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Abstract

Object recognition continues to be a challenging area
of research, especially for objects situated in their real-
world environments. Yet, people are able to recognize
objects in their daily environments with ease, in part
because of their ability to quickly and effectively learn
contextual relationships between objects in the world.
Here, we show that leveraging the rich, dynamic context
of a computational cognitive architecture can facilitate
autonomous object recognition in real-world environ-
ments with no prior training. We show that, on the real-
world NYU Depth V2 dataset, this cognitive context
improves object recognition with an 8% gain in mean
average precision.

Introduction
Despite recent progress, object recognition in real world
environments, such as those encountered by mobile, au-
tonomous systems, is still a challenging problem. Poor reso-
lution, non-iconic viewpoints, specular reflections, and poor
focus can all adversely affect recognition performance. Hu-
mans, in contrast, can recognize objects in these environ-
ments with ease, in part because they quickly and effectively
learn contextual relationships between objects in the world,
and exploit that knowledge as they encounter future objects
(Oliva and Torralba 2007).

In the past, context has been shown to help improve
object recognition performance by providing suggestions
about what objects are likely to be using information other
than their appearance (Divvala et al. 2009; Galleguillos, Ra-
binovich, and Belongie 2008; Felzenszwalb et al. 2010). In
these approaches, context can come from several sources.
The most common is pixel level context, which uses infor-
mation such as the position of an object within an image
and the surrounding pixel values to influence recognition. A
different context source, semantic context, uses previously
identified objects to suggest what may be likely to be seen
next. Scene context, in contrast, influences recognition by
taking into consideration the setting of an image.

Typically, however, these approaches to context are static
in nature, and require training in a comprehensive set of re-
alistic environments and settings. They also are unable to
adapt to new settings, environments, or viewpoints, such
as those frequently encountered by autonomous systems. In

short, these approaches fall short of the rich, dynamic con-
text that people rely upon.

In this paper, we work towards closing that gap by us-
ing a computational cognitive architecture to provide dy-
namic context with no prior training. The architecture,
ACT-R/E (Trafton et al. 2013), has been extensively veri-
fied against many aspects of human cognition (Anderson et
al. 1998; Schneider and Anderson 2011), and has provided
cognitively-plausible context in a variety of other settings
(Hiatt and Trafton 2013; 2015). Here, context takes the form
of associations between related concepts that are learned in-
crementally over time. The more that concepts are thought
about with one another, the stronger their association be-
comes; then, these associations can be used as a prediction
for what is likely to be seen next, based on both what object
is currently being looked at (semantic context), as well as
knowledge of what type of scene one is in (scene context).

We investigate the efficacy of this approach to dynamic
context by studying its improvement over a baseline, state-
of-the-art approach to computer vision (Razavian et al.
2014). Importantly, we consider the improvement that dy-
namic context can produce with varying amounts of training
and learning. We show that, on the challenging NYU Depth
V2 dataset (Silberman et al. 2012), dynamic, cognitive con-
text boosts object recognition precision by 8%, regardless of
whether it has prior training.

Related Work
Context is used heavily in the human visual system to bias
both where we look and what objects we expect to see (Oliva
and Torralba 2007). Much of the previous work on context
in computer vision has focused on how to learn this con-
text from large databases of images. Li et al. (2010) com-
bined scene level cues (e.g., categorization, depth, saliency)
in the framework referred to as the feedback enabled cas-
caded classification model (FE-CCM). Divvala et al. (2009)
explored a gridded version of scene categorization, which
divides the image into smaller regions which are then used
for prediction. In addition to scene-level context, semantic
context can be learned both on its own (Lawson, Hiatt, and
Trafton 2014; Galleguillos, Rabinovich, and Belongie 2008)
or simultaneously (Mottaghi et al. 2014).

The problem inherent in these approaches, however, are
that they require extensive training and so cannot easily



learn context in a new environment. It is possible, for ex-
ample, to encounter a known object in a new location; for
these approaches to take that into consideration, they would
need to continuously be re-learning about objects, a pro-
hibitively expensive approach. Our work, on contrast, fo-
cuses on learning context online and incrementally. This
provides a greater level of flexibility, effectively managing
the rich dynamics of real-world environments.

Approach
In this section, we begin by describing our baseline system
for classifying objects using an existing, state-of-the-art ap-
proach to object recognition. We then describe how we learn
and incorporate dynamic cognitive context into our object
recognition approach.

Baseline Object Recognition
As our baseline object recognition system, we follow in
others’ footsteps and use the state-of-the-art approach of
SVM / off-the-shelf features from convolutional neural net-
works (CNNs) (Razavian et al. 2014). This approach follows
the standard protocol of dividing data up into training and
testing sets; training on the training set; and then evaluating
its efficacy on the test set.

To do this, the approach begins with a pre-trained CNN;
here, AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
a trained version of the publicly available caffe (Jia et al.
2014). Then, AlexNet is given each of the training images,
and the features for each image are extracted from the fc7
layer. These extracted, “off-the-shelf,” features are next used
to train a linear SVM to classify object images, using the
publicly available libsvm package (Chang and Lin 2011).

Then, for any given test image, the probability distribution
of its possible classes is found by minimizing Equation 1
over all classes:
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Here, pi � 0,
Pk

i=1 pi = 1 and rij is the probability, pro-
vided by the SVM, that the sample comes from either class
i or class j, estimated using 5-fold cross validation.

Dynamic Cognitive Context
We model dynamic context using the cognitive architec-
ture ACT-R/E (Trafton et al. 2013). ACT-R/E is an inte-
grated, hybrid symbolic/subsymbolic system, and models in
ACT-R/E continuously learn as they interact with the world.
At ACT-R/E’s core is a set of limited-capacity buffers that
loosely correspond to working memory; items in the buffers
represent what an ACT-R/E model is thinking, such as what
it is looking at, or what setting it is in. We chose ACT-R/E
because it has successfully provided dynamic cognitive con-
text in a variety of other settings (Anderson and Reder 1999;
Hiatt and Trafton 2013; 2015).

In addition to symbolic information (e.g., I am in a kitchen
and see an apple), items have a subsymbolic, spreading ac-
tivation value that represents the item’s relevance to the cur-
rent situation. Spreading activation is temporary and sources

from the current contents of working memory, allowing
items that are the focus of attention to activate related, or as-
sociated, items for short periods of time (Hiatt and Trafton
2013). At any given time, we consider the set of items that
has spreading activation to comprise the current context.

Associations between items can be created for several rea-
sons. Pertinent to our discussion here, they are created be-
tween items that are in working memory at roughly the same
time. This means that associations are created between ob-
jects that are seen in close temporal proximity to one an-
other, as well as between each object and the scene in which
it appears.

Once created, associations have a corresponding strength
value that affects how much activation is spread along them.
Intuitively, an associative strength is a Bayesian-inspired
value that reflects how strongly an item in working mem-
ory (whether an object the model is looking at or a setting
the model knows its in) predicts that an item it is associated
with will be seen next. For object recognition, this means
that both what a model looked at previously, as well as what
scene it is in, can affect its expectations for what it will see
next. Thus, objects appearing in common situations (both
with other objects they typically appear with, and in a scene
they typically are part of) receive the highest amounts of
spreading activation, facilitating their recognition. Objects
appearing out of place typically receive much lower spread-
ing activation, hindering their recognition. This process oc-
curs incrementally and online, allowing models to have a
rich context even with very little experience in the world.

Mathematically, the strength of an association from item
j to item i (Sji) is (Hiatt and Trafton 2013):

Sji = mas · e
�1

al·Rji (2)

Rji =
f(NiCj)

f(Cj)� f(NiCj) + 1
(3)

These equations have two parameters: mas, the maxi-
mum associative strength; and al, the associative learning
rate. The function f tallies the number of times that item
j has been in working memory, either independently (Cj)
or at similar times to when i has been in working memory
(NiCj). The strengths are thus a function of how often the
two items are in working memory at roughly the same time,
versus how often each is in working memory without the
other.

Finally, we can translate items’ spreading activation val-
ues to probabilities that each of the items will appear in
working memory next. To calculate this probability for an
item i, we rely upon the ‘softmax’ equation provided as part
of the cognitive architecture (Anderson et al. 1998):

P (i) =
eSi/t

P
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where the variable Si is the spreading activation of item i,P
k iterates over the set of all objects (including i), and t

equals 0.5 ·
p
6/⇡. Intuitively, this equation represents each

item’s proportional share of spreading activation, translated
to a probability value.
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Figure 1: Example images from the NYU Depth V2 database that show some examples of the scene contexts and extreme
range of pose present in this dataset. (a) An example ‘kitchen’ scene. (b) From left to right, example objects of class ‘bag’,
‘microwave’, ‘monitor’, ‘television’, and ‘faucet’ taken from scene images.

Dynamic Context and Computer Vision
For each object we are trying to recognize, then, we have
two probability distributions of what its label could be – the
one from baseline object recognition, and the one from dy-
namic cognitive context. The final step is to multiply each
label’s probabilities for each label to come up with a final
distribution of the object’s classification. For example, if ob-
ject recognition believes that an object’s label is

{computer = 0.5,microwave = 0.25, tv = 0.25},
and dynamic context believes that an object’s label is

{computer=0.15,microwave = 0.7, tv = 0.15},
then the combined result for the object’s label would be

{computer=0.075,microwave = 0.175, tv = 0.0375}.
The overall classification would thus be microwave.

Experiment and Results
To test our approach, we consider the NYU Depth v2
dataset, which contains 1449 scenes that show objects ap-
pearing in situ. This dataset is particularly appropriate since
it recreates the types of scenes that both autonomous systems
and people encounter as they go about in the world; for the
same reason, it is also a particularly challenging dataset. Fig-
ure 1 shows examples from the dataset. Both depth and RGB
images are included in the data; however, we use only the
RGB images. Ground-truth labels for each scene (kitchen,
office, etc.) and each object are provided by the dataset; each
scene contains between 2 and 24 detected objects. After ex-
cluding object classes that had too few instances to train
and test on, the dataset included 74 object classes. We split
this into training and testing sets, resulting in 5819 train-
ing objects and 6012 testing objects, appearing in 724 and
725 scenes, respectively. Our baseline object recognition ap-
proach was pre-trained on this training data.

Using this dataset, we ran two different studies. The first
study was to test how much using dynamic context could

help with object recognition. We first collected data on the
precision of object recognition when used alone. Then, we
measured performance when biased during evaluation by
the dynamic cognitive context we have described. Here, the
cognitive model is untrained; then, as each object is viewed
for evaluation, the cognitive model is first given the current
scene label, similar to an autonomous system localizing it-
self on a map. Based on spreading activation coming from
this scene label, as well as what it has recently seen, the
cognitive model suggests what it is likely to be currently
looking at. Given this, our approach’s classification is deter-
mined. At that point, the model is provided with the ground
truth of the object it is seeing for the purposes of updating
its associations; this is analogous to an autonomous system
performing online object recognition and being corrected by
a human partner when necessary.

Because dynamic context is sensitive to the order in which
objects are seen (it affects what objects are associated with
one another), during evaluation we varied this order for
each scene. The first “seen” object in an image was se-
lected randomly; subsequent objects were sorted greedily by
their proximity to the previously seen object. Because of the
stochasticity, we report results for dynamic context that are
averaged across five different experimental runs.

We also compare our approach against one that uses a
more traditional source of context, static local pixel context
(as first proposed by Felzenszwalb et al. 2010). Here, the
off-the-shelf feature vector is augmented with the center and
area of the detection region. This provides useful context
about what objects are likely to appear in different areas of
scene images (for example, mugs are usually small and mid-
way in images, on tabletops; chairs are usually lower and
larger, as they rest on the floor).

We report results in terms of the standard metric of mean
average precision (mAP) (Everingham et al. 2007), which
measures both our ability to recognize an object as well
as minimizing false positives (i.e., average precision). We
show the results in Table 1. Object recognition alone re-



Object recognition Object recognition Object recognition
(baseline) + local pixel context + cognitive context

mAP 40.18 41.18 47.77

Table 1: Mean average precision results using baseline object recognition and two types of context on the NYU Depth V2
dataset. The highest precision was attained by using dynamic, cognitive context as part of the recognition process.

Learning during testing Learning during training Learning during training and testing
mAP 47.77 48.06 47.64

Table 2: Mean average precision results using CV and cognitive context, and various learning modes on the NYU Depth V2
dataset. Notably, an untrained cognitive model achieves near identical performance as trained cognitive models.

sults in a mAP of 40.18%, and adding static pixel context
increases mAP to 41.18%. By far, the best results are pro-
duced when object recognition is augmented with dynamic
cognitive context, with a mAP of 47.79%, an improvement
of 8% over the baseline system with no context.

We next ran a second study to test our claim that cogni-
tive context performs well even without training. To that end,
we attained results from several different learning modes of
cognitive context: learning associations only during testing
(as in the first study); learning associations during training,
but not during testing; and learning associations both during
training and testing. The results are shown in Table 2. Impor-
tantly, all three conditions achieved roughly the same preci-
sion, indicating that dynamic cognitive context can effec-
tively provide context and improve object recognition with-
out any prior training.

Conclusions
In this work we have explored the benefits of using dynamic
cognitive context to assist with object recognition without
any prior training. It learns incrementally and online to im-
prove the mean average precision of object recognition by
8% on the challenging NYU Depth v2 dataset.

This approach has two main advantages in addition to im-
proving object recognition. First, since it requires no train-
ing, it avoids the challenge of gathering enough training
data, and capturing enough objects in their natural settings,
to be useful. Second, it also opens the door for including the
human in the loop by providing extra context (e.g., “I saw
that cup last week”), or feedback (e.g., “that is not a cup”)
that can then be incorporated into the cognitive model. Rea-
soning about the world to this level of depth has the potential
to drastically improve the functionality we can expect from
our cognitive computer vision systems.
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