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ABSTRACT: Research at the Naval Research Laboratory (NRL) has shown that the use of auditory cueing can 
dramatically improve operator performance in dual-task environments for which efficient task-switching plays a 
crucial role (Ballas, 1992, Brock, 2004, Brock, 2006). In order to better exploit the benefits of auditory cueing for the 
purpose of attention management in multitasking environments, the Navy desires a model-based understanding of the 
mechanisms driving human performance in these scenarios. Empirical studies utilizing a complex dual task and 
related cognitive modeling work developed with the EPIC cognitive architecture [5], have focused on understanding 
the methods subjects employ to effectively time their transitions between tasks.  These models support the notion that 
time spent on the primary, relatively stateless, tracking task is regulated by state information retained from the 
secondary, radar task. However, the models do not sufficiently capture the benefits observed in conditions utilizing 
auditory cuing to assist in attention management. A minor modification to these models results in a dramatic change 
in model performance, provides insight into when and how auditory cues provide benefit, and raises questions about 
the methods used by the models to time attention switches between tasks.  
 
1. Introduction 
 
A series of studies conducted at NRL, utilizing the 
Ballas dual task presented on widely separated 
monitors, have repeatedly shown a robust improvement 
in performance on both tasks when auditory cues are 
used to assist in attention management between the 
tasks (Ballas, 1992, Brock, 2004, Brock, 2006). In 
order to better understand the factors contributing to 
improved performance, cognitive modeling has been 
employed to examine viable strategies for directing 
attention in conditions with and without the presence of 
auditory cues.  
 
In this dual task environment, proactive attention 
management is critical because the two tasks are 
presented on screens that are separated by a ninety-
degree arc. Figure 1 shows a workstation similar to 
those used in empirical studies at NRL. The tasks 
utilize the far left and far right screens, while the center 
screen is left blank.  As a result, subjects attending to 
either task cannot receive visual information from the 
other. In conditions for which no auditory cues are 
present, all attention switches between tasks must be 
self-directed, and cannot rely on external cues. 
 
Cognitive modeling work at NRL has supported the 
notion that state information from one task could be 
used to determine the duration of an attendance to the 

other task (McClimens, 2011). Such information could 
be used to set an internal timer prior to switching tasks, 
and performance benefits could be realized without 
requiring a simulation of progression on one task while 
attending to the other. These models did not 
sufficiently replicate the benefits observed from the use 
of auditory cues to aid in attention management. This 
paper examines an adjustment to these models intended 
to address that deficiency.  
 

 
Figure 1. Three-screen console configuration of the Common 
Display System, the new information workstation being acquired for 
the U.S. Navy’s modernization program and next- generation surface 
ships. The described dual task utilizes the far left and far right 
monitors in a similar workstation. 
 



2. Background 
 
2.1 EPIC 
 
The EPIC cognitive architecture (Kieras, 1997) has 
been used to build several models of this dual task in 
the past (Kieras, 2001, Brock, 2006, Hornof, 2010). 
The models in this paper are an extension of previous 
modeling work at NRL, and again use the EPIC 
architecture. These models also make use of a custom-
designed encoder for the hostility property of blips on 
the radar screen, and a timing mechanism that regulates 
the amount of time spent on the tracking task between 
attendances to the radar task. 
 
2.2 Ballas Dual Task 
 
The Ballas dual task consists of a simple yet 
demanding, continuous tracking task in which subjects 
are required to follow the motion of a target object 
onscreen using a joystick, and an intermittent decision 
task loosely based on a radar display, in which subjects 
must classify incoming objects of three types as either 
hostile or neutral based on rule sets unique to each of 
the three object types. These two tasks are presented on 
monitors separated by a ninety-degree arc such that 
subjects focusing on one of the two tasks cannot 
receive visual information in their periphery for the 
other task. 
 

 
Figure 2. A depiction of the radar and tracking tasks.  
 
The tracking task is presented to subjects as their 
primary task. Although there are neither complex 
decisions to be made nor critical events in the tracking 
task, it is a task that demands constant attention in 
order to perform well. Subjects control a reticle on the 
screen via joystick, and the performance criteria is 
simply the average distance between the reticle and a 
target object over the duration of the experiment. The 
target moves around the screen with quick, irregular 
movements that are difficult to predict. These 
movements are small enough that most subjects are 
able to track the target relatively well while attending 
to the task, but even quick glances to the radar screen 
incur a rapid drop in performance. As a result, the 
percentage of time spent attending to the tracking 

screen is a very good predictor of performance. As a 
general rule, subjects spend between seventy and 
eighty percent of their time focused on the tracking 
task depending upon the experimental condition. 
 
The radar task consists of a series of classification 
judgments based on the motion of three types of 
objects, collectively referred to as blips. Over the 
course of a thirteen minute scenario, subjects are 
required to make sixty five classifications (one every 
12s on average). The pace of activity changes 
throughout the scenarios, but in the studies this model 
is based upon, there are never more than five blips on 
the screen at any given time. Blips appear near the top 
of the screen, and move down towards the bottom of 
the screen over the course of approximately twenty 
seconds. When a blip initially appears on the screen, it 
is black and subjects are not permitted to enter a 
classification for that blip. When a blip has moved 
about halfway down the radar screen, it changes color 
to signify that the subject should enter a response. In 
experiment conditions that utilize auditory cues, the 
blip's color change is accompanied by an alert sound so 
that subjects are made aware of blips ready for 
classification even when they are attending to the 
tracking task. 
 
2.3 Performance Measures 
 
Recent research at NRL regarding the Ballas dual task 
has focused on the role that attention management 
plays in the performance of the radar and tracking 
tasks. The benefits of auditory cues have been 
measured primarily using three key performance 
measures: reaction times for blip assessments, the 
percentage of time spent on the tracking task, and the 
number of attention switches between the radar and 
tracking tasks. 
 
The reaction times on blips in the radar task are defined 
as the amount of time that passes between a blip 
changing color and the completion of a response by the 
subject. These reaction times are more than a simple 
measure of performance on the radar task. Because 
blips often change color while a subject is attending to 
the tracking task, the reaction times increase if subjects 
fail to effectively manage their attention. 
 
The number of attention switches between tasks, and 
the percentage of time spent on each task are measures 
of how much effort a subject is putting in to staying 
aware of blips on the radar task. In this setup, with the 
two screens set ninety degrees apart, attention switches 
are costly, and directly result in poorer performance on 
the tracking task. Although additional attendances to 
the radar screen should improve performance on that 
task, previous research has shown that when auditory 
cues are present to assist in attention management, 



subjects are able to improve performance on the radar 
task while making fewer attention switches and 
spending less time on the radar task. 
 
3. Modeling 
 
3.1 2009 data 
 
Early models of the Ballas dual task at NRL suffered 
from a lack of precision in the data collected regarding 
the head movements of subjects.  Data was recorded 
during an experiment in 2002 by hand. To record a 
head turn, the experimenter tapped buttons on a PDA, 
and time stamps were recorded to the nearest second. 
Though this process was sufficient for showing 
significant differences between the sound and no-sound 
conditions, a greater degree of resolution would be 
required for more sophisticated modeling efforts. 
 
In 2009, a study was conducted using the Ballas dual 
task to evaluate the use of new presentation method for 
auditory cues. This provided the opportunity to collect 
more detailed empirical data regarding the allocation of 
attention between the radar and tracking tasks. 
Previous studies had reported the number of head turns 
subjects made during the experiment, but collection of 
data via a head-mounted tracking device was added to 
allow for more detailed analyses of individual attention 
switches between tasks. The head-tracking data 
allowed for the measurement of the durations of each 
attendance to a task, and allowed for an association 
between individual task attendances and the states of 
each task at that time. It was predicted that subjects 
would maintain an awareness of the radar task’s state, 
and as a result would spend less time in episodes of 
tracking when there was more activity on the radar 
task. In other words it was thought that when a subject 
left the radar task to perform the tracking task, they 
made note of the current state of the radar task, and 
used that information to determine when they should 
return to the radar task. A subject who saw that there 
were no blips on the radar screen before attending to 
the tracking screen, would be likely to track for a 
longer period than they would if the radar screen had a 
large number of blips on it when they looked away to 
begin tracking. Data collected in a pilot study 
supported this prediction, and a model was created to 
test the impact of allowing state information from the 
radar task to guide the timing of attention switches 
between tasks. 
 
3.2 Modeling Radar-Driven Task Switches 
 
In order to test the effectiveness of using the radar 
task’s state to guide attention switches, a model was 
created and run in three modes on two conditions. The 
two conditions were a "sound" condition, in which an 
auditory alert was presented whenever a blip was ready 

to be classified, and a "no-sound" condition in which 
no alert was used. In both conditions, blips would 
change color when they were ready for classification, 
so that a subject attending to the radar task at the time 
would be aware of the state change. In the sound 
condition, the audio alert allowed participants to be 
aware of this state change while attending to the 
tracking task as well. In each of these conditions the 
model was run in three modes that used progressively 
more information from the radar task to inform the 
temporal processor how much time should be spend on 
any given attendance to the tracking task. The first 
mode, referred to as ‘mono’, was a baseline in which 
the temporal processor was simply used to ensure that 
the model spent the same average time on the tracking 
task as was observed across all tracking attendances in 
the human subject study. The second ‘dual’ mode 
divided the tracking episodes into two categories: those 
in which tracking began while there were zero blips on 
the radar screen, and those in which tracking began 
with one or more blips on the radar screen. When blips 
were present on the radar screen, the model would 
spend less time on the tracking screen, in accordance 
with observed human behavior. In the third, ‘multi’ 
mode, four divisions of tracking attendances were 
made: one group for instances in which there were zero 
blips on the radar task as tracking began, one for 
instances with one blip on the radar screen, a third for 
instances with two blips, and a final group for instances 
with three or more blips on the radar screen.  
 

 
Figure 3. These graphs show improved reaction times for 
classification events on the radar task and a reduction in the number 
of attention switches between tasks as the model makes more use of 
state information from the radar task to regulate time spent on the 
tracking task. This data is reported in (McClimens and Brock, 2011). 
 
As seen in figure 3, the models that made greater use of 
the radar task's state information to govern attention 
switches were able to perform better on the radar task, 
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most notably with reduced reaction times for radar task 
classifications, and also showed a slight decrease in 
multitasking overhead, reflected by the decreased 
number of attention switches (McClimens and Brock, 
2011). Unfortunately, while there was a small 
improvement for reaction times in the sound 
conditions, the differences between sound and no-
sound conditions were not nearly as pronounced in the 
model as was observed in human data. This was also 
reflected in the number of attention switches made by 
the model.  At the time, the reason for this discrepancy 
between the model and human data was unknown, but 
it appears that the reason can be found within the 
temporal processor used to determine the amount of 
time spent on each attendance to the tracking task. The 
model was designed to approximate the average 
amount of time spent on each attendance to the radar 
task. In the no-sound condition, this approximation  
was relatively close (3518ms observed, 3888 modeled), 
but the addition of auditory alerts did not affect the 
model as anticipated, and the disparity between the 
model and observed data increased (4620ms observed, 
3986ms modeled). An examination of the distribution 
of the attendance times reveals an even more striking 
contrast between the model and observed data, as is 
shown in figure 4.  
 

 

 
Figure 4. Compared to the empirical data, the model showed little 
variance in the amount of time spent on individual tracking 
attendances. 
 
3.3 Performance Effect of Attendance Distribution 
 
The model’s variance in time spent on the tracking task 
was much narrower than the observed behavior. It was 
hypothesized that this characteristic of the model might 
be a key factor in the lack of distinction between the 

model’s performance in the sound condition as 
opposed to the no-sound condition.  
 
To see how the shape of this distribution can affect 
performance, consider the effect of an auditory cue on 
a subject attending to the tracking task. When a subject 
leaves the radar task to begin tracking, they make an 
internal estimate of when they need to return to the 
radar task. Our model works under the assumption that 
the desired return time coincides with a blip activation, 
when a blip changes color and is ready for a response.  
In the sound condition, this event is accompanied by an 
auditory cue.  If a subject is accurate in their 
estimation, they will arrive on the radar task as the 
auditory cue sounds.  If the subject returns early, the 
auditory cue will not have been presented.  In these two 
cases, there should be no difference in performance 
between the sound and no-sound conditions. If the 
subject makes a poor time estimate, and would be late 
returning to the radar screen a performance difference 
results from the two conditions. In the sound condition, 
the auditory alert will interrupt the long tracking 
attendance, and prompt the subject to return to the 
radar task.  In the no-sound condition, the subject will 
continue tracking, unaware that an active blip is on the 
radar screen, and their reaction time for classification 
events will suffer as a result. A distribution of 
attendance times on the tracking screen with less 
variance provides fewer opportunities for an auditory 
alert to be beneficial. 
 
3.4 Adjusting Noise in the Temporal Processor 
 
The internal clock used in EPIC's temporal processor is 
an implementation of a timing mechanism developed 
by Taatgen (Taatgen, 2007). This timer is based on a 
pacemaker-accumulator model, in which pulses are 
generated, and an accumulator keeps track of how 
many pulses have passed.  These pulses are not evenly 
spaced, but rather grow gradually more distant as time 
passes. Three parameters govern the production of 
these pulses. The first is an initial pulse length. The 
second parameter, α, determines how quickly the pulse 
lengths grow.  Each pulse length is on average α times 
the previous pulse length. The final parameter, β, 
determines variability within the internal clock.  When 
each pulse's timing is calculated, noise from a logistic 
function determined by the current pulse length times 
the third parameter is added. The Ratkin et al. (1998) 
experiment was used as a benchmark task to find 
approximate values for these parameters, and values 
were estimated at 11ms for the initial pulse length, 1.1 
for α, and 0.015 for β. 
 

tn+1 =αtn + noise(M = 0, SD = β * αtn) 
 
The initial model used these same values for the three 
parameters.  As seen in figure 3.2, this results in a 



narrow distribution around the desired tracking 
durations. 
 
In order to remedy the differences between the 
variance of tracking attendance times observed and 
those produced by the model, the β parameter was 
heavily modified. Assuming the new model would 
have a distribution of target attendance times similar to 
the old model, analysis showed that increasing the 
value of β from .015 to .2 would increase the variance 
enough to result in a much closer approximation to the 
distribution of tracking attendance times in observed 
data.  
 
4. Results 
 
The ‘multi’ mode of the old model was rerun with a β 
parameter value of .2 in both the sound and no-sound 
conditions.  The resulting distribution of attendance 
durations is shown below in figure 5 alongside the 
distributions from figure 4. 
 

 

 
Figure 5. Adjusting the β parameter results in a distribution of 
tracking attendance times that better fits empirical data.  Note that 
despite the apparent differences between the distributions generated 
by the two models, they use the same formula, with just one 
parameter modified. 
 
The distributions from the new model peak slightly 
later than observed data, but increasing the β parameter 
does result in a much closer approximation of human 
performance in tracking attendance times.  Note too in 
figure 7, that the mean in the no-sound condition, and 
the standard deviations are a better fit in the new 
model.  Although the mean tracking time in the sound 

condition is further from the observed data, note that 
the difference in means between the no-sound and 
sound conditions is greater.  The original model spent 
sixty-five percent of its time on the tracking task in 
both no-sound and sound conditions.  The model with 
increased β spent sixty-six and sixty-seven percent of 
its time in the no-sound and sound conditions 
respectively.  Empirical data shows subjects spending 
seventy-five and eighty percent of their time on the 
tracking task in no-sound and sound conditions. 
 
 
 
 No Sound Sound 
 Mean St. Dev. Mean St. Dev. 
Observed 3518 94.3 4620 140.2 
Old Model 
(β 0.015) 

3888 28.8 3986 39.1 

New Model 
(β 0.2) 

3534 109.5 3850 114.0 

 
Figure 6. The mean and standard deviation of tracking attendance 
durations for observed data, original and increased β parameter, in 
no-sound and sound conditions. 
 

 
Figure 7. As predicted, the new model (the rightmost columns) 
shows an increased distinction between the no-sound and sound 
conditions as compared to the old model (middle columns). 
 
5. Discussion 
 
Increasing the β parameter for the timer in EPICs 
temporal processor from 0.015 to 0.2 resulted in a 
model that was a better approximation of the observed 
human performance data.  Reaction times for 
classification events on the radar task showed a 
distinction between the sound and no-sound conditions, 
and the distribution of tracking attendance durations 
was more representative of the empirical data. Despite 



these results, one can question the validity of adjusting 
a parameter in the temporal processor’s formula to fit a 
single case.  In Taatgen's work (Taatgen 2007), it is 
noted that the behavior of the timing module is 
assumed to be task-independent, and as such the 
parameters should be determined by fitting 
performance to a single benchmark task and then be 
left alone.  
 
Alternative methods should be explored to determine 
whether it is possible to fit the empirical data for 
tracking attendance durations without adjusting the β 
parameter. Recall that this model uses simplified state 
data from the radar task to bin tracking attendances into 
one of four categories (0,1,2 and 3+ blips on radar). For 
each category, there is a single target tracking duration. 
A narrow distribution of estimates of these times 
results in the sharp peaks shown in figures 4 and 5.  A 
model may produce a more realistic distribution by 
using a continuous function to determine the desired 
tracking duration rather than discrete categories. 
 
The presented model demonstrates that strategies 
utilizing state information from the radar task to 
regulate time spent on the tracking task, can benefit 
from the effects of auditory cuing.  Previous such 
models that had shown a lack of distinction between 
no-sound and sound conditions can instead attribute 
this quality to a lack of fidelity to empirical data in the 
distribution of tracking attendance durations. Though a 
simple solution can be attained by increasing the β 
parameter in EPICs temporal processor, a more 
sophisticated solution should first replace the discrete 
function used in the model to determine the desired 
tracking attendance duration with a more nuanced 
continuous function. 
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