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Abstract 

Our research addresses how to integrate exploration 
and localization for mobile robots. A robot exploring and 
mapping an unknown environment needs to know its own 
location, but it may need a map in order to determine that 
location. In order to solve this problem, we have devel- 
oped ARIEL, a mobile robot system that combines frontier- 
based exploration with continuous localization. ARIEL 
explores by navigating to frontiers, regions on the bound- 
ary between unexplored space and space that is known to 
be open. ARIELfinds these regions in the occupancy grid 
map that it builds as it explores the world. ARIEL local- 
izes by matching its recent perceptions with the informa- 
tion stored in the occupancy grid. We have implemented 
ARIEL on a real mobile robot and tested ARIEL in a real- 
world ofice environment. We present quantitative results 
that demonstrate that ARIEL can localize accurately while 
exploring, and thereby build accurate maps of its environ- 
ment. 

1.0 Introduction 

We have been investigating the problem of how to 
integrate exploration with localization in mobile robots. A 
robot needs to know its own location in order to add new 
information to a map, but a robot may also need a map to 
determine its own location. Robots often use dead reckon- 
ing to estimate their position without a map, but wheels 
slip, and internal linkages may be imprecise. These errors 
accumulate over time, and the dead reckoning position 
estimate becomes increasingly inaccurate. 

For a robot exploring an unknown environment, a key 
question is how to build a map while simultaneously using 
that map to self-localize. We have addressed this question 
with ARIEL (Autonomous Robot for Integrated Explora- 
tion and Localization). ARIEL combines frontier-based 

exploration [9] with continuous localization [7] in a 
mobile robot system that is capable of exploring and map- 
ping an unknown environment while maintaining an accu- 
rate estimate of its position at all times. 

In this paper, we describe how frontier-based explora- 
tion and continuous localization work, and how we inte- 
grated these capabilities. ARIEL has been implemented 
on a real robot and tested in a real-world office environ- 
ment, and we present quantitative results comparing the 
performance of exploration with and without localization. 

2.0 Frontier-Based Exploration 

2.1 Overview 
The central question in exploration is: Given what you 

know about the world, where should you move to gain as 
much new information as possible? 

The central idea behind frontier-based exploration is: 
To gain the most new information about the world, move to 
the boundary between open space and uncharted territory. 

Frontiers are regions on the boundary between open 
space and unexplored space. When a robot moves to a 
frontier, it can see into unexplored space and add the new 
information to its map. ,4s a result, the mapped territory 
expands, pushing back the boundary between the known 
and the unknown. By moving to successive frontiers, the 
robot can constantly increase its knowledge of the world. 
We call this strategy frontier-based exploration. 

If a robot with a perf'ect map could navigate to a par- 
ticular point in space, thait point is considered accessible. 
All accessible space is contiguous, since a path must exist 
from the robot's initial position to every accessible point. 
Every such path will be at least partially in mapped terri- 
tory, since the space around the robot's initial location is 
mapped at the start. Every path that is partially in 
unknown territory will cross a frontier. When the robot 
navigates to that frontier, it will incorporate more of the 
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space covered by the path into mapped territory. If the 
robot does not incorporate the entire path at one time, then 
a new frontier will always exist further along the path, sep- 
arating the known and unknown segments and providing a 
new destination for exploration. In this way, a robot using 
frontier-based exploration will eventually explore all of 
the accessible space in the world. 

2.2 Perception and Spatial Representation 
We use evidence grids [6] as our spatial representa- 

tion. Evidence grids are Cartesian grids containing cells, 
and each cell stores the probability that the corresponding 
region in space is occupied. Evidence grids have the 
advantage of being able to fuse information from different 
types of sensors. 

We use sonar range sensors in combination with a pla- 
nar laser rangefinder to build our robot's evidence grid 
maps. In order to reduce the effect of specular reflections, 
we have developed a technique we call laser-limited sonar. 
If the laser returns a range reading less than the sonar read- 
ing, we update the evidence grid as if the sonar had 
returned the range indicated by the laser, in addition to 
marking the cells actually returned by the laser as occu- 
pied. 

As a result, evidence grids constructed using laser- 
limited sonar have far fewer errors due to specular reflec- 
tions, but are still able to incorporate obstacles detected by 
the sonar below (or above) the plane of the laser. In prac- 
tice, we have found that laser-limited sonar drastically 
reduces the number of uncorrected specular reflections 
from walls and other large obstacles, which tend to be the 
major sources of errors in evidence grids built using sonar. 

2.3 Frontier Detection 
After an evidence grid has been constructed, each cell 

in the grid is classified by comparing its occupancy proba- 
bility to the initial (prior) probability assigned to all cells. 
This algorithm is not particularly sensitive to the specific 
value of this prior probability. (A value of 0.5 was used in 
all of the experiments described in this paper.) 

Each cell is placed into one of three classes: 

open: occupancy probability < prior probability 
unknown: occupancy probability = prior probability 
occupied: occupancy probability > prior probability 

A process analogous to edge detection and region 
extraction in computer vision is used to find the bound- 
aries between open space and unknown space. Any open 
cell adjacent to an unknown cell is labeled a frontier edge 
cell. Adjacent edge cells are grouped into frontier regions. 
Any frontier region above a certain minimum size 
(roughly the size of the robot) is considered a frontier. 
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Figure 1: Frontier detection: (a) evidence grid, 
(b) frontier edge segments, (c) frontier regions 

Figure l a  shows an evidence grid built by a real robot 
in a hallway adjacent to two open doors. Figure lb  shows 
the frontier edge segments detected in the grid. Figure IC 
shows the regions that are larger than the minimum fron- 
tier size. The centroid of each region is marked by 
crosshairs. Frontier 0 and frontier 1 correspond to open 
doorways, while frontier 2 is the unexplored hallway. 

2.4 Frontier Navigation 
Once frontiers have been detected within a particular 

evidence grid, the robot attempts to navigate to the nearest 
accessible, unvisited frontier. The path planner uses a 
depth-first search on the grid, starting at the robot's current 
cell and attempting to take the shortest obstacle-free path 
to the cell containing the goal location. While the robot 
moves toward its destination, reactive obstacle avoidance 
behaviors prevent collisions with any obstacles not present 
while the evidence grid was constructed. 

When the robot reaches its destination, it performs a 
sensor sweep using laser-limited sonar, and adds the new 
information to the evidence grid. The robot then detects 
frontiers in the updated grid, and navigates to the nearest 
remaining accessible, unvisited frontier. 

3.0 Continuous Localization 
An important issue in localization is how often to 

relocalize. Many existing techniques only relocalize when 
an error in position is detected or after an unacceptable 
amount of error has accumulated. With continuous local- 
ization, the robot makes frequent small corrections instead 
of occasional large corrections. The advantage is that the 
error is known to be small, so fast correction techniques 
can be used. Our localization technique does not rely on 
the presence of specific landmarks, but instead uses the 
entire local environment of the robot to determine its loca- 
tion. 
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Figure 2: Continuous localization 

Figure 2 shows a diagram of the continuous localiza- 
tion process. Short-term perception maps are generated at 
regular intervals and several are maintained in memory. 
At the beginning of each interval, a new short-term per- 
ception map is created. During the time interval, new sen- 
sor data are fed to the new map and the previous maps still 
in memory. At the end of the interval, the oldest (most 
mature) short-term map is used to perform the registration 
against the long-term map and then discarded. 

The registration process involves a search in the space 
of offsets in translation and rotation that minimizes the 
error in the match between the short-term and long-tenn 
maps. Since we expect the odometry error to be small, we 
restrict the registration search to be between +/- 6 inches 
in translation and +I- 2 degrees in orientation. This 
restricted search space allows the search to be completed 
quickly. 

This space is searched using a center-of-mass algo- 
rithm that divides the search space into pose cells, picks a 
random pose within each pose cell, and uses those random 
poses to compute a set of match scores that are distributed 
throughout the search space. 

For each pose, the short-term map is translated and 
rotated and then registered with the long-term map. The 
evidence from each grid cell of the short-term map is com- 
pared to the spatially-correspondent grid cell of the long- 
term map, and the score summed across all grid cells. The 
score for each cell is equal to the product of the cell val- 
ues, using a log odds representation where cells with a 
probability less than the prior have a negative value, and 
cells with a probability greater than the prior have a posi- 
tive value. The match score for the short-term grid in the 
specified pose is equal to the sum of all of its cell scores. 

The match scores are normalized to the range [0,11, 

a center-of mass calculation is performed for all cells. The 
exaggeration of the peak is necessary because the match 
score is typically very flat within the small search space, 

raised to the fourth power to exaggerate the peak, and then 

and without it the center-of-mass calculation would 
always pick a pose near the center of the search space 
(very close to the robot’s current pose). The center-of-mass 
calculation is preferable to simply choosing the pose cell 
with the maximum score because the sparse sampling of 
the space (one pose per pose cell) can create additional 
noise, and sampling at a higher resolution would be com- 
putationally prohibitive fix real time operation. 

The registration of the short-term map to the long- 
term evidence grid produces an offset in both translation 
and rotation between the two. This offset, required to 
make the short-term map align with the long-term map, is 
the same offset required it0 align the robot with the world, 
and is directly applied tal the robot odometry (taking into 
account any robot motion since the registration was per- 
formed). All robot processes then use this new odometry. 

For additional details on continuous localization 
see [7]. 

4.0 ARIEL 

4.1 System Overview 
Frontier-based exploration provides a way to explore 

and map an unknown environment, given that a robot 
knows its own location at all times. Continuous localiza- 
tioniprovides a way for a robot to maintain an accurate 
estimate of its own positifon, as long as the environment is 
mapped in advance. The question of how to combine 
exploration with localization raises a “chicken-and-egg” 
problem: the robot needs to know its position in order to 
build a map, and the robot needs a map in order to deter- 
mine its position. 

I Sensors I--H Localization ) 

Dead Reckoning 

Motor Control 

Figure 3: ARIEL system architecture 

ARIEL is designed to address this problem. We 
assume that the robot starts with an accurate initial posi- 
tion estimate, so localization only needs to correct for dead 
reckoning errors that accumulate while the robot moves 
through the world. However, these errors can accumulate 
quickly, so it would not be; feasible to map a large environ- 
ment using dead reckoning alone. 

The solution is to use the partial maps constructed by 
frontier-based exploration These maps are incrementally 
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extended whenever the robot arrives at a new frontier and 
sweeps its sensors. Even though these maps are incom- 
plete, they describe the spatial structure of the robot’s 
immediate environment, including all of the territory 
between the robot’s current location and all of the detected 
frontiers. These maps are passed to continuous localiza- 
tion to be used as long-term maps. 

As the robot navigates to the next frontier, continuous 
localization constructs short-term maps that represent the 
robot’s recent perceptions. If dead reckoning error starts 
to accumulate, these short-term maps will deviate from the 
long-term map. The registration process will then correct 
for this error by adjusting the robot’s position estimate. 

When the robot arrives at the new frontier, its position 
estimate will be accurate. When frontier-based explora- 
tion performs the next sensor sweep, the new information 
will be integrated at the correct location within the map. 

Figure 3 shows the system architecture for ARIEL. 
Frontier-based exploration and continuous localization run 
in parallel. Both processes make use of information from 
the robot’s sensors, but only frontier-based exploration 
sends commands to the robot’s motor control system. 
Frontier-based exploration passes a new map to continu- 
ous localization every time the robot arrives at a new fron- 
tier. Continuous localization corrects the robot’s dead 
reckoning transparently, so no direct communication is 
necessary from localization to exploration. 

4.2 Implementation 
ARIEL is implemented on a Nomad 200 mobile robot 

equipped with a planar laser rangefinder, sixteen sonar 
sensors, and sixteen infrared sensors. Frontier-based 
exploration and continuous localization run on separate 
Sparcstation 20s that communicate with each other over an 
ethernet and with the robot over a radio ethernet. A Pen- 
tium processor onboard the robot handles low-level sensor 
processing and motor control. 

5.0 Experiments 

5.1 Overview 
In previous work [9], we have demonstrated that fron- 

tier-based exploration can successfully map real-world 
office environments. In relatively small environments, 
such as a single office or laboratory, frontier-based explo- 
ration was capable of mapping accurately without continu- 
ous localization. However, for larger environments, 
significant amounts of position error can accumulate using 
dead reckoning, so localization is necessary for building 
accurate maps. 

To measure ARIEL‘s effectiveness in a larger environ- 
ment, we have conducted a set of experiments in a hallway 
environment (70 feet long). This hallway, like many of 

those in office buildings, is cluttered with obstacles. These 
obstacles include a printer table that blocks half the width 
of the hallway, a set of open cabinets containing electrical 
wiring, switchboxes mounted on the walls, various card- 
board boxes, a water fountain, and a water cooler. 

In order to measure ARIEL‘s performance, we ini- 
tially constructed a ground truth grid by manually posi- 
tioning the robot at viewpoints throughout the hallway and 
sweeping the robot’s sensors. This ground truth grid is 
only used to score the grids learned by ARIEL. The 
ground truth grid is not used by ARIEL for exploration or 
localization. 
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Figure 4: Ground truth evidence grid for hallway 

Figure 4 shows the ground truth evidence grid for the 
hallway environment. Cells representing open space are 
represented by whitespace. Cells representing occupied 
space are represented by black circles. Cells representing 
unknown territory (beyond the hallway walls) are repre- 
sented by small dots. The five Xs correspond to the 
robot’s starting locations for ARIEL‘s exploration trials. 

The four crosshairs on the map indicate reference 
points at the corners of the ends of the hallways. Since 
dead reckoning error accumulates as the robot moves 
through the world, the points explored last are likely to 
have the greatest amount of positional error. And since 
ARIEL always moves to the closest unexplored frontier, 
one of the ends of the hallways is generally the last place 
explored. By measuring the difference between the actual 
position of these hallway corners and the position of these 
corners in ARIEL‘s learned maps, the amount of positional 
error incorporated into the map can be estimated. In these 
experiments, the maximum error between a reference 
point and the corresponding feature on the learned grid is 
used as a bound on the positional error introduced into the 
map. We refer to this metric as the reference point error 
for the learned grid. 

5.2 Exploration Without Localization 

Our first set of trials measured the performance of 
frontier-based exploration without continuous localization. 
Five exploration trials were conducted, one from each of 
the starting locations marked on Figure4. In three of 
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these trials, frontier-based exploration directed the robot to 
explore the hallway and build a map, but substantial 
amounts of position error accumulated during each trial. 
As a result, sensor information was incorporated into the 
map at the wrong locations, and the magnitude of this 
error increased over time. 

Figure 5: Evidence grid learned without localization 

Figure5 shows a map learned by frontier-based 
exploration without localization. The robot started at the 
position marked with the X. Initially, the robot explored 
the territory on the left side of the map. Then it navigated 
back to explore the remaining frontiers on the right side of 
the map. As the robot explored, position error constantly 
accumulated. As a result, the right half of the map is con- 
siderably more distorted than the left. This grid has a ref- 
erence point error of 7.0 feet. 

In two of the trials, the position error was sufficiently 
large to prevent further exploration. In both of these cases, 
the robot started in the middle of the hallway, and explored 
one side of the hallway first, while remembering the fron- 
tier location corresponding to the other side of the hall. 
When the robot went back to explore the other side, the 
robot's position error was so large that the relative location 
of the frontier corresponded to a position behind the (real) 
hallway walls. 

Frontier-based exploration without localization was 
successful at mapping the entire hallway in 60% of the tri- 
als. In the successful trials, the average reference point 
error for the learned maps was 7.9 feet, and the average 
amount of time required to explore the hallway was 18.4 
minutes. 

5.3 Exploration With Localization 

Our second set of trials measured ARIEL'S perfor- 
mance using frontier-based exploration in combination 
with continuous localization. We used the same hallway 
environment, the same starting points for the robot, and 
the same ground truth evidence grid. Frontier-based 
exploration again directed the robot to explore the environ- 
ment, but continuous localization also regularly updated 
the robot's position estimate as the robot explored. Start- 

ing from the same five initial positions shown in Figure 4, 
ARIEL was able to build a complete map of the environ- 
ment in all five trials. 

Figure 6: Evidence grid learned with localization 

Figure 6 shows the evidence grid learned using local- 
ization starting from the position marked with the X (the 
same initial position as in Figure 5). This grid has a refer- 
ence point error of only 0.4 feet, which is equal to the 
width of a single grid cell. 

ARIEL was successful at mapping the entire hallway 
in all of the trials using continuous localization. The aver- 
age reference point error for the learned maps was 2.1 feet, 
or roughly one quarter of the error in the maps learned 
without localization. AIRIEL's 100% success rate indi- 
cates that this accuracy is sufficient to navigate robustly 
through this cluttered hallway environment. Reactive 
obstacle avoidance allows the robot to deal with small 
errors in the map. 

The average amount of time required to explore the 
entire hallway was 20.7 minutes. This is slightly longer 
than the average time (1 8.4 minutes) required without 
localization, due to the time required for frontier-based 
exploration to send its learned evidence grids to continu- 
ous localization. However, since the localization process 
runs on a different processor than the exploration system, 
the computation requiredl for localization does not slow 
down the exploration process. For further details about 
these experiments, see [9]. 

6.0 Related Work 

Considerable research has been done in robot map- 
building, but most of this research has been conducted in 
simulation [3] or with robots that passively observe the 
world as they are moved by a human controller [2]. How- 
ever, a few systems for autonomous exploration have been 
implemented on real robots. 

Mataric [5]  has developed Toto, a robot that combines 
reactive exploration, using wall-following and obstacle- 
avoidance, with a simple topological path planner. The 
reactive nature of Toto's exploration limits its ability to 
map environments where wall-following is insufficient to 
explore the complex structure of the world. 
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Lee [4] has implemented Kuipers Spatial Semantic 
Hierarchy [3] on a real robot. However, this approach 
assumes that all walls are parallel or perpendicular to each 
other, and this system has only been tested in a simple 
environment consisting of a three corridors constructed 
from cardboard barriers. 

Thrun and Biicken [8] have developed an exploration 
system that builds a spatial representation that combines 
an evidence grid with a topological map. This system has 
been able to explore the network of hallways within a 
large building. While this approach works well within the 
hallway domain, it also assumes that all walls are either 
parallel or perpendicular to each other. An implicit 
assumption is that walls are observable and not obstructed 
by obstacles. These assumptions make this approach 
unsuitable for rooms cluttered with obstacles that may be 
in arbitrary orientations. 

Duckett and Nehmzow [ l ]  have developed a mobile 
robot system that combines exploration and localization. 
This system uses wall-following for exploration. For 
localization, this system uses a self-organizing neural net- 
work trained using ART. Since this system relies upon 
dead reckoning to determine the robot’s position during 
exploration, any drift in dead reckoning during exploration 
will be incorporated into the map. This robot has only 
been tested in a small enclosed area (6 meters by 4 
meters), so it is unclear whether this approach will scale to 
larger, more complex, environments. 

ARIEL has a number of advantages over previous 
exploration systems. ARIEL can explore efficiently by 
moving to the locations that are most likely to add new 
information to the map. ARIEL can explore environments 
containing both open and cluttered space, where walls and 
obstacles are in arbitrary orientations. Finally, ARIEL can 
maintain an accurate estimate of the robot’s position even 
as it moves into unknown territory. 

7.0 Conclusion 
We have introduced ARIEL, a mobile robot system 

that combines frontier-based exploration with continuous 
localization. ARIEL answers the question of how to learn 
a new map while simultaneously using that map to self- 
localize. We have tested ARIEL in a cluttered hallway 
from a real-world office environment. These experiments 
have shown that AFUEL can explore an unknown environ- 
ment and build accurate maps that can be used for robust 
navigation. 
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