
Abstract 

Goal-driven autonomy (GDA) is a reflective model 
of goal reasoning that controls the focus of an 
agent’s planning activities by dynamically 
resolving unexpected discrepancies in the world 
state, which frequently arise when solving tasks in 
complex environments. GDA agents have 
performed well on such tasks by integrating 
methods for discrepancy recognition, explanation, 
goal formulation, and goal management. However, 
they require substantial domain knowledge, 
including what constitutes a discrepancy and how 
to resolve it. We introduce LGDA, a learning 
algorithm for acquiring this knowledge, modeled as 
cases, that and integrates case-based reasoning and 
reinforcement learning methods. We assess its 
utility on tasks from a complex video game 
environment. We claim that, for these tasks, LGDA 
can significantly outperform its ablations. Our 
evaluation provides evidence to support this claim. 
LGDA exemplifies a feasible design methodology 
for deployable GDA agents. 

1 Introduction  

Agents that perform goal reasoning explicitly model and 
reason about the goals they try to achieve (Aha et al. 2010). 
For example, goal-driven autonomy (GDA) is a goal 
reasoning model in which agents continuously monitor the 
current plan’s execution and assess whether the encountered 
states match expectations (Molineaux et al. 2010). When a 
GDA agent detects a state discrepancy (i.e., when the 
expected and actual states mismatch), it will consider 
whether to formulate new goals that, if achieved, would 
fulfill its overarching objectives such as maximizing a long-
term reward. 

There have been several recent contributions on goal 
reasoning, including research on goal management in 
cognitive architectures (Choi 2010), goal generation 
(Hanheide et al. 2010), and meta-reasoning (Cox, 2007). 
Applications have included simulated robots (Meneguzzi 
and Luck 2007), real-time strategy games (Weber et al. 
2010), first-person shooters (Muñoz-Avila et al. 2010), and 
Navy training simulators (Molineaux et al. 2010).  

To perform well, comprehensive GDA agents require 
substantial domain knowledge (e.g., to determine expected 

states, identify and explain discrepancies, formulate new 
goals, and manage pending goals). This requires, for 
example, experts to anticipate what discrepancies can occur, 
identify what goals can be formulated, and define their 
relative priority. However, few techniques have been 
investigated for learning this knowledge, and those that do 
learn only goal formulation knowledge (Weber et al. 2010; 
Powell et al. 2011). This can be problematic; while these 
agents may perform well in simple environments, in others a 
domain expert might not know the (state) expectations for 
executing every action in every state, nor which goal should 
be pursued to resolve every possible discrepancy, or even 
the space of all possible discrepancies.    

We introduce Learning GDA (LGDA), a GDA algorithm 
that learns two types of cases from observed discrepancy 
resolution episodes: (1) expectation cases, which map state-
action pairs to a distribution over expected states, and (2) 
goal formulation cases, which map goal-discrepancy pairs 
to a distribution of expected values over discrepancy-
resolution goals. LGDA learns these through an integration 
of case-based reasoning (CBR) and reinforcement learning 
(RL) methods. It models goal formulation as an RL problem 
in which a goal’s value is estimated based on the expected 
future reward for achieving it. 

We claim that this integration can learn to perform as 
well as a non-learning GDA agent that employs expert 
knowledge, and can outperform GDA agents that use only 
CBR or RL. We report LGDA’s comparative evaluation on 
a task involving the control of a team in a domination video 
game (DOM). The results show that LGDA outperforms 
most built-in hand-coded opponents (i.e., adversaries) and 
significantly outperforms its ablated versions. Finally, 
LGDA learns to perform almost as well as a non-learning 
GDA variant, whose case knowledge was hand-crafted by a 
domain expert such that it also significantly outperforms 
these adversaries (Muñoz-Avila et al. 2010). 

2 Background 

We briefly introduce the two processes that we will 
integrate to acquire knowledge for a GDA agent. 
 
3.1 Case-Based Reasoning 
CBR is a four-step learning process for solving new 
problems by adapting solutions to similar problems: 
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1. Retrieval: Given problem p, retrieve cases C from a 
library L (i.e., those relevant to solving p), where each 
case cC is a problem-solution pair (pc,sc). 

2. Reuse: Adapt C’s solutions to derive a proposed 
solution s.  

3. Revision: Apply s to p in real world (or simulated) 
scenarios. If needed, revise accordingly. This yields s′. 

4. Retention: If revision s′ successfully solves p, store the 
resulting experience as a new case (p,s′) in L.  

LGDA (§5) uses CBR to predict expected states and to 
formulate goals in response to detected discrepancies. 

3.2 Reinforcement Learning 
RL concerns the topic of how agents should select actions in 
an environment so as to maximize cumulative reward. RL 
agents learn through trial-and-error by interacting with the 
environment. Many RL algorithms exist, including Q-
learning (Sutton and Barto 1998), which learns a Q-table 
that associates each (s,a) pair with an estimate of Q(s,a), 
where here s is a state and a is an action. It employs an -
greedy action selection strategy: in s, with probability 1 it 
selects the action a with highest Q(s,a) and with probability 
 it selects randomly. This prevents RL agents from getting 
stuck in a local optimum. Q-learning searches for a policy  
that maximizes the sum of the returned rewards, where  
maps states to actions. Each state s has a utility value U(s). 
We define the reward between s and its successor s′ as 
U(s′)U(s). LGDA (§5) uses RL to learn expected values of 
goals to formulate, given the current goal and discrepancy.  

3 Related Work 

Several groups have studied integrations of CBR and RL. 
Bridge (2005) noted that these typically attempt to use the 
advantages of one to improve the other. For example, RL 
has been used to help CBR solve problems in continuous 
environments (Ram and Santamaria 1997; Molineaux et al. 
2008) and to improve case retrieval (Juell and Paulson 
2003). Analogously, CBR has been used to speed up the RL 
process (Gabel and Riedmiller 2007; Auslander et al. 2008; 
Bianchi et al. 2009) and to reduce RL’s memory footprint 
(Dilts and Muñoz-Avila 2010). We instead integrate them to 
automatically acquire and reuse GDA knowledge. 

Our work relates to planning in dynamic environments, 
which spawned contingency planning methods (Dearden et 
al. 2003), in which agents plan for plausible contingencies 
that may occur during plan execution. Conformant planning 
methods (Goldman and Boddy 1996) instead generate plans 
that are guaranteed to succeed. These methods require the a 
priori identification of possible contingencies. Plan repair 
methods instead adapt a plan’s remaining actions whenever 
the state conditions required to execute the plan’s next 
action are not satisfied (Fox et al. 2006). These agents 
cannot change their goals, while GDA agents instead 
dynamically reason about which goals they should achieve.  

Our work focuses on the meta-process of goal reasoning. 
Some goal reasoning planners relax the requirement that the 
plan must achieve all of its goals. For example, over-

subscription planners attempt to satisfy only a maximal 
subset of the goals (Van den Briel et al. 2004).  
Cox’s (2007) research on self-aware agents inspired the 

GDA model of goal reasoning. Most research on GDA 
assumes that experts provide domain knowledge on what to 
expect when an action is executed and which goal should be 
achieved next if a state discrepancy arises. The two 
exceptions are recent work on learning goal selection 
knowledge. First, Weber et al. (2010) uses CBR for this 
task, but doesn’t learn about expectations. Their cases map 
discrepancies (between the current state and the goal the 
agent is trying to achieve) to new goals, which are 
represented as states, and their nearest neighbor algorithm 
compares the current state with recorded cases to perform 
goal selection. LGDA instead learns expectations, 
discrepancies, and goals. Furthermore, goals can be state 
abstractions (e.g., win the game) and LGDA could map a 
discrepancy to multiple goals. Second, Powell et al.’s 
(2011) active learner requires a user to indicate which goal 
to achieve next when discrepancies occur. In contrast our 
approach is fully automated. 

4 Goal-Driven Autonomy 

GDA (Figure 1) is a goal reasoning model that permits 
autonomous agents to dynamically self-select their goals 
during plan execution (Molineaux et al. 2010). This model 
extends the conceptual model of online classical planning 
(Nau 2007), whose components include a Planner, a 
Controller, and a State Transition System  = (S,A,V,γ) with 
states S, actions A, exogenous events V, and state transition 
function γ: S(AV)2

S
. In the GDA model, the Controller 

is centric: it receives as input a planning problem (MΣ, st, gt), 
where MΣ is a model of Σ, st is the current state (e.g., 
initially s0), and gtG is a goal that can be satisfied by some 
set of states Sg  S. It gives this problem to the Planner Π, 
which generates a sequence of actions                
and a corresponding sequence of expectations    
          , where each       is a set of constraints that 

Figure 1: The GDA Conceptual Model 



are predicted to hold in states                 when 
executing    in st using   . The Controller sends    to Σ for 
execution and retrieves resulting state st+1, at which time it 
performs four knowledge-intensive tasks: 

1. Discrepancy detection: This compares observations 
     with expectation   . If a discrepancy (i.e., 
unexpected observation)      is found, then 
explanation generation is performed to explain it. 

2. Explanation generation: This explains a detected 
discrepancy dt. Given also state   , it hypothesizes 
one or more explanations      of the cause. 

3. Goal formulation: Resolving a discrepancy may 
warrant a change in the current goal(s). This task 
generates goal      given a discrepancy   , its 
explanation   , and current state   . 

4. Goal management: New goals are added to the set of 
pending goals     , which may also warrant other 
edits to GP. The Goal Manager will select the next 
goal         to be given to the Planner. (It is 
possible that        .) 

We focus on discrepancy detection and goal formulation 
here and will address the others steps in future work.  

5 Learning Algorithm 

5.1 Definitions 
Let S be the set of states that an agent can visit, G the goals 
that an agent can pursue, and A the actions that can be 
executed. We define an expectation case base (ECB) as a 
mapping S  A  2

S[0,1] 
from the current state and selected 

action to a probability distribution over expected next states 
(i.e., actions can be non-deterministic). LGDA clusters ECB 
cases that involve the same action and have similar states, 
and learns a state probability distribution for each cluster.  

In LGDA (see §5.2), Get(ECB,s,a) returns, as the 
expected state, the one with maximal probability among the 
ECB cluster s,a whose state is most similar to s and has the 
same action a. If no such cluster exists, then 
Update(ECB,s,a,s′) will create one. Otherwise, it will update 
the probability distribution for s,a. 

A goal formulation case base (GFCB) instead maps the 
current goal gt and discrepancy dt into a distribution over the 
expected values, G  D  2

G[0,1]
, for formulated goals. 

That is, multiple goals g′ may be formulated to resolve d 
when pursuing g. Cases with the same goal and similar 
discrepancies are clustered together in GFCB. LGDA uses 
Q-learning to track the expected value for each g′. In LGDA 
(§5.2), Get(GFCB,g,d,g′) returns the expected value q from 
cluster g,d when g′ is formulated. If no such cluster exists, it 
returns 0 and initializes g,d. Function call 
Update(GFCB,g,d,g′,q′) updates the value of q for g′ in g,d. 
      LGDA receives as input the policies : G  S  A that 
are implemented by hard-coded adversaries. The call (g) 
returns the policy  for G, while (s) returns the action that 
is pursued in state s (if multiple such actions exist, one is 
randomly selected). These input policies are static, not 
learned. LGDA instead learns the case bases (1) ECB and 
(2) GFCB. This learned knowledge is dynamic; their 

application varies based on the environment’s state in which 
the actions are executed.   

5.2 LGDA Algorithm 

Expectations can be learned by recording the occurrence 

frequency of (s,a,x) triples. The interpretation of the most 

frequent triple (s,a,x) among those in (   ) in the ECB is 

that, when   is the current state, it is most likely that   will 

be the next state when a is executed. We use       and   for 

the previous, current, and expected states, respectively 

Let g, g′, and g′′ be the previous, current, and next goals, 

respectively. LGDA uses Q-learning to learn the values of 

goals in each GFCB cluster. The following pseudocode 

provides details and is documented below. 

 

LGDA(s0,g0,d0,,ECB,GFCB,,,    G,) =        

1: s s0;  x s0;  a ;  g g0;  g′  g0;  d d0 

2: While the game-playing episode continues  

3:    wait();      GETSTATE() 

4:     ECB   UPDATE(          ) 
5:         CALCULATEDISCREPANCY(  ,  ) 

6:        GET(      ,  ,   ) 
7:     r   U(  )  U( ) 

8:     q′  q +  (r +  ARGMAXgl(GET(GFCB,g,d,gl)) - q) 

9:     GFCB   UPDATE       , d,   ,   ) 
10:     if r < 0 

11:         if RANDOM(1)    

12:                  g′′  ARGMAXgl(GET(GFCB,g,d,gl)) 

13:         else      RA          

14:             ;              
15:      (g′);     (  )  

16:        GET            

17:     EXECUTEACTION(  ) 
18:         ;      
19: return ECB, GFCB 

 

LGDA initializes previous state   to the initial state   , 

action a to the null action, previous goal   and current goal 

   to the dummy goal   , and discrepancy   to dummy 

value    (Line 1). Entries with these dummy values are not 

added to the case base, and will be assigned to non-dummy 

values after the algorithm’s first iteration. During a game-

playing episode (Line 2), LGDA periodically waits and 

observes the current state    (Line 3), which it uses to 

update the distribution of expected states when taking action 

  in   (Line 4). It then calculates the discrepancy   between 

the current and expected states (Line 5) and uses it to 

retrieve GFCB’s estimated   value for formulating    (Line 

6).
1
 It then computes the reward (Line 7), updates the   

value using the Q-learning formula (Line 8), and records it 

in the GFCB (Line 9). If the agent is performing poorly 

(Line 10), LGDA retrieves a new goal     from GFCB using 

-greedy exploration (Lines 11-13), and updates its previous 

                                                 
1
Although not shown, if no discrepancy exists, the goal does not change. 



and current goal (Line 14). LGDA then retrieves the next 

action    using policy , where  is the policy in  for goal 

g′. (Line 15), retrieves an expected state   from the ECB 

(Line 16), executes    (Line 17), and updates previous state 

  and action   (Line 18). Finally, when the game-playing 

episode ends, it returns the revised case bases. 

6 Implementation and Example 

An LGDA agent must determine how to cluster cases using 
a similarity metric and re-cluster when necessary. Our 
implementation was inspired by the design of Retaliate 
(Smith et al. 2007), an RL agent that we will use for 
benchmarking. For LGDA, we ensure that the states S and 
actions A represented in ECB and GFCB, as well as the state 
utility U, are the same as those in Retaliate. Theoretically, 
this permits a fair comparison between LGDA and Retaliate. 

Retaliate was applied to control one team’s actions in a 
domination game called DOM (see Figure 2), in which two 
competing teams attempt to capture specified domination 
locations on a two-dimensional map. Teams are composed 
of k bots. The teams’ actions are k-tuples (l1,..lk) indicating 
the domination location li to which each bot bi is assigned. 
Domination locations are captured by a team when one of 
its bots moves into its location and no bots from the other 
team arrive within five ticks. A team receives a point for 
every five seconds that it owns a domination location. The 
first team to earn a predefined number of points wins. Each 
bot starts with a max number of health points, which can be 
lost in combat, which occurs when two or more opposing 
bots are within a certain range of each other. Combat is 
solved using a biased random function that determines the 
health points lost by each competing bot (it favors bots on 
the team that has more bots within range). When a bot’s 
health is zero, it is removed, respawns after a few ticks in a 
(randomly-selected) respawning location, and continues 
with its initial max health points. 

Retaliate selects the actions for the friendly team’s bots.  

Its state representation includes only information on 

domination location ownership. The state is a vector 

(l1,l2…,ld), where d is the number of domination locations 

and lk indicates the team which owns location k. For a 2-

team game and b bots per team, this reduces the number of 

states to d
3
 and the space of actions to (2b)

d
. The utility U of 

state s is defined by the function U(s) = F(s)–E(s), where 

F(s) is the friendly team’s score and E(s) is the enemy’s 

score. The discrepancy between states s and s′ is a d-

dimensional vector (v1,v2…,vd), where vi is true if s and s′  

have the same value in coordinate i and false otherwise. 

Given this representation, LGDA’s cases implement a 

simple similarity metric: two states are deemed similar if 

they have the same feature values for domination location 

ownership. Analogously, two discrepancies are similar if 

they mismatch on the same features. Thus, after a case is 

assigned to a cluster, it will never be reassigned.  

Example. Suppose the domination locations in the current 

game are (  ,   , and     and there are three bots per team 

(         . Each location li can be in one of the three states: 

un-owned (U), owned by the friendly team (F), or owned by 

the enemy (E). Therefore, state (E,F,F) denotes that the first 

domination location is owned by the enemy and the others 

are owned by the friendly team. Suppose the previous state 

  is (     ), the current state    is (     ), the expected 

state   is (     ), and the friendly team’s previous actions 

were (                 ). After updating the relevant 

ECB distribution (Line 4), LGDA will calculate the 

discrepancy   between the current and expected states (Line 

5). Here,   is (true, false, true), where true means they 

match. After calculating the   value and updating the      

(Lines 6-9), suppose the reward is negative, and that LGDA 

will retrieve/formulate a new goal. Suppose the current goal 

   is to control the first half plus one of the domination 

locations, and the next goal     that was retrieved from the 

GFCB is to control all domination locations. Then the 

action    that will be retrieved from policy  will be 

(                 ). The expectation   that it 

retrieves from GFCB for executing action   is (     ) 

(Line 16). LGDA will then execute a′ and record the new 

values for the previous state   and action   (Line 18). 

7 Empirical Study 

7.1 Experimental Setup  
We used the task of winning DOM games to investigate two 
hypotheses: (H1) LGDA can learn to perform as well as a 
non-learning GDA agent that employs expert knowledge, 
and (H2) LGDA can significantly outperform ablated agents 
that use only RL or only CBR, respectively.  

We also used six hand-coded adversaries as baselines. 
Munoz-Avila et al. (2010) describe each except Priority, 
which prefers to send bots to those locations that are owned 
by its opponent. Briefly, these adversaries pursue a unique 
goal gi to play DOM. Their behavior is approximately 
modeled using a policy i. That is, while the first three 
adversaries are easy to defeat, the latter three cannot be 
perfectly represented as policies based on our models for S 

Figure 2: A DOM game map with 5 domination locations 

(yellow flags), where rectangles identify the agents’ respawning 

locations, and the remaining icons denote each player’s agents. 



and A because they reason about the proximity of bots to 
locations. Proximal information is not represented by any of 
the four agents we tested. Thus, the latter three adversaries 
pose difficult challenges for the agents. 

We compared LGDA versus the following agents: 
Retaliate, which performs Q-learning, the ablation Random 
GDA (RGDA), which replaces LGDA’s -greedy goal 
selection procedure with a random selection procedure, and 
CB-gda, a non-learning CBR agent whose case bases were 
manually crafted by a domain expert (Muñoz-Avila et al. 
2010). It includes two case bases, whose mappings are:  

PCB: G  S  A  S, and MCB: G  D  G 

PCB records the expected state for each (goal, state, action) 
tuple, and MCB records the preferred goal to formulate for 
each (goal, discrepancy) pair. All agents (CB-gda, LGDA, 
Retaliate, and RGDA) use the same model for S and A. The 
learning agents (the latter three) use the same utility 
function U.  The definitions for S, A, and U are given in §6. 

Games are won by the first team to reach 2000 points on 
Figure 2’s map. There were 8 bots per team, which is typical 
(i.e., there are usually more team members than domination 
locations). Scores were averaged over 10 games. In our first 
study, we indirectly compared the agents by testing them 
against the six hard-coded adversaries using a LOOCV 
method: we trained each learning agent versus five 
adversaries, using four repetitions per starting state, and 
tested it against the remaining adversary. The second study 
addresses our hypotheses: it directly compares LGDA 
versus the other agents. We trained each learning agent 
versus the six adversaries. LGDA received as input the 
policies for the six adversaries but not the policies for the 
other agents. We recorded results before and after each 
training repetition of LGDA versus each of the three agents, 
continuing until their relative performance stabilized. 
Knowledge learned during testing was flushed between 
games. Our metric is state utility, as defined in §6. 

7.2 Results 

Experiment 1 (Table 1): CB-gda recorded the best 
performance among the agents; it outperformed all of the 
adversaries, although barely so versus EachBotToOneDom, 
which is the strongest of the hard-coded adversaries. This 
adversary maintains at least one bot in each location. LGDA 
outperformed five of the opponents, losing only to 
EachBotToOneDom. In contrast, Retaliate and RGDA 
performed poorly versus all three of the difficult 
adversaries. This provides initial evidence that LGDA 
performs comparatively well compared to its ablations but it 
is outperformed by CB-gda. Our next experiment provides 
strong support for these observations.  

Experiment 2 (Figure 3): LGDA is outperformed by CB-
gda. The mean of the underlying distribution for their 
relative utility values after training was -14.6  2.6 at the 
95% confidence level. Thus, H1 is not supported, though 
LGDA’s final performance is fairly close. This is not too 
surprising, given that CB-gda’s case bases were manually 
encoded by a domain expert. 

Table 1: Average Utility Results from Experiment 1 

Adversary CB-gda Retaliate RGDA LGDA 

Dom1Hugger 77.38 74.26 71.36 61.38 

FirstHalf 75.47 58.88 74.23 64.91 

SecondHalf 65.36 65.79 66.28 63.03 

SmartOp 54.85 -10.62 -36.59 45.27 

EachBotToOne 0.46 -47.13 -68.48 -50.11 

Priority 45.14 -6.37 -45.28 23.08 

Learning method None RL CBR  CBR+RL 

LGDA is initially outperformed by Retaliate because 
Retaliate quickly converges to an action that on average 
works well versus the adversaries. In contrast, LGDA needs 
to learn expectations and best goals to pursue when 
discrepancies occur. This results in a slower learning 
process in part because the interdependency between 
expectations and discrepancies. Over time we see that it 
pays off; LGDA eventually outperforms Retaliate. LGDA 
outperforms RGDA from the outset. Versus Retaliate, the 
same analysis reveals a mean of 34.3 4.1 at the 95% 
confidence level, and the mean (at this level) versus RGDA 
was 62.6 2.4. Thus, these results strongly support H2. 
 
8 Conclusions 
We introduced LGDA, a goal-driven autonomy agent that 
automatically acquires state expectation and goal selection 
knowledge. LGDA uses a case-based reasoning method to 
map (state,action) pairs to a distribution over expected 
states, and (goal,discrepancy) pairs to a value distribution 
over discrepancy-resolution goals. It also uses a 
reinforcement learning method to learn the goals’ expected 
values. LGDA is the first GDA agent to automatically learn 
this knowledge, and the first to model these two 
distributions.  Our ablation study demonstrated that, for a 
complex first-person shooter gaming task, LGDA 
significantly outperforms ablations that use only one of its 
two learning methods. LGDA also learns to play nearly as 
well as an expertly-engineered GDA agent. 

We conjecture that the expertly-engineered GDA agent is 
outperforming LGDA because LGDA lacks capabilities to 
learn explanations of discrepancies and could benefit from a 
more mature goal management strategy. We will study this 
issue, related GDA extensions, and conduct more extensive 
evaluations in our future research. 
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