
Abstract

Goal-driven autonomy (GDA) is a reflective model
of goal reasoning that controls the focus of an
agent’s planning activities by dynamically
resolving unexpected discrepancies in the world
state, which frequently arise when solving tasks in
complex environments. GDA agents have
performed well on such tasks by integrating
methods for discrepancy recognition, explanation,
goal formulation, and goal management. However,
they require substantial domain knowledge,
including what constitutes a discrepancy and how
to resolve it. We introduce LGDA, a learning
algorithm for acquiring this knowledge, modeled as
cases, that and integrates case-based reasoning and
reinforcement learning methods. We assess its
utility on tasks from a complex video game
environment. We claim that, for these tasks, LGDA
can significantly outperform its ablations. Our
evaluation provides evidence to support this claim.
LGDA exemplifies a feasible design methodology
for deployable GDA agents.

1 Introduction

Agents that perform goal reasoning explicitly model and
reason about the goals they try to achieve (Aha et al. 2010).
For example, goal-driven autonomy (GDA) is a goal
reasoning model in which agents continuously monitor the
current plan’s execution and assess whether the encountered
states match expectations (Molineaux et al. 2010). When a
GDA agent detects a state discrepancy (i.e., when the
expected and actual states mismatch), it will consider
whether to formulate new goals that, if achieved, would
fulfill its overarching objectives such as maximizing a long-
term reward.

There have been several recent contributions on goal
reasoning, including research on goal management in
cognitive architectures (Choi 2010), goal generation
(Hanheide et al. 2010), and meta-reasoning (Cox, 2007).
Applications have included simulated robots (Meneguzzi
and Luck 2007), real-time strategy games (Weber et al.
2010), first-person shooters (Muñoz-Avila et al. 2010), and
Navy training simulators (Molineaux et al. 2010).

To perform well, comprehensive GDA agents require
substantial domain knowledge (e.g., to determine expected

states, identify and explain discrepancies, formulate new
goals, and manage pending goals). This requires, for
example, experts to anticipate what discrepancies can occur,
identify what goals can be formulated, and define their
relative priority. However, few techniques have been
investigated for learning this knowledge, and those that do
learn only goal formulation knowledge (Weber et al. 2010;
Powell et al. 2011). This can be problematic; while these
agents may perform well in simple environments, in others a
domain expert might not know the (state) expectations for
executing every action in every state, nor which goal should
be pursued to resolve every possible discrepancy, or even
the space of all possible discrepancies.

We introduce Learning GDA (LGDA), a GDA algorithm
that learns two types of cases from observed discrepancy
resolution episodes: (1) expectation cases, which map state-
action pairs to a distribution over expected states, and (2)
goal formulation cases, which map goal-discrepancy pairs
to a distribution of expected values over discrepancy-
resolution goals. LGDA learns these through an integration
of case-based reasoning (CBR) and reinforcement learning
(RL) methods. It models goal formulation as an RL problem
in which a goal’s value is estimated based on the expected
future reward for achieving it.

We claim that this integration can learn to perform as
well as a non-learning GDA agent that employs expert
knowledge, and can outperform GDA agents that use only
CBR or RL. We report LGDA’s comparative evaluation on
a task involving the control of a team in a domination video
game (DOM). The results show that LGDA outperforms
most built-in hand-coded opponents (i.e., adversaries) and
significantly outperforms its ablated versions. Finally,
LGDA learns to perform almost as well as a non-learning
GDA variant, whose case knowledge was hand-crafted by a
domain expert such that it also significantly outperforms
these adversaries (Muñoz-Avila et al. 2010).

2 Background

We briefly introduce the two processes that we will
integrate to acquire knowledge for a GDA agent.

3.1 Case-Based Reasoning
CBR is a four-step learning process for solving new
problems by adapting solutions to similar problems:

Integrated Learning for Goal-Driven Autonomy

Ulit Jaidee
1
, Héctor Muñoz-Avila

1
, David W. Aha

2

1
Department of Computer Science & Engineering; Lehigh University; Bethlehem, PA 18015

2
Navy Center for Applied Research in AI; Naval Research Laboratory (Code 5514); Washington, DC 20375

ulj208@lehigh.edu | munoz@cse.lehigh.edu | david.aha@nrl.navy.mil

1. Retrieval: Given problem p, retrieve cases C from a
library L (i.e., those relevant to solving p), where each
case cC is a problem-solution pair (pc,sc).

2. Reuse: Adapt C’s solutions to derive a proposed
solution s.

3. Revision: Apply s to p in real world (or simulated)
scenarios. If needed, revise accordingly. This yields s′.

4. Retention: If revision s′ successfully solves p, store the
resulting experience as a new case (p,s′) in L.

LGDA (§5) uses CBR to predict expected states and to
formulate goals in response to detected discrepancies.

3.2 Reinforcement Learning
RL concerns the topic of how agents should select actions in
an environment so as to maximize cumulative reward. RL
agents learn through trial-and-error by interacting with the
environment. Many RL algorithms exist, including Q-
learning (Sutton and Barto 1998), which learns a Q-table
that associates each (s,a) pair with an estimate of Q(s,a),
where here s is a state and a is an action. It employs an -
greedy action selection strategy: in s, with probability 1 it
selects the action a with highest Q(s,a) and with probability
 it selects randomly. This prevents RL agents from getting
stuck in a local optimum. Q-learning searches for a policy 
that maximizes the sum of the returned rewards, where 
maps states to actions. Each state s has a utility value U(s).
We define the reward between s and its successor s′ as
U(s′)U(s). LGDA (§5) uses RL to learn expected values of
goals to formulate, given the current goal and discrepancy.

3 Related Work

Several groups have studied integrations of CBR and RL.
Bridge (2005) noted that these typically attempt to use the
advantages of one to improve the other. For example, RL
has been used to help CBR solve problems in continuous
environments (Ram and Santamaria 1997; Molineaux et al.
2008) and to improve case retrieval (Juell and Paulson
2003). Analogously, CBR has been used to speed up the RL
process (Gabel and Riedmiller 2007; Auslander et al. 2008;
Bianchi et al. 2009) and to reduce RL’s memory footprint
(Dilts and Muñoz-Avila 2010). We instead integrate them to
automatically acquire and reuse GDA knowledge.

Our work relates to planning in dynamic environments,
which spawned contingency planning methods (Dearden et
al. 2003), in which agents plan for plausible contingencies
that may occur during plan execution. Conformant planning
methods (Goldman and Boddy 1996) instead generate plans
that are guaranteed to succeed. These methods require the a
priori identification of possible contingencies. Plan repair
methods instead adapt a plan’s remaining actions whenever
the state conditions required to execute the plan’s next
action are not satisfied (Fox et al. 2006). These agents
cannot change their goals, while GDA agents instead
dynamically reason about which goals they should achieve.

Our work focuses on the meta-process of goal reasoning.
Some goal reasoning planners relax the requirement that the
plan must achieve all of its goals. For example, over-

subscription planners attempt to satisfy only a maximal
subset of the goals (Van den Briel et al. 2004).
Cox’s (2007) research on self-aware agents inspired the

GDA model of goal reasoning. Most research on GDA
assumes that experts provide domain knowledge on what to
expect when an action is executed and which goal should be
achieved next if a state discrepancy arises. The two
exceptions are recent work on learning goal selection
knowledge. First, Weber et al. (2010) uses CBR for this
task, but doesn’t learn about expectations. Their cases map
discrepancies (between the current state and the goal the
agent is trying to achieve) to new goals, which are
represented as states, and their nearest neighbor algorithm
compares the current state with recorded cases to perform
goal selection. LGDA instead learns expectations,
discrepancies, and goals. Furthermore, goals can be state
abstractions (e.g., win the game) and LGDA could map a
discrepancy to multiple goals. Second, Powell et al.’s
(2011) active learner requires a user to indicate which goal
to achieve next when discrepancies occur. In contrast our
approach is fully automated.

4 Goal-Driven Autonomy

GDA (Figure 1) is a goal reasoning model that permits
autonomous agents to dynamically self-select their goals
during plan execution (Molineaux et al. 2010). This model
extends the conceptual model of online classical planning
(Nau 2007), whose components include a Planner, a
Controller, and a State Transition System  = (S,A,V,γ) with
states S, actions A, exogenous events V, and state transition
function γ: S(AV)2

S
. In the GDA model, the Controller

is centric: it receives as input a planning problem (MΣ, st, gt),
where MΣ is a model of Σ, st is the current state (e.g.,
initially s0), and gtG is a goal that can be satisfied by some
set of states Sg  S. It gives this problem to the Planner Π,
which generates a sequence of actions
and a corresponding sequence of expectations
 , where each is a set of constraints that

Figure 1: The GDA Conceptual Model

are predicted to hold in states when
executing in st using . The Controller sends to Σ for
execution and retrieves resulting state st+1, at which time it
performs four knowledge-intensive tasks:

1. Discrepancy detection: This compares observations
 with expectation . If a discrepancy (i.e.,
unexpected observation) is found, then
explanation generation is performed to explain it.

2. Explanation generation: This explains a detected
discrepancy dt. Given also state , it hypothesizes
one or more explanations of the cause.

3. Goal formulation: Resolving a discrepancy may
warrant a change in the current goal(s). This task
generates goal given a discrepancy , its
explanation , and current state .

4. Goal management: New goals are added to the set of
pending goals , which may also warrant other
edits to GP. The Goal Manager will select the next
goal to be given to the Planner. (It is
possible that .)

We focus on discrepancy detection and goal formulation
here and will address the others steps in future work.

5 Learning Algorithm

5.1 Definitions
Let S be the set of states that an agent can visit, G the goals
that an agent can pursue, and A the actions that can be
executed. We define an expectation case base (ECB) as a
mapping S  A  2

S[0,1]
from the current state and selected

action to a probability distribution over expected next states
(i.e., actions can be non-deterministic). LGDA clusters ECB
cases that involve the same action and have similar states,
and learns a state probability distribution for each cluster.

In LGDA (see §5.2), Get(ECB,s,a) returns, as the
expected state, the one with maximal probability among the
ECB cluster s,a whose state is most similar to s and has the
same action a. If no such cluster exists, then
Update(ECB,s,a,s′) will create one. Otherwise, it will update
the probability distribution for s,a.

A goal formulation case base (GFCB) instead maps the
current goal gt and discrepancy dt into a distribution over the
expected values, G  D  2

G[0,1]
, for formulated goals.

That is, multiple goals g′ may be formulated to resolve d
when pursuing g. Cases with the same goal and similar
discrepancies are clustered together in GFCB. LGDA uses
Q-learning to track the expected value for each g′. In LGDA
(§5.2), Get(GFCB,g,d,g′) returns the expected value q from
cluster g,d when g′ is formulated. If no such cluster exists, it
returns 0 and initializes g,d. Function call
Update(GFCB,g,d,g′,q′) updates the value of q for g′ in g,d.
 LGDA receives as input the policies : G  S  A that
are implemented by hard-coded adversaries. The call (g)
returns the policy  for G, while (s) returns the action that
is pursued in state s (if multiple such actions exist, one is
randomly selected). These input policies are static, not
learned. LGDA instead learns the case bases (1) ECB and
(2) GFCB. This learned knowledge is dynamic; their

application varies based on the environment’s state in which
the actions are executed.

5.2 LGDA Algorithm

Expectations can be learned by recording the occurrence

frequency of (s,a,x) triples. The interpretation of the most

frequent triple (s,a,x) among those in () in the ECB is

that, when is the current state, it is most likely that will

be the next state when a is executed. We use and for

the previous, current, and expected states, respectively

Let g, g′, and g′′ be the previous, current, and next goals,

respectively. LGDA uses Q-learning to learn the values of

goals in each GFCB cluster. The following pseudocode

provides details and is documented below.

LGDA(s0,g0,d0,,ECB,GFCB,,, G,) =

1: s s0; x s0; a ; g g0; g′ g0; d d0

2: While the game-playing episode continues

3: wait(); GETSTATE()

4: ECB UPDATE()
5: CALCULATEDISCREPANCY(,)

6: GET(, ,)
7: r U()  U()

8: q′  q +  (r +  ARGMAXgl(GET(GFCB,g,d,gl)) - q)

9: GFCB UPDATE , d, ,)
10: if r < 0

11: if RANDOM(1)

12: g′′  ARGMAXgl(GET(GFCB,g,d,gl))

13: else RA

14: ;
15:  (g′); ()

16: GET

17: EXECUTEACTION()
18: ;
19: return ECB, GFCB

LGDA initializes previous state to the initial state ,

action a to the null action, previous goal and current goal

 to the dummy goal , and discrepancy to dummy

value (Line 1). Entries with these dummy values are not

added to the case base, and will be assigned to non-dummy

values after the algorithm’s first iteration. During a game-

playing episode (Line 2), LGDA periodically waits and

observes the current state (Line 3), which it uses to

update the distribution of expected states when taking action

 in (Line 4). It then calculates the discrepancy between

the current and expected states (Line 5) and uses it to

retrieve GFCB’s estimated value for formulating (Line

6).
1
 It then computes the reward (Line 7), updates the

value using the Q-learning formula (Line 8), and records it

in the GFCB (Line 9). If the agent is performing poorly

(Line 10), LGDA retrieves a new goal from GFCB using

-greedy exploration (Lines 11-13), and updates its previous

1
Although not shown, if no discrepancy exists, the goal does not change.

and current goal (Line 14). LGDA then retrieves the next

action using policy , where  is the policy in  for goal

g′. (Line 15), retrieves an expected state from the ECB

(Line 16), executes (Line 17), and updates previous state

 and action (Line 18). Finally, when the game-playing

episode ends, it returns the revised case bases.

6 Implementation and Example

An LGDA agent must determine how to cluster cases using
a similarity metric and re-cluster when necessary. Our
implementation was inspired by the design of Retaliate
(Smith et al. 2007), an RL agent that we will use for
benchmarking. For LGDA, we ensure that the states S and
actions A represented in ECB and GFCB, as well as the state
utility U, are the same as those in Retaliate. Theoretically,
this permits a fair comparison between LGDA and Retaliate.

Retaliate was applied to control one team’s actions in a
domination game called DOM (see Figure 2), in which two
competing teams attempt to capture specified domination
locations on a two-dimensional map. Teams are composed
of k bots. The teams’ actions are k-tuples (l1,..lk) indicating
the domination location li to which each bot bi is assigned.
Domination locations are captured by a team when one of
its bots moves into its location and no bots from the other
team arrive within five ticks. A team receives a point for
every five seconds that it owns a domination location. The
first team to earn a predefined number of points wins. Each
bot starts with a max number of health points, which can be
lost in combat, which occurs when two or more opposing
bots are within a certain range of each other. Combat is
solved using a biased random function that determines the
health points lost by each competing bot (it favors bots on
the team that has more bots within range). When a bot’s
health is zero, it is removed, respawns after a few ticks in a
(randomly-selected) respawning location, and continues
with its initial max health points.

Retaliate selects the actions for the friendly team’s bots.

Its state representation includes only information on

domination location ownership. The state is a vector

(l1,l2…,ld), where d is the number of domination locations

and lk indicates the team which owns location k. For a 2-

team game and b bots per team, this reduces the number of

states to d
3
 and the space of actions to (2b)

d
. The utility U of

state s is defined by the function U(s) = F(s)–E(s), where

F(s) is the friendly team’s score and E(s) is the enemy’s

score. The discrepancy between states s and s′ is a d-

dimensional vector (v1,v2…,vd), where vi is true if s and s′

have the same value in coordinate i and false otherwise.

Given this representation, LGDA’s cases implement a

simple similarity metric: two states are deemed similar if

they have the same feature values for domination location

ownership. Analogously, two discrepancies are similar if

they mismatch on the same features. Thus, after a case is

assigned to a cluster, it will never be reassigned.

Example. Suppose the domination locations in the current

game are (, , and and there are three bots per team

(. Each location li can be in one of the three states:

un-owned (U), owned by the friendly team (F), or owned by

the enemy (E). Therefore, state (E,F,F) denotes that the first

domination location is owned by the enemy and the others

are owned by the friendly team. Suppose the previous state

 is (), the current state is (), the expected

state is (), and the friendly team’s previous actions

were (). After updating the relevant

ECB distribution (Line 4), LGDA will calculate the

discrepancy between the current and expected states (Line

5). Here, is (true, false, true), where true means they

match. After calculating the value and updating the

(Lines 6-9), suppose the reward is negative, and that LGDA

will retrieve/formulate a new goal. Suppose the current goal

 is to control the first half plus one of the domination

locations, and the next goal that was retrieved from the

GFCB is to control all domination locations. Then the

action that will be retrieved from policy  will be

(). The expectation that it

retrieves from GFCB for executing action is ()

(Line 16). LGDA will then execute a′ and record the new

values for the previous state and action (Line 18).

7 Empirical Study

7.1 Experimental Setup
We used the task of winning DOM games to investigate two
hypotheses: (H1) LGDA can learn to perform as well as a
non-learning GDA agent that employs expert knowledge,
and (H2) LGDA can significantly outperform ablated agents
that use only RL or only CBR, respectively.

We also used six hand-coded adversaries as baselines.
Munoz-Avila et al. (2010) describe each except Priority,
which prefers to send bots to those locations that are owned
by its opponent. Briefly, these adversaries pursue a unique
goal gi to play DOM. Their behavior is approximately
modeled using a policy i. That is, while the first three
adversaries are easy to defeat, the latter three cannot be
perfectly represented as policies based on our models for S

Figure 2: A DOM game map with 5 domination locations

(yellow flags), where rectangles identify the agents’ respawning

locations, and the remaining icons denote each player’s agents.

and A because they reason about the proximity of bots to
locations. Proximal information is not represented by any of
the four agents we tested. Thus, the latter three adversaries
pose difficult challenges for the agents.

We compared LGDA versus the following agents:
Retaliate, which performs Q-learning, the ablation Random
GDA (RGDA), which replaces LGDA’s -greedy goal
selection procedure with a random selection procedure, and
CB-gda, a non-learning CBR agent whose case bases were
manually crafted by a domain expert (Muñoz-Avila et al.
2010). It includes two case bases, whose mappings are:

PCB: G  S  A  S, and MCB: G  D  G

PCB records the expected state for each (goal, state, action)
tuple, and MCB records the preferred goal to formulate for
each (goal, discrepancy) pair. All agents (CB-gda, LGDA,
Retaliate, and RGDA) use the same model for S and A. The
learning agents (the latter three) use the same utility
function U. The definitions for S, A, and U are given in §6.

Games are won by the first team to reach 2000 points on
Figure 2’s map. There were 8 bots per team, which is typical
(i.e., there are usually more team members than domination
locations). Scores were averaged over 10 games. In our first
study, we indirectly compared the agents by testing them
against the six hard-coded adversaries using a LOOCV
method: we trained each learning agent versus five
adversaries, using four repetitions per starting state, and
tested it against the remaining adversary. The second study
addresses our hypotheses: it directly compares LGDA
versus the other agents. We trained each learning agent
versus the six adversaries. LGDA received as input the
policies for the six adversaries but not the policies for the
other agents. We recorded results before and after each
training repetition of LGDA versus each of the three agents,
continuing until their relative performance stabilized.
Knowledge learned during testing was flushed between
games. Our metric is state utility, as defined in §6.

7.2 Results

Experiment 1 (Table 1): CB-gda recorded the best
performance among the agents; it outperformed all of the
adversaries, although barely so versus EachBotToOneDom,
which is the strongest of the hard-coded adversaries. This
adversary maintains at least one bot in each location. LGDA
outperformed five of the opponents, losing only to
EachBotToOneDom. In contrast, Retaliate and RGDA
performed poorly versus all three of the difficult
adversaries. This provides initial evidence that LGDA
performs comparatively well compared to its ablations but it
is outperformed by CB-gda. Our next experiment provides
strong support for these observations.

Experiment 2 (Figure 3): LGDA is outperformed by CB-
gda. The mean of the underlying distribution for their
relative utility values after training was -14.6  2.6 at the
95% confidence level. Thus, H1 is not supported, though
LGDA’s final performance is fairly close. This is not too
surprising, given that CB-gda’s case bases were manually
encoded by a domain expert.

Table 1: Average Utility Results from Experiment 1

Adversary CB-gda Retaliate RGDA LGDA

Dom1Hugger 77.38 74.26 71.36 61.38

FirstHalf 75.47 58.88 74.23 64.91

SecondHalf 65.36 65.79 66.28 63.03

SmartOp 54.85 -10.62 -36.59 45.27

EachBotToOne 0.46 -47.13 -68.48 -50.11

Priority 45.14 -6.37 -45.28 23.08

Learning method None RL CBR CBR+RL

LGDA is initially outperformed by Retaliate because
Retaliate quickly converges to an action that on average
works well versus the adversaries. In contrast, LGDA needs
to learn expectations and best goals to pursue when
discrepancies occur. This results in a slower learning
process in part because the interdependency between
expectations and discrepancies. Over time we see that it
pays off; LGDA eventually outperforms Retaliate. LGDA
outperforms RGDA from the outset. Versus Retaliate, the
same analysis reveals a mean of 34.3 4.1 at the 95%
confidence level, and the mean (at this level) versus RGDA
was 62.6 2.4. Thus, these results strongly support H2.

8 Conclusions
We introduced LGDA, a goal-driven autonomy agent that
automatically acquires state expectation and goal selection
knowledge. LGDA uses a case-based reasoning method to
map (state,action) pairs to a distribution over expected
states, and (goal,discrepancy) pairs to a value distribution
over discrepancy-resolution goals. It also uses a
reinforcement learning method to learn the goals’ expected
values. LGDA is the first GDA agent to automatically learn
this knowledge, and the first to model these two
distributions. Our ablation study demonstrated that, for a
complex first-person shooter gaming task, LGDA
significantly outperforms ablations that use only one of its
two learning methods. LGDA also learns to play nearly as
well as an expertly-engineered GDA agent.

We conjecture that the expertly-engineered GDA agent is
outperforming LGDA because LGDA lacks capabilities to
learn explanations of discrepancies and could benefit from a
more mature goal management strategy. We will study this
issue, related GDA extensions, and conduct more extensive
evaluations in our future research.

Acknowledgements

This work was supported in part by NSF grant 0642882.

References

Aha, D.W., Klenk, M., Muñoz-Avila, H., Ram, A., &

Shapiro, D. (Eds.) (2010). Goal-Directed Autonomy:

Notes from the AAAI Workshop (W4). Atlanta, GA:

[http://www.cse.lehigh.edu/~munoz/gda/]
Auslander, B., Lee-Urban, S., Hogg, C., and Muñoz-Avila,

H. (2008). Recognizing the enemy: Combining
reinforcement learning with strategy selection using case-
based reasoning. Proceedings of the Ninth European

Conference on Case-Based Reasoning (pp. 59-73). Trier,
Germany: Springer.

Bianchi, R., Ros, R., & Lopez de Mantaras, R. (2009).
Improving reinforcement learning by using case-based
heuristics. Proceedings of the Eighth International
Conference on CBR (pp. 75-89). Seattle, WA: Springer.

Bridge, D. (2005). The virtue of reward: Performance,

reinforcement and discovery in case-based reasoning.

Proceedings of the Sixth International Conference on

Case-Based Reasoning (pp. 1). Chicago, IL: Springer.

van den Briel, M., Sanchez Nigenda, R., Do, M.B., &

Kambhampati, S. (2004). Effective approaches for partial

satisfaction (over-subscription) planning. Proceedings of

the Nineteenth National Conference on Artificial

Intelligence (pp. 562-569). San Jose, CA: AAAI Press.

Choi, D. (2010). Reactive goal management in a cognitive

architecture. In (D.W. Aha et al. 2010).

Cox, M.T. (2007). Perpetual self-aware cognitive agents. AI

Magazine, 28(1), 23-45.

Dearden R., Meuleau N., Ramakrishnan S., Smith, D., &

Washington R. (2003). Incremental contingency

planning. Planning Under Uncertainty and Incomplete

Information: Papers from the ICAPS Workshop.

Dilts, M., & Muñoz-Avila, H. (2010). Reducing the memory

footprint of temporal difference learning over finitely

many states by using case-based generalization.

Proceedings of the Eighteenth International Conference

on Case-Based Reasoning (pp. 81-95). Alessandria, Italy:

Springer.

Fox, M., Gerevini, A., Long, D., & Serina, I. (2006). Plan

stability: Replanning versus plan repair. Proceedings of

the Sixteenth International Conference on Automated

Planning and Scheduling (pp. 212-221). Cumbria, UK:

AAAI Press.

Gabel, T., & Riedmiller, M. (2007). An analysis of case-

based value function approximation by approximating

state transition graphs. Proceedings of the Seventh

International Conference on Case-Based Reasoning (pp.

344-358). Belfast, Northern Ireland: Springer.

Goldman, R.P., & Boddy, M.S. (1996). Expressive planning

and explicit knowledge. Proceedings of the Third

International Conference on Artificial Intelligence

Planning Systems (pp. 110-117). Edinburgh, Scotland:

AAAI Press.

Hanheide, M., Hawes, N., Wyatt, J., Göbelbecker, M.,

Brenner, M., Sjöö, K., Aydemir, A., Jensfelt, P., Zender,

H., and Kruijff, G-J. (2010). A Framework for Goal

Generation and Management. In (D.W. Aha et al. 2010).

Juell, P., & Paulson, P. (2003). Using reinforcement

learning for similarity assessment in case-based systems.

IEEE Intelligent Systems, 18(4), 60–67.
Meneguzzi, F.R., & Luck, M. (2007). Motivations as an

abstraction of meta-level reasoning. Proceedings of the
Fifth International Central and Eastern European
Conference on Multi-Agent Systems (pp. 204-214).
Leipzig, Germany: Springer.

Molineaux, M., Klenk, M., & Aha, D.W. (2010). Goal-

driven autonomy in a Navy strategy simulation. In

Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence. Atlanta, GA: AAAI Press.

Muñoz-Avila, H., Jaidee, U., Aha, D.W., & Carter, E.

(2010). Goal directed autonomy with case-based

reasoning. Proceedings of the Eighteenth International

Conference on Case-Based Reasoning (pp. 228-241).

Alessandria, Italy: Springer.

Nau, D.S. (2007). Current trends in automated planning. AI

Magazine, 28(4), 43-58.

Powell, J., Molineaux., M., & Aha, D.W. (2011). Active and

interactive discovery of goal selection knowledge. To

appear in Proceedings of the Twenth-Fourth Conference

of the Florida AI Research Society. West Palm Beach,

FL: AAAI Press.

Ram, A., & Santamaria, J.C., (1997). Continuous case-

based reasoning. Artificial Intelligence, 90(1-2), 25-77.

Smith, M., Lee-Urban, S., & Muñoz-Avila, H. (2007).

RETALIATE: Learning winning policies in first-person

shooter games. Proceedings of the Nineteenth Innovative

Applications of AI Conference (pp. 1801-1806).

Vancouver, British Columbia, Canada: AAAI Press.

Sutton, R.S., & Barto, A.G. (1998). Reinforcement learning:

An introduction. MIT Press, Cambridge, MA.

Weber, B., Mateas, M., & Jhala, A. (2010). Applying goal-

driven autonomy to StarCraft. In Proceedings of the Sixth

Conference on Artificial Intelligence and Interactive

Digital Entertainment. Stanford, CA: AAAI Press.

Figure 3: Results from Experiment 2: Average learning curves for comparing LGDA DOM performance

 vs. non-learning and ablated agents. The trend lines were generated using a polynomial fit to the raw curves.

