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Abstract 

Goal-Driven Autonomy (GDA) is a model for online 
planning extended with dynamic goal selection. GDA has 
been investigated in the context of numerous abstract 
planning domains, and there has been recent interest in 
applying GDA to control unmanned vehicles. In robotic 
domains, certain continuous state features from sensor data 
must be modeled for reasoning. However, modeling these 
features precisely during planning and execution monitoring 
may be problematic, due to the inefficiency of computing 
exact values or sensitivity to noise. We present PHOBOS, a 
Hierarchical Task Network planner with bounded 
expectations, which we apply with a GDA agent in an 
underwater vehicle domain. Bounded expectations allow an 
agent to plan and detect discrepancies more efficiently and 
with fewer false discrepancies (i.e., detected but 
semantically meaningless differences from expectations 
during execution). We describe an initial simulation study 
that supports this claim.  

1. Introduction  

While there is a large body of work on motion and task 

planning for autonomous underwater vehicles (AUVs), 

current approaches are not designed to reason about self-

selected goals, which may hinder the vehicle’s ability to 

act without human supervision. To address this 

shortcoming, we are augmenting the planning processes of 

an AUV with goal reasoning: the ability to dynamically 

formulate, prioritize, and assign goals.. This is valuable in 

long duration missions in complex environments, such as 

the AUV domain, where the agent is likely to encounter 

unpredictable hazards and opportunities too complex to 

enumerate a priori. The ability to choose an appropriate 

goal to pursue enables an agent to select useful actions in a 

broader range of situations without supervision. 
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We will use Goal-Driven Autonomy (GDA), a model 

that responds to unexpected situations by formulating and 

reprioritizing goals (Molineaux, Klenk, and Aha 2010a), to 

control an AUV with goal reasoning. We posit that GDA 

will enable an AUV to conduct long duration, independent 

missions with varying objectives. GDA has previously 

been applied in simulated domains inspired by real-world 

scenarios (Molineaux et al. 2010a) and game environments 

(Weber, Mateas, and Jhala 2012; Jaidee, Muñoz-Avila, and 

Aha 2013), where it has performed well in comparison to 

alternative approaches such as dynamic replanning. Our 

AUV control task is one of the first applications of GDA in 

support of a hardware platform. However, in this paper we 

focus on challenges related to task planning and 

discrepancy detection in the AUV domain and leave 

evaluation of GDA as an AUV control technology for 

future work. 

During plan execution, a GDA agent detects 

discrepancies (i.e., unexpected situations) by monitoring 

the world state and comparing it to expectations. Our agent 

is inspired by ARTUE (Molineaux et al. 2010a), which 

uses predicted states from its planner as expectations. We 

describe other methods for creating expectations in §3. 

 To apply GDA on an AUV for long-term missions, we 

must model continuous state features that cannot be 

adequately discretized or represented symbolically (e.g., 

the AUV’s location). Existing task planning techniques can 

model these values’ continuous change in a plan, enabling 

discrepancy detection throughout execution. However, 

these approaches typically use precise descriptions of 

continuous changes, which can require extensive domain 

engineering and lead to false discrepancies (i.e., 

discrepancies that do not affect task execution or goal 

suitability) and other undesirable consequences in 

uncertain domains. 



 

 

 ARTUE uses the SHOP2PDDL+ planner (Molineaux, 

Klenk, and Aha 2010b) to model nonlinear continuous 

effects while employing Hierarchical Task Network (HTN) 

planning techniques (Erol, Hendler, and Nau 1994). HTN 

planners can quickly generate plans using detailed 

representations of complex domains. However, the PDDL+ 

model (Fox and Long 2006) employed in SHOP2PDDL+ uses 

precise descriptions of continuous effects, which can lead 

to the issues described above. We instead present 

PHOBOS (Planner for HTN Objectives with Bounding 

OperatorS), a variant of SHOP (Nau et al. 1998) that 

abstracts state features during planning by allowing 

operator effects to set bounds (i.e., constraints) on 

continuous values. We demonstrate its utility as a planner 

for our GDA agent in AUV simulation studies.  

In §2, we describe the GDA model and our architecture 

for applying it on an AUV. Related work is described in 

§3. We explain our novel method for planning and 

discrepancy detection in §4, describe our empirical study 

in §5, and discuss future research tasks in §6 before 

concluding. 

2. GDA and AUV Control 

2.1 The GDA Conceptual Model 

GDA is a goal reasoning model for online planning in 

autonomous agents (Klenk, Molineaux, and Aha 2013). 

Figure 1 illustrates GDA as an extension of Nau’s (2007) 

model of online planning. The GDA Controller interacts 

with a Planner and a State Transition System  , which is a 

tuple 〈       〉 with states  , actions  , exogenous events 

 , and state transition function      (   )    that 

describes how an action or event transforms the 

environment. In stochastic or partially observable 

environments, the agent has only partial models of  ,  , 

and  . During execution, the Controller receives 

observations  , which are representations of  . 

The Planner takes as input a planning problem 

〈        〉, where    is a model of  ,    is the current 

observation representing the current state   , and    is a 

goal from the set of all possible goals  . The Planner 

outputs (1) a plan   , which is a sequence of plan operators 

(i.e., actions and events)                 , and (2) a 

corresponding sequence of expectations    
            , where each       is the expectation that 

should follow when the corresponding action or event    in 

the sequence    takes place. 

The Controller takes as input initial observation   , 

initial goal   , and   , and sends them to the Planner to 

generate plan    and expectations   . The Controller 

forwards   ’s actions to   for execution and processes the 

resulting observations.  

During plan execution, the Controller performs the 

following operations:  

• Discrepancy detection: GDA detects a discrepancy d 

by comparing    with      , which corresponds to the 

most recent    in current plan   .  

• Explanation generation: Given   ,   , and  , this 

operation hypothesizes one or more explanations of the 

discrepancy’s cause  . 

• Goal formulation: Resolving a discrepancy may 

warrant a change in the current goal(s). This operation may 

formulate a goal     in response to  , given   and   .  

• Goal management: Formulating a goal may warrant its 

immediate focus or removal of some existing goals. Given 

a set of pending goals      and new goal  , this 

operation may update    (e.g., by adding   or deleting 

other pending goals) and then select the next goal       

to be given to the Planner. 

2.2 GDA Architecture for AUV Control 

In our hybrid control architecture, the GDA Controller 

monitors the AUV’s state and directs the AUV to perform 

sensing and navigation tasks, delegating them to lower-

level control components. To address the challenges of 

motion control in dynamic environments that may be only 

partially known a priori, we employ the reactive MOOS-

IvP autonomy architecture (Benjamin et al. 2010), a widely 

used, open source robotic control framework. MOOS is a 

message-passing suite with a centralized publish-subscribe 

model. The MOOS application IvP Helm is a behavior-

based controller that sets navigation parameters to generate 

collision-free trajectories, using an interval programming 

technique that optimizes over behaviors’ objective 

functions. 

 The GDA Controller executes plans by activating, 

deactivating, and changing parameters of IvP Helm 

behaviors. (While IvP Helm can alter behaviors reactively, 

it cannot deliberate about what goal the vehicle should 

pursue, which is the focus of GDA.) Figure 2 depicts our 

Figure 1: The GDA Conceptual Model 



 

 

agent architecture, which includes Huxley, the low-level 

control software provided by the AUV’s manufacturer, 

Bluefin Robotics. 

3. Related Work 

Several architectures have been developed to control 

AUVs using AI techniques. Orca (Turner 1995) is a 

context sensitive architecture that applies schemas to create 

sequences of actions for the AUV to execute. It uses an 

event handler to react to unexpected states, and an agenda 

manager to change the agent’s active goal in response 

(similarly to GDA’s Goal Manager). However, unlike our 

GDA agent, Orca assumes externally-specified goals; it 

does not formulate new goals.  

COLA2 (Palomeras et al. 2012) is an AUV control 

architecture that uses reinforcement learning techniques to 

learn and execute motion primitives, Petri nets to model 

behavior-like structures for plan execution, and a STRIPS-

like planner for mission planning. It replans when 

expectations are violated, but does not perform goal 

reasoning. 

T-REX (Rajan, Py, and Barreiro 2012) uses constraint-

based planning to guide robots, primarily AUVs, using 

multiple reactors that collaborate to produce a plan. 

Although T-REX recognizes plan expectation violations 

and can apply response strategies at any affected reactor, it 

does not address goal formulation or management, which 

is the focus of GDA. Although we present planning 

extensions employing constraints, we do so in the context 

of HTN planning, not constraint-based planning. Finally, 

unlike our GDA agent, T-REX uses multiple reactors that 

operate on the same plan timeline, which requires 

synchronization and reactor dependency graphs. Py, Rajan, 

and McGann (2010) argue that monolithic planning such as 

we employ may reduce responsiveness, which we leave as 

a future research topic to investigate. 

Automated planning models have been developed for 

uncertain domains. The Probabilistic PDDL (PPDDL) 

model (Younes and Littman 2004) provides probability 

distributions over action effects, allowing an agent to use 

Markov Decision Processes in planning. However, it 

assumes that actions are instantaneous and does not model 

continuous change (such as AUV motion) probabilistically. 

Concurrent Probabilistic Temporal Planning (Mausam and 

Weld 2008) can represent probabilistic durations for 

actions, but, like PPDDL, does not model probability 

distributions over continuous change. 

The challenge of modeling uncertain motion during task 

planning for AUVs has been the focus of some research. 

The PANDORA project employs PDDL planning over 

Probabilistic Roadmap (PRM) models of the environment 

(Cashmore et al. 2013), which provide an abstraction for 

use in planning. However, due to the abstract nature of 

PRMs, the agent performs discrepancy detection only 

during sensing actions; unlike our agent, it does not detect 

discrepancies during motion actions. Plaku and McMahon 

(2013) also model the AUV environment using PRMs, but 

employ LTL to express task-level requirements. Because 

their framework is not yet adapted to dynamic replanning, 

they do not address the problem of discrepancy detection. 

Many goal reasoning agents employ expectations. 

LGDA (Jaidee, Muñoz-Avila, and Aha 2011) learns 

probabilistic state expectations that are stored in a case 

base; during execution, the most likely expected state is 

used for discrepancy detection. Jaidee et al. (2013) use an 

expectation that relevant state features will monotonically 

increase. Although their domain model specifies relevant 

state features, the constraint itself is fixed. Cox et al. 

(2012) use A-distance on symbolic state representations to 

detect discrepancies in MIDCA. This technique requires 

training on normal sequences of states. Unlike these 

approaches, our agent uses deterministic expectation 

models and does not have fixed constraints or require 

training. 

Execution monitoring has received substantial attention, 

particularly in robotics research. We list a small sample of 

such work here; see (Petersson 2005) for one survey. At 

the sensor level, Gat et al. (1990) define envelopes of 

expected sensor values, including mathematical functions 

on physical sensors, based on motion plans for a Mars 

rover. At the task level, Fichtner, Großmann, and 

Thielscher (2003) use extensions to the fluent calculus to 

represent temporal and uncertain information for a robot in 

a dynamic environment, but their representation is focused 

on symbolic knowledge, not continuous-valued domains. 

The SKEMon process (Bouguerra, Karlsson, & Saffiotti 

2008) uses semantic knowledge about a robot’s domain to 

infer implicit expectations as results of actions, which can 

be tested probabilistically or otherwise. Although 

semantically rich, this technique requires semantic 

knowledge and additional processing that may be more 

suitable for terrestrial robots than the limited perception 

and processing power of AUVs. 

Figure 2: Our GDA agent architecture for  

controlling an AUV with MOOS-IvP 



 

 

4. Planning and Discrepancy Detection 

In many domains, a GDA Controller will need to reason 

about continuous values. For instance, deciding whether to 

pursue a goal of mapping a region of the ocean floor may 

depend on predicting the vehicle’s position and battery 

health in the future. Concrete values may also be necessary 

because a priori discretization is not feasible (e.g., 

segmentation of an ocean into polygonal regions suitable to 

a variety of tasks). Therefore, these values must be 

modeled in   . 

Existing task-planning techniques, such as PDDL2.1’s 

continuous durative actions (Fox and Long 2003) and 

PDDL+’s process-event model, describe continuous 

change to state features. This knowledge allows the agent 

to detect discrepancies at any point during execution. 

However, these techniques often require exact models of 

continuous change, which can create several difficulties for 

planning and discrepancy detection in the AUV domain. 

First, in stochastic or partially observable domains, 

precise modeling can lead to false discrepancies, which 

require extra computation and may be detrimental to agent 

performance. For instance, while executing a motion 

action, ocean currents may cause an AUV to move off its 

projected course. Reactive motion controllers can adjust 

the vehicle’s controls and correct this deviation without 

intervention from the GDA Controller. However, the 

Discrepancy Detector may incorrectly treat this deviation 

as a discrepancy requiring reevaluation of the agent’s 

goals. Employing a threshold during discrepancy detection 

is a common approach to such challenges, but a threshold 

value may not generalize to all continuous features in a 

domain.  

Second, precise domain modeling can be burdensome. 

Automated task-planning techniques (e.g., durative actions 

or processes) may require extensive knowledge 

engineering to describe complex actions or processes. 

Third, precise modeling causes redundant computation. 

The planner may need to solve complex process constraints 

to determine how long an action will take and to compute 

intermediate states for discrepancy detection. During plan 

execution on an AUV, the navigation and motion 

controllers will perform lower-level computations to guide 

the vehicle on the same path. These computations are 

redundant and need not both be executed. 

PHOBOS and our agent’s Discrepancy Detector will 

address these challenges by accepting bounds on state 

values as part of    and applying these bounds during 

planning and discrepancy detection. 

4.1 Planning with PHOBOS 

ARTUE, the inspiration for our agent, uses SHOP2PDDL+ to 

plan with nonlinear models of continuous processes. In the 

PHOBOS planner, we revise this model to exclude 

processes but include bounding effects in plan operators. 

Bounding effects specify constant bounds on state values 

or derived values, i.e., mathematical functions on state 

values.  

Syntactically, a bounding effect is an expression of the 

form (set v (range lb ub)), where v is a continuous fluent 

or derived value, and lb and ub are numeric values or 

variables which were unified in the operator’s 

precondition, representing the value’s lower and upper 

bounds, respectively. For example, (set (speed) (range ?l 
?u)) creates a bound on the fluent speed, where ?l and ?u 
were unified in the precondition. 

 Rather than projecting new states with exact continuous 

values, PHOBOS uses bounding effects to project an 

expectation that includes the bounds specified by   . A 

bounded expectation is a tuple   〈       〉, where   

is the set of true facts,   is the set of exact fluent values,   

is the set of bounded continuous fluent values, and   is the 

set of bounded values derived from fluent values. Each 

value     is a tuple 〈         〉, where     is an 

identifier for the value, which is constrained to lie within 

the given bounds      . Each     is similarly 

constrained but contains a mathematical function in place 

of an identifier. 

When projecting a new expectation    using a plan 

operator, PHOBOS applies each bounding effect by 

placing the bounded value, with the values of its bounds as 

computed in the precondition, in the appropriate element of 

  . If the effect constrains a state value, the value and its 

bounds are placed in  . If it constrains a derived value, the 

function for computing it from observed states and its 

bounds are placed in  .   and   are projected in the usual 

manner, using positive and negative fact effects and 

instantaneous fluent change effects. 

When testing preconditions of operators, PHOBOS 

considers a value    to be less than a bounded value    iff 

the upper bound or precise value of    is less than the 

lower bound of    (similarly for greater-than). Arithmetic 

expressions are not applicable on a bounded value, but are 

applicable on the upper and lower bounds of a bounded 

value ?v, which are expressed (upper-bound ?v) and 

(lower-bound ?v). 

Table 1 shows the action definition that represents the 

start of an AUV survey maneuver, simplified for 

presentation. The action preconditions define the 

boundaries of the region in which the vehicle will operate, 

and the effects constrain the vehicle’s motion, creating an 

expectation defining a bounding box around the survey 

area and the vehicle’s current position. This expectation 

will not be violated as long as the vehicle remains en route 

to or within the survey area. Figure 3 depicts an example 

survey maneuver in MOOS-IvP’s simulation viewer with 

possible bounds on the   and   coordinates. 



 

 

To permit the vehicle time to execute a maneuver, the 

HTN designer can use a built-in action, wait-for, that 

causes the GDA Controller to suspend plan execution. The 

wait-for action takes as parameters an event (such as 

maneuver-finished, shown in Table 2) and the event’s 

arguments to indicate the point when plan execution should 

resume. It also optionally takes a timeout for the event’s 

occurrence. If wait-for is operator    in the plan, PHOBOS 

copies      to create    (wait-for does not affect the 

world). PHOBOS uses the event specified in arguments to 

wait-for (e.g., maneuver-finished) as      and projects the 

effects of that event to create     . The use of these 

expectations is described in §4.2. 

In planning, placing bounds on continuous values is 

equivalent to replacing each continuous value   with two 

continuous values    and    (i.e.,  ’s upper and lower 

bounds). During discrepancy detection, it is necessary to 

understand the semantics of    and    as bounds on  . Our 

representation provides this knowledge by associating   

with its bounds in the tuple  . 

4.2 Discrepancy Detection 

During plan execution, the Discrepancy Detector must 

monitor the resulting states to ensure that they meet the 

requirements set forth in the expectations. In addition to 

the set comparisons used in ARTUE to check facts and 

fluents, our Detector must compute derived values in   

from the current observation   , and compare them and 

bounded state values in   with the most recent expectation 

   to verify that they lie within the expected ranges. 

During a wait-for action, each observation represents a 

situation after the event at which execution should resume, 

a normal situation during the wait period, or an unexpected 

situation requiring goal reasoning. The Controller tests 

observations against the expectation corresponding to the 

specified event (    , where wait-for is   ). If no 

discrepancy is detected, the Controller assumes the event 

has occurred and resumes plan execution. If a discrepancy 

is detected, the Controller next tests the observation against 

the expectation corresponding to the wait-for action (  ). If 

no discrepancy is detected, the Controller assumes the 

event has not yet occurred and waits for the next 

observation. If a discrepancy is detected, the Controller 

begins the GDA cycle to respond to it. In our example, 

when the motion controller completes the survey operation, 

it removes the vehicle-maneuvering fact from the state, 

causing the GDA Controller to detect the event and resume 

plan execution. 

5. Empirical Study 

We claim that using bounded expectations in GDA can 

reduce the number of false discrepancies and planning time 

for tasks in an AUV environment. To evaluate this 

hypothesis, we conducted tests on a simulated AUV using 

the uSimMarine utility included with MOOS-IvP. We 

applied our GDA agent to direct a simulated AUV in three 

simple missions. In each mission, we used thirty 

randomized scenarios. 

 We compared a configuration of the agent using 

PHOBOS to a configuration using V-PHOBOS, a planner 

based on the same code as PHOBOS. V-PHOBOS does not 

provide bounding effects, but integrates a vehicle dynamics 

model from uSimMarine. It uses this model to project 

expected states at intervals during motion actions, similar 

Action Name survey-area 

Parameters ?area-lower-x (type real) 
?area-upper-x (type real) 
?area-lower-y (type real) 
?area-upper-y (type real) 

Conditions (assign ?lower-x (min (lower-bound (x-pos))  
?area-lower-x)) 

(assign ?upper-x (max (upper-bound (x-pos))  
?area-upper-x)) 

(assign ?lower-y (min (lower-bound (y-pos))  
?area-lower-y)) 

(assign ?upper-y (max (upper-bound (y-pos))  
?area-upper-y)) 

(assign ?s (lower-bound (speed))) 

Effects (vehicle-maneuvering) 
(set (x-pos) (range ?lower-x ?upper-x)) 
(set (y-pos) (range ?lower-y ?upper-y)) 
(set (depth) (range 0 5)) 
(set (heading) (range 0 360)) 
(set (speed) (range ?s 2.1)) 

 

Table 1: Action specification for surveying an area, 

demonstrating bounding effects to be used during state 

projection 
Event Name maneuver-finished 

Conditions (assign ?s (upper-bound (speed))) 

Effects (not (vehicle-maneuvering)) 
(set (speed) (range 0 ?s)) 

 

Table 2: Event specification for finishing a motion, 

demonstrating effects used to detect the event during execution 

Figure 3: An AUV survey maneuver (solid line) with bounded 

expectation (dashed line) and AUV trajectory (curved line) 



 

 

to projections that might be produced by a continuous-time 

planning model, but requiring less domain engineering. In 

other respects the agent configurations were identical. For 

the experiments, we used rule-based goal formulation and 

priority values for goal management. More advanced 

techniques for goal selection have been investigated (e.g., 

see Powell, Molineaux, and Aha 2011), but were not used 

in this study. Discrepancy detection was performed with a 

fixed threshold for continuous values. 

Mission 1 - Waypoint Following: In this mission, the 

vehicle visits a sequence of five waypoints and returns to 

its starting point. There are no other vessels in the area. 

The waypoints and starting point were drawn randomly 

from a uniform distribution over a rectangular region. 

Mission 2 - Survey with Surface Vessel: In this mission, 

the AUV surveys an area using a lawnmower pattern. 

Meanwhile, a surface vessel traverses the area on a fixed 

route. The AUV can detect the vessel, but does not assess 

it as threatening since it is not actively searching for the 

AUV. The AUV starting point was chosen randomly as in 

Mission 1, the survey region’s center was similarly 

selected from a smaller subregion, the region’s extent in x 

and y was randomly chosen from a set of predefined 

values, and the approaching vessel’s start and end points 

were randomly selected from areas to each side of the 

possible survey region, in the y direction. 

Mission 3 - Survey with Hostile Surface Vessel: In this 

mission, the AUV surveys an area with a traversing vessel 

as in Mission 2. However, the surface vessel uses active 

sensors to search for the AUV, which causes the GDA 

agent to detect discrepancies resulting from the pings. The 

agent uses goal formulation rules to respond to the pinging 

by avoiding the vessel. For simplicity of modeling, the 

goal directs the AUV to move toward a given “safe” point. 

Parameter values were randomly selected as in Mission 2, 

and the safe point was determined in advance from the 

aggressor’s start and end points. 

Our results are summarized in Figures 4-5. Because 

MOOS sensor readings may not be taken or delivered 

exactly when planned, V-PHOBOS caused discrepancies 

even in Mission 1, which has no true unexpected events. In 

Missions 2 and 3, V-PHOBOS’s lengthy planning time 

often caused plan production to lag behind updates to the 

vehicle’s position, causing discrepancies at the start of 

each plan. For our metrics, on average, the agent using 

PHOBOS performed better by at least an order of 

magnitude in all three missions. A t-test indicates that the 

GDA agent, when using PHOBOS, performed better than 

when using V-PHOBOS with         for all metrics. 

The results support our claim that planning and 

discrepancy detection with PHOBOS can reduce planning 

time and false discrepancies in a simulated AUV 

environment. Also, PHOBOS permits goal reasoning on 

continuous state features such as position, speed, and 

battery health, allowing the agent to make more informed 

decisions than agents that use symbolic representations. 

6. Conclusions 

We introduced PHOBOS, an HTN planner with effects for 

creating bounded expectations. We claimed that this 

extension would reduce planning time and false 

discrepancies in a GDA agent. Our empirical study, in 

which we compared PHOBOS to a similar HTN planner 

that makes precise predictions over a complex motion, 

supports this claim.  

Future research tasks include investigating PHOBOS’s 

generality with respect to other domains that also include 

unpredictable continuous values. We will also test 

PHOBOS’s utility in more challenging scenarios in our 

AUV domain, investigate more thoroughly the use of 

bounded derived values, and evaluate the utility of GDA as 

an AUV control technology in comparison to existing 

AUV frameworks. 
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