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This paper discusses the first experiment in a series designed to systematically understand the 

different characteristics of an automated system that lead to trust in automation. We also discuss a 

simple process model, which helps us understand the results. Our experimental paradigm suggests 

that participants are agnostic to the automation’s behavior; instead, they merely focus on alarm 

rate. A process model suggests this is the result of a simple reward structure and a non-explicit 

cost of trusting the automation. 
 

INTRODUCTION 

 

Trust in automation is important because it 

guides understanding of user interactions with sys-

tems. Trust has been linked with user reliance on 

automation; it has also been connected with differ-

ent types of errors such as misuse, disuse, and abuse 

(Parasuraman & Riley, 1997). Discussions of trust 

in automation inevitably involve its performance in 

the environment (Lee & See, 2004; Parasuraman & 

Riley, 1997; Wickens & Dixon, 2007; Yeh & 

Wickens, 2001). This performance is generally 

communicated in terms of correctness (Muir & 

Moray, 1996; Parasuraman & Miller, 2004; 

Wiegmann, Rich, & Zhang, 2001), but it is partly 

dependent on the exact types of behaviors that the 

automation exhibits (Dixon, Wickens, & McCarley, 

2007; Meyer, 2001), such as the types of errors it 

makes. 

In fact, automation performance can be 

characterized in terms of signal detection theory 

(SDT; Green & Swets, 1966). From this perspec-

tive, correct behaviors by the system are analogous 

to hits and correct rejections, whereas errors can be 

identified as misses or false alarms (FA). For exam-

ple, computer-aided diagnosis (CAD) helps radiolo-

gists identify tumors or other diseases in the radiol-

ogy industry. But what happens when CAD fails to 

identify a tumor (miss), or tells the radiologists that 

a tumor is present when it is not (false alarm)? The 

cost of failing to identify cancer early is often times 

lethal; while prescribing unneeded treatment is cost-

ly and often times also dangerous. The dangers of 

misuse, disuse, or abuse (Parasuraman & Riley, 

1997) of automation are clear. Paramount to under-

standing what drives these sources of error is trust 

calibration.  

Dixon et al. (2007) explored differences in 

user behaviors closely tied with trust calibration. 

They compared no automation, perfect automation, 

and two types of error-prone systems. One was 

miss-prone which had a 20% hit rate, but exhibited 

perfect FA behavior (0% FA). The other system 

was FA-prone automation, that system made 80% 

FA, but exhibited perfect hits (100% hits). They 

measured reliance (in our example: agreeing when 

CAD identifies a tumor), as well as, compliance (in 

our example: agreeing with CAD when it suggests 

there is no tumor). Dixon et al. (2007) found that 

FA-prone automation negatively affects both reli-

ance and compliance while miss-prone automation 

only affected compliance.  

While we also manipulated misses and false 

alarms in our research, we were more interested in 

how users would change their behaviors when faced 

with equally imperfect types of automation. Are 

participants more attuned to misses than FA? What 

dictates whether a user will start paying attention to 

FA over hits? SDT allows for the calculation of 

sensitivity (d’). Sensitivity is a measure of the com-

bined rate of hits and FAs of a system; it communi-

cates the accuracy of the system in identifying the 

signal from the noise. However, it is possible to 

create equally sensitive systems with vastly differ-

ent behavior patterns.  

Table 1 Each system presented here represents a condition in our 

experiment. 



We designed four different automated sys-

tems. All four systems were equally sensitive (d’ = 

2.32), and ranged from low hit rate/low false alarm 

rate, to high hit rate/high false alarm rate (see Table 

1). This approach allows us to identify what charac-

teristic of the system users are attuned to by analyz-

ing the effects of each type of equally sensitive sys-

tem on user’s patterns of responses to the automa-

tion (Table 2). 

  

Cognitive Model 

 

In addition to conducting an experiment we 

also built a process model of the task using the 

ACT-R (Adaptive Control of Thought-Rational) 

cognitive modeling architecture (Anderson, 2007). 

ACT-R is a theoretically grounded cognitive archi-

tecture that allows researchers to create process 

models that are able to mimic human cognition.  

ACT-R allows researchers to model the internal 

process which are being used by a user as they per-

form a task. This approach has been used in the past 

to better understand other cognitive processes such 

as errors, vigilance, and driving (Gunzelmann, Byr-

ne, Gluck, & Moore Jr, 2009; Salvucci, 2006; 

Trafton, Altmann, & Ratwani, 2011). ACT-R is di-

vided into several modules, which can be equated to 

different parts of information processing theory. For 

this task we primarily took advantage of one of the 

learning components of ACT-R (utility learning) 

which is based on the difference learning equation 

(Fu & Anderson, 2006). It is also very similar to the 

Rescorla-Wagner learning rule (Rescorla & Wag-

ner, 1972). 

 

METHODS 

 

Participants 

  

Sixty George Mason University undergradu-

ate students participated in this study. They received 

course credit for their participation. 

 

Task and Materials  

 

Participants were told that they were inter-

acting with a simulated mining environment. They 

engaged in a dual-task paradigm in which they had 

to operate a drill and send the minerals they collect-

ed to a warehouse by monitoring and responding to 

the appropriate color of a cart in a secondary hidden 

window. They were assisted by an automated cue-

ing system. The main task consisted of tracking a 

moving box with the mouse as it traveled around 

Table 1 

Breakdown of Automated systems 

System True Positive Rate False Positive Rate 

91/15 97% 15% 

85/10 85% 10% 

75/5 75% 5% 

67/3 67% 3% 

Table 2 

Hypothesis Table 

 If Participants are sensitive to… 

 Hits FA Misses d' Alarms 

Cued Switch (CS) 
More CS with 

higher hits 

Less CS with 

higher FA 

Less CS 

with lower 

hits 

No pat-

tern 

More CS with 

higher Alarm rates 

Uncued Switch (US) 

Less US higher hits 
More CS with 

higher FA 

More  US 

with lower 

hits 

No pat-

tern 

Less US with low-

er Alarm rates 

Reaction Time to Cue Faster with higher 

hits 

Slower with 

higher FA 

Slower with 

higher hits 

No pat-

tern 
No Pattern 

Ignored Cue (IC) 
Less IC with higher 

hits 

Increased IC 

with higher 

FA 

No Pattern 
No pat-

tern 
No Pattern 

Table 2 Cued switches represent checking the cart whenever the automation suggested. Uncued switches are when users 

switched without being prompted by the automation. Ignored cues are when the automation suggested switching but users did not 

do so. Finally, reaction time is the time it took the participant to switch after the automation suggested that they switch 



the screen (the drill), while having to monitor a sec-

ondary hidden window for a changing color box 

(the cart) as a secondary task. Participants switched 

windows by clicking on any one of four buttons lo-

cated on the corners of the screen. The buttons 

switched back and forth between both windows.  

The goal of the task was to maximize the 

amount of minerals collected. Keeping the mouse 

inside the moving box accrued minerals at a rate of 

3 minerals per second. Additionally, participants 

had the opportunity of earning 100 extra minerals 

by responding, using the spacebar, whenever the 

box in the secondary window turned red; however, 

if they pressed the spacebar when it was blue they 

lost 50 minerals. Participants had to switch to the 

cart view before making a response. The cost of in-

correct response was set up in order to ensure par-

ticipants actually looked at the cart before respond-

ing.  

An automated system alerted participants of 

a cart that was ready by chiming an audible tone. 

Participants were instructed that the tone was indic-

ative of the automated system sensing the cart was 

ready to go. However, this automated system was 

not perfect in that while keeping d’ constant at 2.32, 

we manipulated the exhibited behavior of the auto-

mated system as shown in Table 1.  For example, in 

the 91/15 condition the automated system was accu-

rate in sounding the cue to a full cart 91% of the 

time (hit), however, 15% of the time that the cart 

was not full it also presented the cue (FA).  

The task ran on a Dell laptop (Intel i7-3520 

@ 2.90 MHz, 4GB RAM, Win7 32bit) with a Dell 

P2210 22” monitor at 1680 x 1050 resolution. 

 

Design and Procedure  

 

This was a between subjects design. Partici-

pants were first told their goal in the task (to max-

imize minerals) and then exposed to the interface 

through screenshots. They were then introduced to 

the automated system and the possible behaviors it 

could exhibit (hits, misses and FA) through a brief 3 

trial introductory session. All participants first expe-

rienced a hit, then a false alarm, and finally a miss. 

After this brief introduction, participants engaged in 

a 3 minute training session. All participants inter-

acted with an 80% hit rate and 30% false alarm rate 

automation during the training. Participants then 

began the main task and the experimenter exited the 

room. After the main session was over, participants 

had the opportunity to provide comments, after 

which they were debriefed and thanked for partici-

pating.  

We measured how many times participants 

exhibited each of 3 different types of behaviors. 

Cued switches are times in which participants 

switched after an alarm had sounded. Uncued 

switches are any times that participants switched to 

the cart without any alarm from the automated sys-

tem. Ignored Cues were any time that the alarm was 

sounded by the automation but the participant did 

not respond. Finally, Reaction Time was also meas-

ured as the time between the automation alarm and 

the time when the participant clicked the button to 

switch, it was only calculated for cued switches.  

 

RESULTS AND DISCUSSION 

 

For ease of understanding we will discuss 

conditions in terms of their hit rate and false alarm 

rate, e.g. the condition with 91% hits and 15% false 

alarms will be referred to as condition “91/15”. We 

compared mean Cued Switch behavior over the dif-

ferent condition using a one way ANOVA. There 

was a main effect for condition, F(3, 56) = 17.98, 

MSE = 203, p <.0.001, η2 = .49. Tukey’s HSD test 

shows significant differences between all the condi-

tions except for between condition 85/10 - 91/15, 

and 67/3 - 75/5. As can be seen in Figure 1 there 

was an overall trend of increasing cued switches 

with increasing alarm (Hit + FA) rates. Had the par-

ticipants been impacted by the increasing number of 

FA, we would see a decreasing trend of switching to 

the cue. However, this trend does provide some 

support for participants being impacted by hits just 

overall alarm rate, which we discuss further along 

in the paper. 



 
Figure 1 Bars depict empirical results. Error bars show a 95% 

confidence interval. Model fits are depicted by the black 

points. 

We were also interested in analyzing the 

switching behavior when there was no automation 

cue. A one-way ANOVA revealed no significant 

differences in mean Uncued switches based on con-

dition, F(3, 56) = .35, MSE = 1501.4, p > .05 (Error! 

Reference source not found.). This indicates that partic-

ipants were not attuned to misses, if they were we 

would see an increasing trend of uncued switches as 

the hit rate decreased. 

 
Figure 2 Bars depict empirical results. Error bars show a 95% confi-

dence interval. Model fits are depicted by the black points. 

We also explored how often participants re-

sponded to the alarm. The overall mean response 

rate to alarm was 0.968, and did not differ by condi-

tion (Table 3). The response rate results suggest that 

participants were merely responding when they 

heard the cue from the automation. Reaction time 

showed no effect by condition, F(3, 56) = .552, 

MSE = 119373, p > .05. This also suggests partici-

pants focused on the overall alarms, because if par-

ticipants had focused on hits, they should have re-

acted faster overall when they heard the alarm, yet 

they did not. Finally, Ignored Cues showed no sig-

nificant difference either, F(3, 56) = 1.02, MSE = 

38.77, p > .05. . While null results cannot be inter-

preted strongly, this also suggests that participants 

were not impacted by FA, as we would expect to 

see an increasing trend in ignoring the cue as FA 

rates increased. 

 

Table 3 

Mean Response rate and SD 

Condition Mean SD 

91/15 .99 .02 

85/10 .94 .15 

75/5 .95 .2 

67/3 .99 .02 

Table 3 This table depicts the response rate to alarms in each 

condition. 

Process Model 

 

Description. As mentioned earlier this mod-

el primarily took advantage of the utility learning 

mechanism in ACT-R. The model performs the 

same task as the participants. It also has to alternate 

between two windows that are only visible one at a 

time. It generally maintains attention on the primary 

screen, but it has two mechanisms for switching to 

the secondary screen. It can either decide to wait for 

the alarm and then switch, or it can decide to switch 

without hearing an alarm. Initiating a switch sets off 

a series of actions that lead to switching to the hid-

den secondary window. Once on the secondary 

screen it moves attention to the color box that repre-

sents the cart and responds accordingly. At this 

point if the cart is full, a reward is issued which af-

fects the whole model.  

The reward follows a differential propaga-

tion mechanism in which actions occurring more 

proximally in time receive a higher reward. This 

reward propagation is calculated using a mathemat-

ical formula which essentially works like the 

Rescorla-Wagner learning rule (Rescorla & Wag-

ner, 1972). As such the decision to either switch or 

wait for the alarm receives a small reward when the 

secondary window displays a full cart, and it is in 

this way that the model learns to either to switch on 

its own or wait for the alarm. Details of the learning 

equation can be found in Fu & Anderson, (2006). 



Model Fit. The model fit the Cued Switches 

data strongly, R
2
 = .98 and RMSD = 3.5, and the 

Uncued Switches well, R
2 

= .79 and RMSD = 13.4.    

Discussion. The cognitive model helps us 

understand participants’ behavior. The simple re-

ward system changes the likelihood that different 

decision will be made as the model learns about the 

automation. In this case the cart being ready (red) 

rewarded whichever choice the model had made. In 

all the conditions the alarm was correct more often 

than not, as such the choice to wait for the alarm 

received more rewards and continued to be rein-

forced. Thus we see the same trend of cued switches 

in the model as in the participant data.  

However, switching without a cue was also 

rewarded often enough that the model (and also the 

participants) continued to exhibit this behavior. The 

lack of cost is likely a part of the reason why we 

saw no tuning to the false alarm rate either. There 

was no significant penalty for the automation incor-

rectly cueing a switch, thus its mistakes did not af-

fect participants trust enough to change their behav-

ior. To look at the results another way, because 

there was no tangible cost to switching to the cart 

without a cue the model (and participants) contin-

ued to do so regardless of the automation character-

istics. 

 

CONSIDERATIONS 

  

The model also makes some interesting as-

sumptions about the process used which warrant 

exploration. The current model does not use a de-

clarative component in learning about the system. It 

is generally supported that as people engage in trust 

development they form memories and take previous 

experiences with the system into consideration 

when making judgments about trust (Lee & See, 

2004). ACT-R is able to accumulate memories and 

based on frequency of use, it makes those memories 

more or less available (Anderson, 2007, pp. 95–

104). However, the current model does not current-

ly employ that module. The fact that we were able 

to get strong fits without explicitly modeling the 

memory component of trust does suggest that at 

least for this task it may not be part of the process. 

Another possibility is that memory for this task is a 

reflective component, i.e. participants only form 

explicit memories of their trust with regards to the 

automation after they are done with the task, in par-

ticular if they are asked about trust. 

Another interesting issue concerns the dif-

ference between explicitly or implicitly communi-

cating misses. In the current experimental design, 

participants are not explicitly notified of automation 

misses. Making miss information more explicit may 

result in more tuning to the miss behavior of the au-

tomation. If participants are attuned to misses, it 

would result in a pattern of increasing uncued 

switches as hit rate falls while maintaining a con-

stantly high cued switch response.  

We are currently exploring the effects of in-

creasing the cost of switching to check the cart as 

we believe this to be the main driver for participants 

largely ignoring the automation behavior.  
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