Related Work

Several architectures have been developed to control

AUVs using AI techniques. Orca (Turner 1995) is a

context sensitive architecture that applies schemas to create

sequences of actions for the AUV to execute. It uses an

event handler to react to unexpected states, and an agenda

manager to change the agent’s active goal in response

(similarly to GDA’s Goal Manager). However, unlike our

GDA agent, Orca assumes externally-specified goals; it

does not formulate new goals.

COLA2 (Palomeras et al. 2012) is an AUV control

architecture that uses reinforcement learning techniques to

learn and execute motion primitives, Petri nets to model

behavior-like structures for plan execution, and a STRIPS-

like planner for mission planning. It replans when

expectations are violated, but does not perform goal

reasoning.

T-REX (Rajan, Py, and Barreiro 2012) uses constraint-

based planning to guide robots, primarily AUVs, using

multiple reactors that collaborate to produce a plan.

Although T-REX recognizes plan expectation violations

and can apply response strategies at any affected reactor, it

does not address goal formulation or management, which

is the focus of GDA. Although we present planning

extensions employing constraints, we do so in the context

of HTN planning, not constraint-based planning. Finally,

unlike our GDA agent, T-REX uses multiple reactors that

operate on the same plan timeline, which requires

synchronization and reactor dependency graphs. Py, Rajan,

and McGann (2010) argue that monolithic planning such as

we employ may reduce responsiveness, which we leave as

a future research topic to investigate.

Automated planning models have been developed for

uncertain domains. The Probabilistic PDDL (PPDDL)

model (Younes and Littman 2004) provides probability

distributions over action effects, allowing an agent to use

Markov Decision Processes in planning. However, it

assumes that actions are instantaneous and does not model

continuous change (such as AUV motion) probabilistically.

Concurrent Probabilistic Temporal Planning (Mausam and

Weld 2008) can represent probabilistic durations for

actions, but, like PPDDL, does not model probability

distributions over continuous change.

The challenge of modeling uncertain motion during task

planning for AUVs has been the focus of some research.

The PANDORA project employs PDDL planning over

Probabilistic Roadmap (PRM) models of the environment

(Cashmore et al. 2013), which provide an abstraction for

use in planning. However, due to the abstract nature of

PRMs, the agent performs discrepancy detection only

during sensing actions; unlike our agent, it does not detect

discrepancies during motion actions. Plaku and McMahon

(2013) also model the AUV environment using PRMs, but

employ LTL to express task-level requirements. Because

their framework is not yet adapted to dynamic replanning,

they do not address the problem of discrepancy detection.

Many goal reasoning agents employ expectations.

LGDA (Jaidee, Muñoz-Avila, and Aha 2011) learns

probabilistic state expectations that are stored in a case

base; during execution, the most likely expected state is

used for discrepancy detection. Jaidee et al. (2013) use an

expectation that relevant state features will monotonically

increase. Although their domain model specifies relevant

state features, the constraint itself is fixed. Cox et al.

(2012) use A-distance on symbolic state representations to

detect discrepancies in MIDCA. This technique requires

training on normal sequences of states. Unlike these

approaches, our agent uses deterministic expectation

models and does not have fixed constraints or require

training.

Execution monitoring has received substantial attention,

particularly in robotics research. We list a small sample of

such work here; see (Petersson 2005) for one survey. At

the sensor level, Gat et al. (1990) define envelopes of

expected sensor values, including mathematical functions

on physical sensors, based on motion plans for a Mars

rover. At the task level, Fichtner, Großmann, and

Thielscher (2003) use extensions to the fluent calculus to

represent temporal and uncertain information for a robot in

a dynamic environment, but their representation is focused

on symbolic knowledge, not continuous-valued domains.

The SKEMon process (Bouguerra, Karlsson, & Saffiotti

2008) uses semantic knowledge about a robot’s domain to

infer implicit expectations as results of actions, which can

be tested probabilistically or otherwise. Although

semantically rich, this technique requires semantic

knowledge and additional processing that may be more

suitable for terrestrial robots than the limited perception

and processing power of AUVs.

Figure 2: Our GDA agent architecture for

controlling an AUV with MOOS-IvP

4. Planning and Discrepancy Detection

In many domains, a GDA Controller will need to reason

about continuous values. For instance, deciding whether to

pursue a goal of mapping a region of the ocean floor may

depend on predicting the vehicle’s position and battery

health in the future. Concrete values may also be necessary

because a priori discretization is not feasible (e.g.,

segmentation of an ocean into polygonal regions suitable to

a variety of tasks). Therefore, these values must be

modeled in .

Existing task-planning techniques, such as PDDL2.1’s

continuous durative actions (Fox and Long 2003) and

PDDL+’s process-event model, describe continuous

change to state features. This knowledge allows the agent

to detect discrepancies at any point during execution.

However, these techniques often require exact models of

continuous change, which can create several difficulties for

planning and discrepancy detection in the AUV domain.

First, in stochastic or partially observable domains,

precise modeling can lead to false discrepancies, which

require extra computation and may be detrimental to agent

performance. For instance, while executing a motion

action, ocean currents may cause an AUV to move off its

projected course. Reactive motion controllers can adjust

the vehicle’s controls and correct this deviation without

intervention from the GDA Controller. However, the

Discrepancy Detector may incorrectly treat this deviation

as a discrepancy requiring reevaluation of the agent’s

goals. Employing a threshold during discrepancy detection

is a common approach to such challenges, but a threshold

value may not generalize to all continuous features in a

domain.

Second, precise domain modeling can be burdensome.

Automated task-planning techniques (e.g., durative actions

or processes) may require extensive knowledge

engineering to describe complex actions or processes.

Third, precise modeling causes redundant computation.

The planner may need to solve complex process constraints

to determine how long an action will take and to compute

intermediate states for discrepancy detection. During plan

execution on an AUV, the navigation and motion

controllers will perform lower-level computations to guide

the vehicle on the same path. These computations are

redundant and need not both be executed.

PHOBOS and our agent’s Discrepancy Detector will

address these challenges by accepting bounds on state

values as part of and applying these bounds during

planning and discrepancy detection.

4.1 Planning with PHOBOS

ARTUE, the inspiration for our agent, uses SHOP2PDDL+ to

plan with nonlinear models of continuous processes. In the

PHOBOS planner, we revise this model to exclude

processes but include bounding effects in plan operators.

Bounding effects specify constant bounds on state values

or derived values, i.e., mathematical functions on state

values.

Syntactically, a bounding effect is an expression of the

form (set v (range lb ub)), where v is a continuous fluent

or derived value, and lb and ub are numeric values or

variables which were unified in the operator’s

precondition, representing the value’s lower and upper

bounds, respectively. For example, (set (speed) (range ?l
?u)) creates a bound on the fluent speed, where ?l and ?u
were unified in the precondition.

 Rather than projecting new states with exact continuous

values, PHOBOS uses bounding effects to project an

expectation that includes the bounds specified by . A

bounded expectation is a tuple 〈 〉, where

is the set of true facts, is the set of exact fluent values,

is the set of bounded continuous fluent values, and is the

set of bounded values derived from fluent values. Each

value is a tuple 〈 〉, where is an

identifier for the value, which is constrained to lie within

the given bounds . Each is similarly

constrained but contains a mathematical function in place

of an identifier.

When projecting a new expectation using a plan

operator, PHOBOS applies each bounding effect by

placing the bounded value, with the values of its bounds as

computed in the precondition, in the appropriate element of

 . If the effect constrains a state value, the value and its

bounds are placed in . If it constrains a derived value, the

function for computing it from observed states and its

bounds are placed in . and are projected in the usual

manner, using positive and negative fact effects and

instantaneous fluent change effects.

When testing preconditions of operators, PHOBOS

considers a value to be less than a bounded value iff

the upper bound or precise value of is less than the

lower bound of (similarly for greater-than). Arithmetic

expressions are not applicable on a bounded value, but are

applicable on the upper and lower bounds of a bounded

value ?v, which are expressed (upper-bound ?v) and

(lower-bound ?v).

Table 1 shows the action definition that represents the

start of an AUV survey maneuver, simplified for

presentation. The action preconditions define the

boundaries of the region in which the vehicle will operate,

and the effects constrain the vehicle’s motion, creating an

expectation defining a bounding box around the survey

area and the vehicle’s current position. This expectation

will not be violated as long as the vehicle remains en route

to or within the survey area. Figure 3 depicts an example

survey maneuver in MOOS-IvP’s simulation viewer with

possible bounds on the and coordinates.

To permit the vehicle time to execute a maneuver, the

HTN designer can use a built-in action, wait-for, that

causes the GDA Controller to suspend plan execution. The

wait-for action takes as parameters an event (such as

maneuver-finished, shown in Table 2) and the event’s

arguments to indicate the point when plan execution should

resume. It also optionally takes a timeout for the event’s

occurrence. If wait-for is operator in the plan, PHOBOS

copies to create (wait-for does not affect the

world). PHOBOS uses the event specified in arguments to

wait-for (e.g., maneuver-finished) as and projects the

effects of that event to create . The use of these

expectations is described in §4.2.

In planning, placing bounds on continuous values is

equivalent to replacing each continuous value with two

continuous values and (i.e., ’s upper and lower

bounds). During discrepancy detection, it is necessary to

understand the semantics of and as bounds on . Our

representation provides this knowledge by associating

with its bounds in the tuple .

4.2 Discrepancy Detection

During plan execution, the Discrepancy Detector must

monitor the resulting states to ensure that they meet the

requirements set forth in the expectations. In addition to

the set comparisons used in ARTUE to check facts and

fluents, our Detector must compute derived values in

from the current observation , and compare them and

bounded state values in with the most recent expectation

 to verify that they lie within the expected ranges.

During a wait-for action, each observation represents a

situation after the event at which execution should resume,

a normal situation during the wait period, or an unexpected

situation requiring goal reasoning. The Controller tests

observations against the expectation corresponding to the

specified event (, where wait-for is). If no

discrepancy is detected, the Controller assumes the event

has occurred and resumes plan execution. If a discrepancy

is detected, the Controller next tests the observation against

the expectation corresponding to the wait-for action (). If

no discrepancy is detected, the Controller assumes the

event has not yet occurred and waits for the next

observation. If a discrepancy is detected, the Controller

begins the GDA cycle to respond to it. In our example,

when the motion controller completes the survey operation,

it removes the vehicle-maneuvering fact from the state,

causing the GDA Controller to detect the event and resume

plan execution.

5. Empirical Study

We claim that using bounded expectations in GDA can

reduce the number of false discrepancies and planning time

for tasks in an AUV environment. To evaluate this

hypothesis, we conducted tests on a simulated AUV using

the uSimMarine utility included with MOOS-IvP. We

applied our GDA agent to direct a simulated AUV in three

simple missions. In each mission, we used thirty

randomized scenarios.

 We compared a configuration of the agent using

PHOBOS to a configuration using V-PHOBOS, a planner

based on the same code as PHOBOS. V-PHOBOS does not

provide bounding effects, but integrates a vehicle dynamics

model from uSimMarine. It uses this model to project

expected states at intervals during motion actions, similar

Action Name survey-area

Parameters ?area-lower-x (type real)
?area-upper-x (type real)
?area-lower-y (type real)
?area-upper-y (type real)

Conditions (assign ?lower-x (min (lower-bound (x-pos))
?area-lower-x))

(assign ?upper-x (max (upper-bound (x-pos))
?area-upper-x))

(assign ?lower-y (min (lower-bound (y-pos))
?area-lower-y))

(assign ?upper-y (max (upper-bound (y-pos))
?area-upper-y))

(assign ?s (lower-bound (speed)))

Effects (vehicle-maneuvering)
(set (x-pos) (range ?lower-x ?upper-x))
(set (y-pos) (range ?lower-y ?upper-y))
(set (depth) (range 0 5))
(set (heading) (range 0 360))
(set (speed) (range ?s 2.1))

Table 1: Action specification for surveying an area,

demonstrating bounding effects to be used during state

projection
Event Name maneuver-finished

Conditions (assign ?s (upper-bound (speed)))

Effects (not (vehicle-maneuvering))
(set (speed) (range 0 ?s))

Table 2: Event specification for finishing a motion,

demonstrating effects used to detect the event during execution

Figure 3: An AUV survey maneuver (solid line) with bounded

expectation (dashed line) and AUV trajectory (curved line)

to projections that might be produced by a continuous-time

planning model, but requiring less domain engineering. In

other respects the agent configurations were identical. For

the experiments, we used rule-based goal formulation and

priority values for goal management. More advanced

techniques for goal selection have been investigated (e.g.,

see Powell, Molineaux, and Aha 2011), but were not used

in this study. Discrepancy detection was performed with a

fixed threshold for continuous values.

Mission 1 - Waypoint Following: In this mission, the

vehicle visits a sequence of five waypoints and returns to

its starting point. There are no other vessels in the area.

The waypoints and starting point were drawn randomly

from a uniform distribution over a rectangular region.

Mission 2 - Survey with Surface Vessel: In this mission,

the AUV surveys an area using a lawnmower pattern.

Meanwhile, a surface vessel traverses the area on a fixed

route. The AUV can detect the vessel, but does not assess

it as threatening since it is not actively searching for the

AUV. The AUV starting point was chosen randomly as in

Mission 1, the survey region’s center was similarly

selected from a smaller subregion, the region’s extent in x

and y was randomly chosen from a set of predefined

values, and the approaching vessel’s start and end points

were randomly selected from areas to each side of the

possible survey region, in the y direction.

Mission 3 - Survey with Hostile Surface Vessel: In this

mission, the AUV surveys an area with a traversing vessel

as in Mission 2. However, the surface vessel uses active

sensors to search for the AUV, which causes the GDA

agent to detect discrepancies resulting from the pings. The

agent uses goal formulation rules to respond to the pinging

by avoiding the vessel. For simplicity of modeling, the

goal directs the AUV to move toward a given “safe” point.

Parameter values were randomly selected as in Mission 2,

and the safe point was determined in advance from the

aggressor’s start and end points.

Our results are summarized in Figures 4-5. Because

MOOS sensor readings may not be taken or delivered

exactly when planned, V-PHOBOS caused discrepancies

even in Mission 1, which has no true unexpected events. In

Missions 2 and 3, V-PHOBOS’s lengthy planning time

often caused plan production to lag behind updates to the

vehicle’s position, causing discrepancies at the start of

each plan. For our metrics, on average, the agent using

PHOBOS performed better by at least an order of

magnitude in all three missions. A t-test indicates that the

GDA agent, when using PHOBOS, performed better than

when using V-PHOBOS with for all metrics.

The results support our claim that planning and

discrepancy detection with PHOBOS can reduce planning

time and false discrepancies in a simulated AUV

environment. Also, PHOBOS permits goal reasoning on

continuous state features such as position, speed, and

battery health, allowing the agent to make more informed

decisions than agents that use symbolic representations.

6. Conclusions

We introduced PHOBOS, an HTN planner with effects for

creating bounded expectations. We claimed that this

extension would reduce planning time and false

discrepancies in a GDA agent. Our empirical study, in

which we compared PHOBOS to a similar HTN planner

that makes precise predictions over a complex motion,

supports this claim.

Future research tasks include investigating PHOBOS’s

generality with respect to other domains that also include

unpredictable continuous values. We will also test

PHOBOS’s utility in more challenging scenarios in our

AUV domain, investigate more thoroughly the use of

bounded derived values, and evaluate the utility of GDA as

an AUV control technology in comparison to existing

AUV frameworks.

Acknowledgements

The authors thank NRL for supporting this work. The

views and opinions contained in this paper are those of the

authors and should not be interpreted as representing the

official views or policies, either expressed or implied, of

NRL or the DoD.

Figure 5: Average total planning time, by mission

Figure 4: Discrepancies encountered per scenario, by mission

References

Benjamin, M., Schmidt, H., Newman, P., & Leonard, J. 2010.
Nested autonomy for unmanned marine vehicles with MOOS-
IvP. Journal of Field Robotics 27:834-875.

Bouguerra, A., Karlsson, L., and Saffiotti, A. 2008. Monitoring
the execution of robot plans using semantic knowledge.
Robootics and Autonomous Systems 56:942-954.

Cashmore, M., Fox, M., Larkworthy, T., Long, D., and
Magazzeni, D. (2013). Planning Inspection Tasks for AUVs. In
Proceedings of MTS/IEEE OCEANS 2013. San Diego, CA.

Cox, M., Oates, T., Paisner, M., and Perlis, D. 2012. Noting
anomalies in streams of symbolic predicates using A-distance.
Advances in Cognitive Systems 2:167-184.

Erol, K., Hendler, J., & Nau, D.S. 1994. HTN planning:
complexity and expressivity. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1123-1128.
Atlanta, GA: AAAI Press.

Fichtner, M., Großmann, A., and Thielscher, M. 2003. Intelligent
Execution Monitoring in Dynamic Environments. Fundamenta
Informaticae 57:371-392.

Fox, M., & Long, D. 2003. PDDL2.1: An extension to PDDL for
expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61-124.

Fox, M., & Long, D. 2006. Modelling mixed discrete-continuous
domains for planning. Journal of Artificial Intelligence Research
27:235-297.

Gat, E., Slack, M.G., Miller, D.P., Firby, R.J. 1990. Path planning
and execution monitoring for a planetary rover. In Proceedings of
the 1990 IEEE International Conference on Robotics and
Automation. Cincinnati, OH: IEEE Press.

Jaidee, U., Muñoz-Avila, H., & Aha, D.W. 2011. Case-based
learning in goal-driven autonomy agents for real-time strategy
combat tasks. In M.W. Floyd & A.A. Sánchez-Ruiz (Eds.) Case-
Based Reasoning in Computer Games: Papers from the ICCBR
Workshop. U. Greenwich: London, UK.

Jaidee, U., Muñoz-Avila, H., & Aha, D.W. 2013. Case-based
goal-driven coordination of multiple learning agents. In
Proceedings of the Twenty-first International Conference on
Case-Based Reasoning, 164-178. Saratoga Springs, NY:
Springer.

Klenk, M., Molineaux, M., & Aha, D.W. 2013. Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Computational Intelligence 29:187-206.

Mausam and Weld, D.S. 2008. Planning with durative actions in
stochastic domains. Journal of Artificial Intelligence Research,
31:33-82.

Molineaux, M., Klenk, M., & Aha, D.W. 2010a. Goal-driven
autonomy in a Navy strategy simulation. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence.
Atlanta, GA: AAAI Press.

Molineaux, M., Klenk, M., & Aha, D.W. 2010b. Planning in
dynamic environments: Extending HTNs with nonlinear
continuous effects. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence. Atlanta, GA: AAAI Press.

Nau, D.S. 2007. Current trends in automated planning. AI
Magazine, 28(4):43–58.

Nau, D.S., Cao, Y., Lotem, A., & Muñoz-Avila, H. 1998. SHOP:
Simple hierarchical ordered planner. In Proceedings of the

Sixteenth International Joint Conferences on Artificial
Intelligence. Stockholm, Sweden.

Palomeras, N., El-Fakdi, A., Carreras, M., & Ridao, P. 2012.
COLA2: A control architecture for AUVs. IEEE Journal of
Oceanic Engineering 37:695-716.

Petersson, O. 2005. Execution monitoring in robots: a survey. In
Robotics and Autonomous Systems 53:73-88.

Plaku, E., and McMahon, J. 2013. Combined mission and motion
planning to enhance autonomy of underwater vehicles operating
in the littoral zone. In Workshop on Combining Task and Motion
Planning at IEEE International Conference on Robotics and
Automation. Karlsruhe, Germany.

Powell, J., Molineaux, M., & Aha, D.W. 2011. Active and
interactive learning of goal selection knowledge. In Proceedings
of the Twenty-Fourth Florida Artificial Intelligence Research
Society Conference. West Palm Beach, FL: AAAI Press.

Py, F., Rajan, K., & McGann, C. 2010. A systematic agent
framework for situated autonomous systems. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems, 583-590. International Foundation for
Autonomous Agents and Multiagent Systems.

Rajan, K., Py, F., and Barreiro, J. 2012. Towards Deliberative
Control in Marine Robotics. In Marine Robot Autonomy, ed. M.
Seto. Springer Verlag.

Turner, R. 1995. Context-sensitive, adaptive reasoning for
intelligent AUV control: Orca project update. In Proceedings of
the Ninth International Symposium on Unmanned, Untethered
Submersible Technology. Durham, NC.

Weber, B., Mateas, M., & Jhala, A. 2012. Learning from
demonstration for goal-driven autonomy. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence.
Toronto, Canada: AAAI Press.

Younes, H. L., & Littman, M. L. 2004. PPDDL1.0: An extension
to PDDL for expressing planning domains with probabilistic
effects. Technical Report, CMU-CS-04-162, Carnegie Mellon
University, Pittsburgh, PA.

