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Abstract 
How should a robot represent and reason about spatial 
information when it needs to collaborate effectively with a 
human? The form of spatial representation that is useful for 
robot navigation may not be useful in higher-level reasoning 
or working with humans as a team member. To explore this 
question, we have extended previous work on how children 
and robots learn to play hide and seek to a human-robot 
team covertly approaching a moving target. We used the 
cognitive modeling system, ACT-R, with an added spatial 
module to support the robot’s spatial reasoning. The robot 
interacted with a team member through voice, gestures, and 
movement during the team’s covert approach of a moving 
target. This paper describes the new robotic system and its 
integration of metric, symbolic, and cognitive layers of 
spatial representation and reasoning for its individual and 
team behavior. 

Introduction   
Reconnaissance, or RECON, is the essential first step of 
any military action whether it is setting up a defensive 
position or planning an attack. Within a U.S. Marine Corps 
reconnaissance unit, a RECON team, Marines operate in 
pairs and always within sight of each other to ensure 
mutual support. The core competencies for this type of 
mission include spatial reasoning, perspective-taking, and 
covert communications. In order to provide effective 
support within a RECON team, future tactical mobile 
robots must have credible competencies in all of these 
areas.  

How any of these core abilities should be achieved is 
still subject of a debate in the community. For example, 
one of the many spatial representations could be used to 
perform spatial reasoning (Montemerlo, Roy, and Thrun 
2003; Schultz, Adams, and Yamauchi 1999). The decision 
of which reasoning algorithm to use is usually based on its 
convenience, computational efficiency, and robustness. 
Trafton, et al. (2005a) has suggested that another aspect to 
be considered while making this choice is how well the 
system works together with a person. We were guided by 
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the representation hypothesis that suggests that a system 
that uses representations and processes or algorithms 
similar to a person’s will be able to collaborate with a 
person better than a computational system that does not. 
Furthermore, such a system will be less likely to exhibit 
unreasonable behavior, which is a sure benefit in any 
strategic domain.   

Our principal goal in this project is to show how the 
scientifically-principled integration of computational 
cognitive models can facilitate human-robot interaction 
and, specifically, how different spatial representations need 
to be integrated for coherent human-robot interaction 
(HRI). Note that this paper reports a systems approach to 
HRI; psychological studies and usability tests will be 
performed in the future. In addition, our engineering goal 
in this project is to create a system that can covertly 
approach a moving target with a team member in a 
laboratory scenario inspired by the Marine RECON task.   

Laboratory RECON Scenario  
In the research presented in this paper, we introduce a 
reconnaissance task that requires a robot and a human to 
work together to covertly track and approach a moving 
target (a human or robot).  See Figure 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Robot, Target (standing), Team Member (crouching), 
and Objects in the Laboratory Environment 

 
The target continually moves either to random locations 

or in a predefined path that is not known to the human-
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robot team. However, the target’s position is always 
available to the human/robot team. The target has a limited 
field of view that determines when it can see the members 
of the human/robot team.  

The goal of the human/robot team is to use knowledge 
of the target’s position, the target’s field of view, and 
obstacles in the environment to follow the target and to get 
as close as possible to the target while remaining as hidden 
as possible. The covertness part of the goal causes the team 
members to minimize their visibility to the target. The 
requirement to approach the target prevents the team from 
finding a single, covert hiding place and staying there. 

This scenario provides challenges in spatial reasoning 
and modeling of the behavior of the target to predict its 
behavior rather than having a static, spatial reasoning 
problem as in earlier research.  We will discuss the design 
of our StealthBot system intended to meet these challenges 
and the behavior of the StealthBot in a team environment.  

StealthBot System Overview 
The StealthBot system will be discussed in three layers or 
tiers similar to those used by other researchers (Bonasso et 
al 1997; Montemerlo, Roy, and Thrun 2003). The three 
layers are a hardware layer with sensors and effectors, a 
spatial support layer, and a cognitive layer as shown in 
Figure 2. The next section will focus on the non-spatial 
components. The spatial components will be discussed in 
detail in subsequent sections.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  StealthBot Three Layer Architecture 

Non-Spatial Components 
The non-spatial components are the basic robot hardware, 
its speech recognition system, and its gesture recognition 
system.  

Robot Hardware 
The robot is a commercial iRobot B21r. It is an upright 
cylinder with a zero-turn-radius drive system and an array 
of range and tactile sensors. The CMVision package 
(Bruce, Balch, and Veloso 2000) provides simple color 
blob detection using a digital camera mounted on the robot. 

The color marker was used as the identifier for 
characteristics of an object: the target was orange, the team 
member green, and stationary objects blue. The bearing to 
objects was determined from its location in the camera 
image, while the range was obtained using a laser 
rangefinder. In addition, a high-fidelity stereo camera 
system was added to allow for gesture recognition.  

The robot’s mobility capabilities, including map 
building, self-localization, path planning, collision 
avoidance, and on-line map adaptation in changing 
environments, were introduced previously as the WAX 
system (Schultz, Adams, and Yamauchi 1999). Additional 
details of the robot’s basic systems are provided in a 
previous paper (Trafton et al. 2006). 

Speech Recognition 
To provide the StealthBot with the capability of handling 
verbal commands, if needed, ViaVoice™ is used for 
speech recognition. For this scenario, a very simple list of 
BNF (Backus-Naur Form) grammar definitions was 
compiled. With this speech capability enabled, the human 
team member can order the StealthBot to “Attention”, 
“Stop,” “Assemble”, (i.e., “Come here”), “As you were” 
(i.e., “Continue”), and “Report”. The first four of these 
were taken from the U.S. Marine Corps Rifle Squad 
manual, FMFM 6-5. The final command, to report, was 
added to allow the StealthBot to share its knowledge with 
its team member. Since the verbal interaction with the 
StealthBot is rather simple, no further natural language 
processing was required for this task, although we do have 
more advanced capability. Spoken input need not always 
be supplied and interaction with the human team member 
may be based solely on gestures.  

Gesture Recognition 
To maintain the covert nature of StealthBot operations for 
this laboratory-based RECON scenario, gesture-based 
communications (Perzanowski et al. 1998) was integrated 
because it makes covert communications possible, i.e., 
without broadcasting sound or electromagnetic signals. A 
gesture identification module has been incorporated into 
the StealthBot to identify gestures based on hand motion 
and position (Fransen et al. 2007). The gesture-based 
system currently recognizes the same commands as the 
speech recognition system, “Attention,” “Stop,” 
“Assemble,” “As you were,” and “Report.”  

Spatial Representation and Reasoning 
A spatial reasoning capability is essential to covert 
operations in urban environments and it is strongly 
determined by the underlying representation. A great many 
spatial representations have been suggested for human and 
artificial navigation, communication, and reasoning. These 
representations include survey and route representations 
(Taylor and Tversky 1992), egocentric information (Previc 
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1998), metric representations, qualitative representations 
(Forbus 1993), and topographic representations. Our 
approach has been to use efficient computational 
representations, such as metric representation within our 
robotic system, until the point where person-interaction is 
needed. At which point, these representations are 
converted into a more abstract and “team member friendly” 
format. Interestingly, the approach of many roboticists has 
been to take egocentric information and convert it into an 
exocentric representation in a series of iterations for 
external display to a person (for example, Schultz, Adams, 
and Yamauchi 1999), and occasionally for the robot’s own 
navigation/reasoning.  

Spatial information is generated and used differently in 
each of three layers of the StealthBot: the basic robot 
sensors and effectors layer, the spatial support layer, and 
the cognitive layer implemented by an ACT-R cognitive 
model (Anderson and Lebiere 1990). An appropriate type 
of spatial representation is used at each level of the 
architecture often requiring the translation of information 
between different representations. We discuss when and 
why our system integrates different representations below. 

Sensors and Effectors Layer: Metric Information 
The sensors and effectors generate and make use of 
egocentric metric information. The metric information 
includes numerical values for range and bearing. This 
egocentric metric information is then converted into both 
an egocentric and exocentric evidence grid. The exocentric 
evidence grid is considered a long-term map of the world, 
while the egocentric evidence grid is considered a short-
term perception map. Localization occurs by registering 
the egocentric representation within the exocentric (Hiatt et 
al. 2004; Schultz and Adams 1998). The metric 
information in this layer is precise but noisy and the system 
has been shown to deal with the noise effectively (Schultz 
and Adams 1998). The metric information is primarily 
used by the robot for navigation and collision avoidance. 
This layer also receives motion commands to move the 
robot to map coordinates and turn the robot to face a 
specific map location. Object avoidance and getting to a 
specified coordinate location is handled by this layer. 

These representations are not considered cognitively 
plausible. However, they are a fundamental part of our 
core robotic system (e.g., they are proven, fast, and 
efficient at navigation and obstacle avoidance). The metric 
information is converted into symbolic information and a 
“cognitive map” in the spatial support layer to facilitate 
cognitively plausible reasoning in the cognitive layer 
which in turn facilitates human-robot interaction. 

Spatial Support Layer: Symbolic Information 
The spatial support layer provides the interface between 
the robot’s hardware and cognitive layers. Metric 
information from the sensors is translated into a cognitive 
map. This layer also analyzes target motion and provides 
symbolic information modeling the target’s motion to the 

cognitive layer. Within this layer, the StealthBot’s 
visibility by the target is determined based on a clear line-
of-sight between the target and the robot. Thus, there are 
three components associated with passing information 
from the sensors to the cognitive layer: the cognitive map, 
the tracking of target motion, and visibility determination. 
In the opposite direction, from the cognitive layer to the 
effectors, this layer converts the cognitive information into 
a metric representation to be used by the robot’s effectors.  
The Cognitive Map. The cognitive map is our 
implementation of the hypothesis that people represent 
space in a qualitative manner. The cognitive map is created 
and maintained based on the information from the metric 
layer. Objects are placed in a 2-D grid based on their 
metric information. However, the map does not maintain 
the precise metric location of objects. To support spatial 
reasoning, the cognitive map is used to provide 
relationships between objects not easily available in a 
symbolic representation alone. For example, only knowing 
that a target is left of a building and a Marine is also left of 
a building, does not automatically provide information 
about the relative position of the target to the Marine.   

Our cognitive map is used to support such high-level, 
symbolic reasoning about the space.  It facilitates the robot 
reasoning about the relative locations of the target, team 
member, itself, and the objects in the environment and then 
good places to hide in the current and future states of the 
environment.   

In our system, the information passed to the cognitive 
layer from the cognitive map consists only of the identifier 
of the object nearest to the target and the spatial 
relationship of the target to that object, such as “north-of” 
“box2”, and the analogous information about the object 
nearest to the StealthBot. The distances and relationships 
generated from the cognitive map are a symbolic (near, far, 
etc.) and are based on cognitive map coordinates, not their 
original metric information. The use of symbolic distances 
can result in ambiguity as to which object is the closest. 
The cognitive layer must deal with this ambiguity and does 
so by having specific rules for these situations. 

The cognitive plausibility of cognitive maps has been 
the subject of some debate (Tolman 1948; Tversky 1993; 
Previc 1998). The prevalent view seems to be that it takes 
people time and effort to build a cognitive map; it is not an 
“automatic” process. However, from a computational 
perspective, the translation of metric data to a 2-D 
cognitive map is relatively straightforward. A similar 
translation into a complex cognitively plausible 3-D 
egocentric representation is not currently available, either 
within ACT-R or within the general cognitive science 
community.  Our relatively simple cognitive map has both 
computational efficiency and cognitive plausibility, 
although we acknowledge our representation is not 
optimized for either. 
Modeling Target Motion. This intermediate layer also 
develops symbolic knowledge concerning the movement of 
the target. The target’s movement is currently modeled as a 
straight line and its current direction is classified as: none 
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(i.e., not moving), north, north-east, east, south-east, etc. 
The duration of the target’s movement in one of these 
directions is also available. When a change is detected, the 
cognitive layer is given the length of the track that ended 
with the change and the new track’s heading.   

The StealthBot models the target’s movement on three 
levels. The target’s current course and speed are based on 
sensor input and are referred to as the target’s current 
tactic. A series of tactics is treated as a strategy and 
strategies are combined as necessary to accomplish 
missions. Using this information, the StealthBot can reason 
about the target’s strategy and mission. 

We considered using Kalman filters (Kalman 1960) 
based on their success in tracking movement in robotics 
environments. However, we decided not to use that 
technique because Kalman filters do not allow access to 
internal components of the representation and we need to 
reason with the target’s trajectory and changes to its 
trajectory for cognitively plausible spatial reasoning. 
Visibility Determination. The spatial support layer also 
affords the spatial aspect of perspective-taking in the form 
of an evaluation of the visibility of the StealthBot by the 
target.  When requested by the cognitive layer, line-of-site 
and target field-of-view calculations are made based on the 
current model of the target’s motion and the cognitive map.  
The result is provided to the cognitive layer. Currently, we 
assume that the target has perfect vision over a 180-degree 
field forward in the direction of movement. This is similar 
to ACT-R’s visual module (Anderson and Lebiere 1990).  
Interacting with the ACT-R Model. We chose not to 
directly modify ACT-R 6.0 (http://act-r.psy.cmu.edu) to 
implement this spatial module. Instead, this layer indirectly 
provides spatial representation and processing in support of 
higher-level spatial reasoning by the cognitive model. To 
pass the information to the cognitive model, we inserted 
chunks directly into the declarative memory of the ACT-R 
system. This was done when either the target moved 
enough to be in a different cognitive map cell or there was 
a change in its direction. The cognitive map itself is not 
passed to the cognitive layer nor is it directly accessible by 
that layer. ACT-R productions react to the change and 
reconsider what action the StealthBot should take.   

Cognitive Layer: ACT-R Cognitive Model  
We have built a cognitive model of what we believe is 
plausible for high-level spatial representation and 
reasoning. The cognitive model is implemented in ACT-R 
which has a long and successful history of representing and 
matching human cognition. The ACT-R cognitive model 
has pre-loaded declarative and procedural knowledge and 
learns new knowledge from interactions with the 
environment.  
Declarative Knowledge. The declarative knowledge is 
represented as chunks of information with symbolic 
attribute slots and values. The information from the spatial 
support layer is provided to the cognitive layer as 
declarative memory chunks. The chunk representing a 

change in the target’s location includes both exocentric and 
egocentric information from the lower layer. The 
exocentric information, i.e., externally referenced 
information, is the object closest to the target and the 
target’s relative bearing from it. The egocentric 
information is the object closest to the StealthBot and the 
target’s relative bearing from it. Determining these 
references is an example of the translation of information 
between different spatial representations necessary for 
higher-level reasoning.  
Procedural Knowledge. The procedural knowledge in 
form of production rules encodes process knowledge on 
how to:  
• handle the environmental information including 

messages from the StealthBot’s team member,  
• predict where the target will be in the near future,  
• make deductions about where the StealthBot should 

hide next,  
• respond to team member communications, and  
• decide whether it is safe to move.  

Although the robot continuously monitors the environment 
for navigational purposes, collecting information for high-
level reasoning is a deliberate act initiated by the cognitive 
level. The cognitive level deliberately looks for new 
information about the location of the target and 
communications from the team member.  

Based on available and inferred information, the 
StealthBot decides on the next good hiding place. The 
StealthBot cognitive model has procedural knowledge 
encoding the knowledge that if the target is on the north, 
east, south, or west side of an object, it should hide on the 
opposite side of the object. We expect that these 
productions could be learned through experience in this 
situation, but we encoded them directly.  

The StealthBot also decides which object to hide behind, 
the object closest to the target or the one closest to the 
StealthBot. StealthBot’s choice of a hiding place is based 
on its information about the target’s location, the target’s 
predicted movement, and its own visibility. When the 
StealthBot decides on a good place to hide, it checks 
whether it is safe to move there deliberately based on its 
current visibility. If it is safe to move deliberatively and its 
team member has not directed it to hold its position, the 
StealthBot starts to move to its desired location. During its 
movement, it repeatedly checks for changes in the 
environment and re-evaluates where to move to. If there is 
a change in the environment, such as the target moves such 
that another hiding place is preferred, the StealthBot 
changes where it is going to hide. 

Whenever information about the target’s tactics or 
strategy is available, the robot anticipates the target’s 
behavior by simulating within the cognitive map the future 
state of the world and making a decision to hide next to the 
object that is closest to the target in the future. The 
prediction of the target’s behavior is based on prior 
observations of the target and domain knowledge about 
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patrolling, transiting, and holding strategies and associated 
tactics.  

However, if the StealthBot recognizes, during its 
movement to its next hiding place, that it is or has become 
visible, the StealthBot takes immediate (reactive) action to 
hide using the nearest object. This integrates the modeling 
of urgent decisions that do not fully consider all 
information available in the environment similar to 
research on performing two tasks (Taatgen 2005). These 
decisions are more direct in deciding where to hide than 
those discussed earlier. Under this condition, the target’s 
movements are not considered, only the target’s position 
and only how to get out of sight as fast as possible. These 
productions override the previous thoughtful decision-
making about the next hiding place and substitute the 
appropriate hiding place next to the nearest object. Overall, 
the deliberate and reactive productions lead to what we 
consider to be reasonable hiding behavior.  

StealthBot Behavior 
We have run our StealthBot in a number of scenarios to 
demonstrate competence in the core competency areas of 
spatial reasoning, perspective-taking, and covert 
communications. Figure 3 shows a diagram of one run, 
which demonstrated the robot’s ability to anticipate the 
target’s movement and to dynamically revise its model. 

The tracks of the target and the StealthBot are indicated 
by a sequence of letters: a, b, c, etc. In this run, the target 
moved right to left above both pillars and the StealthBot 
started in the southeast. After the initial sensor sweep, the 
StealthBot located the target north of the “Pillar1”. So, it 
immediately moved to hide south of “Pillar1”. Hidden at 
point b, the StealthBot determined that the target appeared 
to be moving southwest (toward the lower left) by 
simulating the target’s motion for several steps into the 
imagined future resulting in the target being south of 
“Pillar2”. The StealthBot decided that north of “Pillar2” 
would be a good hiding place based on its mission to 
covertly approach the target. So, the StealthBot began 
moving to north of “Pillar2”. As it began to move from 
behind “Pillar1”, at step c, it inferred based on the target’s 
location and the sensor model that it was visible.  It 
overrode its previous plan and immediately hid south of 
“Pillar1”, step d.  

Once there, based on the updated spatial information, the 
StealthBot was able to revise its belief about the target’s 
behavior. The StealthBot realized that the target was 
moving more west than southwest and revised its 
prediction to put the target west of “Pillar2”. In 
anticipation of this future state, the StealthBot began to 
move towards the east of “Pillar2.” It could safely 
(invisibly) follow the target and hide east of “Pillar1” at 
step e due to the target’s limited field of view. The 
StealthBot remained at that location for the rest of the run. 

Without the ability to anticipate the target’s future 
location, the robot would not have reactively considered 
this new hiding place until step h. As the target traversed 

the field, a purely reactive system would have considered 
hiding west, south, and only then east of “Pillar2”, or 
worse, only danced around “Pillar1” in the first place.  

This demonstrates reasonable individual behavior under 
these conditions. This demonstration suggests that the 
robot could be a competent team member, exhibiting good, 
though imperfect, behavior when working alone. 

 

Figure 3. Diagram of Target (solid line) and StealthBot (dotted 
line) behavior during the scenario.  Both began at respective (a) 
locations. the StealthBot immediately moved to (b) to hide from 
Target behind “Pillar 1” and then continued towards “Pillar 2”, 
the anticipated ultimate hiding place.  It became visible at (c), so 
it quickly retreated behind “Pillar 1” to (d).  Next, the StealthBot 
left the refuge due to covertness afforded by Target’s limited field 
of view (e) and reached the desired hiding place (f-j).   

 
The primary difference between individual behavior and 

team behavior is that the robot is able to covertly 
communicate with its human team member to take 
advantage of the human’s capabilities. For example, a 
responsible team human team member hiding behind 
“Pillar 2” and able to see the target’s motion could have 
commanded the robot to stop at step “b” to avoid its 
becoming visible, and then to resume a few steps later. 
Furthermore, part of a RECON mission is to gather and 
report information. To support this, the robot is able to 
report its understanding of the situation in terms useful to 
the human. Figure 4 is an example of such a report for the 
run discussed above.  

 
AT TIME e, TARGET IS "north-of" 
"pillar2" HEADING W WITH SENSOR OFF. 
TARGET APPEARS TO HAVE STRATEGY “NE-NW-
cycle” AND MISSION PATROL. CURRENT PLANS 
ARE TO HIDE "east-of" "pillar2". 
REPORTING FROM "pillar2". 
 

Figure 4. Report from the StealthBot 

Discussion 
Our StealthBot is able to work independently or with a 
team member to covertly approach and follow another 
robot or person in our laboratory RECON scenario under 
our laboratory conditions, therefore meeting our 
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engineering goal. Our robotic/computational goal was also 
met: we integrated a computational cognitive architecture 
(ACT-R) as the basis for cognitively plausible (at least in 
parts), spatial reasoning and as the basis for interacting 
with the other team member using the layers of spatial 
representation and reasoning discussed in this report.  

One of our primary successes in this project was to have 
a scientifically principled method of integrating multiple 
spatial representations each useful at their own level of 
reasoning. Specifically, we used a metric representation 
primarily for navigation and collision avoidance; this type 
of representation is a fundamental part of most robotic 
systems. We used a cognitive map representation as the 
“glue” between our metric and cognitive layers. Finally, 
our cognitive representation was based on ACT-R, which 
allows us to claim the robot reasoned in the cognitive level 
similarly to how people do. This design allowed us to build 
a reasonably competent robotic team-member. The human 
interaction techniques, specifically an improved natural 
gesture system, allowed a human to interact with the robot 
as a human would in a covert fashion. 

Acknowledgements 
Our work benefited from discussions with Dan Bothell, 
Cynthia Breazeal, Scott Douglass, Farilee Mintz, Linda 
Sibert, and Scott Thomas. This work was performed while 
the first author held a National Research Council Research 
Associateship Award and was partially supported by the 
Office of Naval Research under job order numbers 55-
8551-06, 55-9019-06, and 55-9017-06. The views and 
conclusions contained in this document should not be 
interpreted as necessarily representing official policies, 
either expressed or implied, of the U.S. Navy.  

References 
Anderson, J.R. and Lebiere, C. 1998. The Atomic 
Components of Thought. Mahwah, NJ, Erlbaum. 
Bonasso, R.P.; Firby, R.J.; Gat, E.; Kortenkamp, D.; 
Miller, D.; and Slack, M. 1997. Experiences with an 
architecture for intelligent, reactive agents. Journal of 
Experimental and Theoretical Artificial Intelligence 9(2/3): 
237-256. 
Bruce, J.; Balch, T.; and Veloso, M. 2000. Fast and 
inexpensive color image segmentation for interactive 
robots. In Proceedings of the 2000 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. Takamatsu, 
Japan: 2061-2066. 
Forbus, K. 1993. Qualitative process theory: Twelve years 
after. Artificial Intelligence 59: 115-123. 
Fransen, B.; Morariu, V.; Martinson, E.; Blisard, S.; 
Marge, M; Thomas, S.; Schultz, A.; and Perzanowski, D. 
Using vision, acoustics, and natural language for 
disambiguation. Forthcoming. 

Hiatt, L.M.; Trafton, J.G.; Harrison, A.M.; and Schultz, 
A.C. 2004. A cognitive model for spatial perspective 
taking. In Proceedings of the Sixth International 
Conference on Cognitive Modeling. Pittsburg, PA: 
Carnegie Mellon University/University of Pittsburgh. 354-
355. 
Montemerlo, M.; Roy. N.; and Thrun, S. 2003. 
Perspectives on Standardization in Mobil Robot 
Programming: the Carnegie Mellon Navigation 
(CARMEN) Toolkit. In Proceedings of the IEEE/RJS 
International Conference on Intelligent Robots and 
Systems (IROS 2003), Las Vegas: 2436-2441. 
Perzanowski, D.; Schultz, A.C.; and Adams, W. 1998. 
Integrating Natural Language and Gesture in a Robotics 
Domain. In Proceedings of the IEEE International 
Symposium on Intelligent Control: ISIC/CIRA/ISAS Joint 
Conference. Gaithersburg, MD, National Institute of 
Standards and Technology: 247-252. 
Previc, F. H. 1998. The neuropsychology of 3-D space. 
Psychological Bulletin 124(2): 123-164. 
Schultz, A.C. and Adams, W. 1998. Continuous 
localization using evidence grids. In Proceedings of the 
1998 IEEE International Conference on Robotics and 
Automation, 2833-2939. Leven, Belgium: IEEE Press. . 
Schultz, A. C.; Adams, W.; and Yamauchi, B. 1999. 
Integrating exploration, localization, navigation, and 
planning with a common representation. Autonomous 
Robots 6: 293-308. 
Taylor, H.A. and Tversky, B. 1992. Spatial mental models 
derived from survey and route descriptions. Journal of 
Memory and Language 31: 261-292. 
Tolman, E.C. 1948. Cognitive Maps in Mice and Men. The 
Psychological Review 55(4): 189-208. 
Taatgen, N. 2005. Modeling Parallelization and Flexibility 
Improvements in Skill Acquisition: From Dual Tasks to 
Complex Dynamics, Cognitive Science 29: 421-455. 
Trafton, J.G., Schultz, A.C.; Bugajska, M.D.; and Mintz, 
F.E. 2005a. Perspective-taking with robots: experiments 
and models. In Proceedings of the International Workshop 
on Robot and Human Interactions, 580-584.  IEEE Press. 
Trafton, J.G.; Cassimatis, N.L.; Bugajska, M.D.; Brock, 
D.P.; Mintz, F.E.; and Schultz, A.C. 2005b. Enabling 
effective human-robot interaction using perspective-taking 
in robots. IEEE Transactions on Systems, Man, and 
Cybernetics 35(4): 460-470. 
Trafton, J.G., Schultz, A.C.; Perzanowski, D.; Bugajska, 
M.D.; Adams, W.; Cassimatis, N.L.; and Brock, D.P. 2006. 
Children and robots learning to play hide and seek. 2006 
ACM Conference on Human-Robot Interactions, Salt lake 
City, UT, ACM Press: New York. 242-249. 
Tversky, B. 1993. Cognitive maps, cognitive collages, and 
spatial mental models. In A.U. Frank & I. Campari (Eds.), 
Spatial information theory: A theoretical basis for GIS, 14-
24. Berlin: Spring-Verlag. 


