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Mental Models and Causation

P. N. Johnson-​Laird and Sangeet S. Khemlani

Abstract

The theory of  mental models accounts for the meanings of  causal relations in daily life. They refer to 
seven temporally-​ordered deterministic relations between possibilities, which include causes, prevents, 
and enables. Various factors—​forces, mechanisms, interventions—​can enter into the interpretation of  
causal assertions, but they are not part of  their core meanings. Mental models represent only salient 
possibilities, and so they are identical for causes and enables, which may explain failures to distinguish 
between their meanings. Yet, reasoners deduce different conclusions from them, and distinguish between 
them in scenarios, such as those in which one event enables a cause to have its effect. Neither causation 
itself  nor the distinction between causes and enables can be captured in the pure probability calculus. 
Statistical regularities, however, often underlie the induction of  causal relations. The chapter shows how 
models help to resolve inconsistent causal scenarios and to reverse engineer electrical circuits.

Key Words:  abduction, causes, deduction, determinism, explanation, mental models, nonmonotonic 
reasoning

Hume (1748/​1988) remarked that most reason-
ing about matters of fact depends on causal rela-
tions. We accordingly invite readers to make two 
inferences:

1. Eating protein will cause Evelyn to gain weight.
Evelyn will eat protein.
Will Evelyn gain weight?

2. Marrying Viv on Monday will enable Pat to be 
happy.
Pat will marry Viv on Monday.
Will Pat be happy?

In a study of several hundred highly intelligent appli-
cants to a selective Italian university, almost all the 
132 participants making the first sort of inference 
responded “yes’’ (98%), whereas over two-​thirds 
of a separate group of 129 participants making 
the second sort of inference responded “perhaps 
yes, perhaps no” (68%) and the remainder in this 
group responded “yes” (Goldvarg & Johnson-​Laird, 

2001). These inferences stand in need of an explana-
tion, and one aim of the present chapter is to show 
that the theory of mental models explains them and 
causal reasoning in general.

Causation has created controversy for cen-
turies. Some have argued that the notion is irrel-
evant (Russell, 1912–​1913), ill defined (Lindley & 
Novick, 1981), and inconsistent (Salsburg, 2001, 
pp. 185–​186). Scholars also disagree about its foun-
dations, with whether, for instance, causal relations 
are objective or subjective, and with whether they 
hold between actions, events, or states of affairs. 
Certainly, actions can be causes, such as throwing 
a switch to cause a light to come on. But, as the 
proverb says, “for want of a nail the kingdom was 
lost,” and so causes can be negative states of affairs 
as well. We say no more about these philosophical 
matters, but we do need to consider the consistency 
of causal concepts.

Causation is built into so much of language that 
the concept is hardly inconsistent unless languages 
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themselves are inconsistent (see Solstad & Bott, 
Chapter 31 in this volume). A causal assertion, such 
as eating protein causes Evelyn to lose weight, can be 
paraphrased using verbs, such as makes, gets, and 
forces. The sentence can also be paraphrased in a con-
ditional assertion: If Evelyn eats protein, then Evelyn 
will lose weight. Many verbs embody causal relations 
in their meanings. For example, an assertion of the 
form x lifts y can be paraphrased as x does something 
that causes y to move upward; an assertion of the 
form x offers y to z can be paraphrased as x does some-
thing that enables y to possess z; and an assertion of 
the form x hides y from z can be paraphrased as x does 
something that prevents z from seeing y. These para-
phrases reveal that certain concepts, expressed here 
in move, possess, and see, underlie “semantic fields” 
of verbs, whereas other concepts, expressed in causes, 
enables, and prevents, occur in many different seman-
tic fields (Miller & Johnson-​Laird, 1976). Indeed, it 
is easier to frame informative definitions for verbs 
with a causal meaning than for verbs lacking such a 
meaning (Johnson-​Laird & Quinn, 1976).

Inconsistency arises among beliefs about causa-
tion. Some people believe that every event has a 
cause; some believe that an action or intervention 
can initiate a causal chain, as when a trial begins in 
an experiment. And some believe both these propo-
sitions (e.g., Mill, 1874). But, they are inconsistent 
with one another. If every event has a cause, then 
an action cannot initiate a causal chain, because 
the action has an earlier cause, and so on, back to 
the ultimate cause or causes of all chains of events. 
Beliefs, however, are not part of the meanings of 
terms. Both every event has a cause and every inter-
vention initiates a causal chain make sense, and the 
meaning of cause should not rule out either asser-
tion as false. The problem, of course, is to separate 
beliefs from meanings, and the only guide is usage. 
We now introduce the theory of mental models.

The origins of the theory go back to Peirce’s 
(1931–​1958, Vol. 4) idea that diagrams can present 
moving pictures of thoughts. The psychologist and 
physiologist Kenneth Craik (1943) first introduced 
mental models into psychology. His inspiration 
was machines such as Kelvin’s tidal predictor, and 
he wrote that if humans build small-​scale models 
of external reality in their heads, they can make 
sensible predictions from them. Craik’s ideas were 
programmatic and untested, and he supposed that 
reasoning depends on verbal rules. In contrast, the 
modern theory began with the idea that reasoning 
itself is a process of simulation based on mental 
models (Johnson-​Laird, 1983).

The basic principles of the theory of mental 
models—​the “model theory,” for short—​apply to 
any domain of reasoning, given an account of the 
meaning of the essential concepts in the domain 
(e.g., Khemlani & Johnson-​Laird, 2013). The pres-
ent chapter therefore begins with a theory of the 
meaning of causal relations, including those exem-
plified in the preceding inferences, taking pains to 
distinguish meanings from beliefs. It also distin-
guishes meanings from their interpretation, which 
yields mental models of the situations to which 
meanings refer. Models can be static, or they can 
unfold in time kinematically in a mental simulation 
of a sequence of events in a causal chain. Both sorts 
of models yield inferences, and the chapter consid-
ers the three main sorts of reasoning:  deduction, 
induction, and abduction. On occasion, it con-
trasts the model theory with alternative accounts of 
causation. The aim is not polemical, but to use the 
contrast to clarify the theory. The chapter concludes 
with a summary of outstanding problems.

The Meanings of Causal Relations
Basic Causal Relations

This section presents the model theory of the 
meanings of everyday causal assertions. It also deter-
mines how many different sorts of causal relations 
exist. Theorists tend not to address this question, 
and often assume that there is just one—​the relation 
of cause and effect, which may bring about an event 
or prevent it (Mill, 1874). They argue that causes and 
enables do not differ in meaning: causes are abnor-
mal, whereas enablers are normal (Hart & Honoré, 
1985), causes are inconstant whereas enablers are 
constant in the situation (Cheng & Novick, 1991), 
causes violate a norm whereas enablers do not 
(Einhorn & Hogarth, 1986), or causes are conver-
sationally relevant whereas enablers are not (Hilton 
& Erb, 1996; Mackie, 1980). In contrast, the model 
theory distinguishes the meaning of the two (see 
also Wolff and Thorstad, Chapter 9 in this volume), 
and fixes the number of causal relations. A  clue 
is in the mappings in Table 10.1 from quantifiers 
ranging over possibilities to causation and thence 
to obligation. A necessary proposition holds in all 
relevant possibilities, a possible proposition holds 
in at least one of them, an impossible proposition 
holds in none of them, and a proposition that is 
possibly not the case fails to hold in at least one of 
them. Likewise, if a cause occurs, then its effect is 
necessary, if an enabling condition occurs then its 
effect is possible, if a preventive condition occurs 
then its effect is impossible, and if a condition 
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allows an effect not to occur then it is possible for it 
not to occur.

Table 10.1 treats allows and enables as synonyms, 
but they have subtle differences in usage. Of course, 
a single quantifier, such as some, together with nega-
tion, allows all four cases to be defined (e.g., all is 
equivalent to it is not the case that some are not); and 
the same applies mutatis mutandis for each column 
in Table 10.1 (e.g., A causes B to occur is equivalent 
to A does not allow B not to occur). The mappings 
to deontic concepts are analogous, where deontics 
embraces what is permissible within morality or 
within a framework of conventions, such as those 
governing games or good manners (Bucciarelli & 
Johnson-​Laird, 2005; Bucciarelli, Khemlani, & 
Johnson-​Laird, 2008). Modal auxiliary verbs, such 
as must and may in English and analogs in other 
Indo-​European languages, are likewise ambiguous 
between factual and deontic interpretations. But, 
the two domains of possibilities and permissibilities 
cannot be amalgamated into one, because of a radi-
cal distinction between them. The failure of a fac-
tual necessity to occur renders its description false; 
whereas the violation of a deontic necessity does not 
render its description false—​people do, alas, violate 
what is permissible.

Many theories propose a probabilistic meaning 
for causal relations and for conditionals (see Over, 
Chapter 18; and Oaksford & Chater, Chapter 19, 
both in this volume). One difficulty with this pro-
posal is that the difference in meaning between A 
causes B and A enables B, which we outline pres-
ently, cannot be drawn within the probability 
calculus: both can yield high conditional probabili-
ties of B given A (Johnson-​Laird, 1999). Indeed, 
as the founder of Bayesian networks wrote, “Any 
causal premise that is cast in standard probabilistic 

expressions … can safely be discarded as inad-
equate” (Pearl, 2009, p. 334). He points out that 
cause has a deterministic meaning and that the 
probability calculus cannot distinguish between 
correlation and causation. It cannot express the 
sentence, “Mud does not cause rain” (Pearl, 2009, 
p. 412).

One general point on which all parties should 
agree is that even granted a deterministic mean-
ing, probabilities can enter into causal assertions in 
various ways (Suppes, 1970). We can be uncertain 
about a causal relation:

Eating protein will probably cause Evelyn to gain 
weight.

And our degree of belief in a deterministic prop-
osition is best thought of as a probability (e.g., 
Ramsey, 1929/​1990). Subtle aspects of experimen-
tal procedure can elicit judgments best modeled 
probabilistically—​from references to “most” in the 
contents of problems to the use of response scales 
ranging from 0 to 100 (Rehder & Burnett, 2005; 
and Rehder, Chapters 20 and 21 in this volume). 
Evidence for a causal relation can itself be statis-
tical. But, Pearl’s ultimate wisdom remains: keep 
causation and statistical considerations separate; 
introduce special additional apparatus to represent 
causation within probabilistic systems. This divi-
sion is now recognized in many different accounts 
of causation (see, e.g., Waldmann, 1996; and in 
this volume, Cheng & Lu, Chapter  5; Griffiths, 
Chapter 7; Lagnado & Gerstenberg, Chapter 29; 
and Meder & Mayrhofer, Chapter 23).

The consilience of the evidence about reasoning 
with quantifiers (e.g., Bucciarelli & Johnson-​Laird, 
1999), modal reasoning (e.g., Bell & Johnson-​Laird, 
1998), and deontic reasoning (e.g., Bucciarelli & 

Table 10.1  The Set of Mappings over Six Domains from Quantifiers Through Causal Concepts to   
Modal Notions and on to Deontic Concepts

Quantified Assertions Causal Verbs Modal
Concepts

Modal Auxiliary  
Verbs

Deontic
Concepts

Deontic Verbs

In all possibilities,  
it occurs.

causes necessary will occur compulsory obligates

In some possibilities,  
it occurs.

allows/​
enables

possible may occur permissible allows/​
permits

In no possibilities,  
it occurs.

prevents impossible cannot occur impermissible prohibits

In some possibilities,  
it does not occur.

allows not/​
enables not

possible not may not occur permissible not allows not/​ 
permits not
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Johnson-​Laird, 2005)  implies that each of these 
domains has deterministic meanings (for a case 
against probabilistic causal meanings, see Khemlani, 
Barbey, & Johnson-​Laird, 2014). Indeed, if neces-
sary were probabilistic, it would allow for exceptions 
and be indistinguishable from possible.

The consensus about causation is that, by 
default, causes precede their effects. But, a billiard 
ball causes a simultaneous dent in the cushion on 
which it rests (Kant, 1781/​1934), and the moon 
causes tides, which in Newtonian mechanics calls 
for instantaneous action at a distance. Philosophers 
have even speculated about causes following their 
effects in time. In daily life, however, the norm is 
that causes precede their effects, or at least do not 
occur after them. The sensible option is therefore 
that a cause does not follow its effect, and the same 
constraint applies to the prevention or enabling of 
events.

The correspondences in Table 10.1 imply that 
possibilities underlie the meanings of causal rela-
tions. It follows that there are several sorts of causal 
relation, and we will now enumerate them and 
explain why there cannot be any other sorts. An 
assertion about a specific cause and effect, such as

Eating protein will cause Evelyn to lose weight 
refers to a key possibility in which Evelyn eats pro-
tein and then loses weight. But, what happens if 
Evelyn does not eat protein? A weak interpretation 
of cause is that the assertion leaves open whether 
or not Evelyn will lose weight. It could result from 
some other cause, such as a regimen of rigorous 
exercise. The meaning of the assertion accordingly 
refers to a conjunction of three possibilities that are 
each in the required temporal order:

Evelyn eats protein and Evelyn loses weight.
Evelyn doesn’t eat protein and Evelyn doesn’t lose 
weight.
Evelyn doesn’t eat protein and Evelyn loses weight.

An assertion of prevention, such as eating pro-
tein prevents Pat from losing weight, is analogous but 
refers to the non-​occurrence of the effect.

A cause can be the unique way of bringing about 
an effect. As far as we know, drinking alcohol is the 
only way to get drunk. Likewise, prevention can be 
unique. As far as we know, a diet including vitamin 
C is the only way to prevent scurvy. These stronger 
senses rule out alternative ways to cause or to pre-
vent effects, and so both sorts of assertion refer only 
to two possibilities. A unique cause refers to a con-
junction of just two possibilities: cause and effect; 
and no cause and no effect.

An enabling relation such as eating protein 
enables Evelyn to lose weight doesn’t mean that pro-
tein necessarily leads Evelyn to lose weight: it may 
or may not happen, depending on the occurrence 
or non-​occurrence of a cause, such as eating less of 
other foods. What happens if Evelyn does not eat 
protein? A weak interpretation is again that Evelyn 
may or may not lose weight. All four temporally 
ordered possibilities can therefore occur. They are 
equivalent to the weak enabling condition for a 
non-​occurrence of an effect, eating protein enables 
Evelyn not to lose weight. A stronger and more fre-
quent interpretation of the affirmative assertion is 
that eating protein is a unique and necessary con-
dition for Evelyn to lose weight. The assertion’s 
meaning is therefore a conjunction of these three 
temporally ordered possibilities:

Evelyn eats protein and Evelyn loses weight.
Evelyn eats protein and Evelyn doesn’t lose weight.
Evelyn doesn’t eat protein and Evelyn doesn’t lose 
weight.

The negative assertion, eating protein enables 
Evelyn not to lose weight, is analogous but refers 
instead to the non-​occurrence of the effect.

We have now outlined seven distinct causal 
relations. Their meanings, according to the model 
theory, refer to different conjunctions of possibili-
ties, which each embodies a temporal order. These 
meanings are summarized in Table 10.2, and they 
exhaust all possible causal relations. If A or not-​A 
can occur, and B or not-​B can occur, there are four 
possible contingencies of A and B and their respec-
tive negations, and there are 16 possible subsets of 
these contingencies. Four of these subsets consist in 
a single possibility, such as A & not-​B, which is a 
categorical assertion of a conjunction. Four of these 
subsets consist in a conjunction of two possibilities, 
such as A & B and not-​A & B, which corresponds 
to a categorical assertion, as in this case in which 
B holds whether or not A holds. And one subset is 
the empty set corresponding to a self-​contradiction. 
The remaining seven of the 16 subsets of possibilities 
yield the distinct causal relations in Table 10.2: the 
strong and weak senses of causes, the strong and 
weak senses of prevents, the strong senses of enables 
and enables_​not, and their identical weak senses. 
Granted that the meanings of causal relations refer 
to conjunctions of possibilities, no other causal rela-
tions can exist.

The conjunctions of possibilities in Table 10.2 are 
analogous to truth tables in sentential logic. Some 
critics have therefore argued that the model theory’s 
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account of A causes B in its weak sense is equivalent 
to material implication in logic (e.g., Ali, Chater, 
& Oaksford, 2011; Kuhnmünch & Beller, 2005; 
Sloman, Barbey, & Hotaling, 2009). Other critics 
have made the same claim about the model theory’s 
treatment of conditionals (see, e.g., Evans & Over, 
2004). For readers unfamiliar with material impli-
cation, it is equivalent to not-​A or B, or both, and 
so on this account A causes B is true provided that 
A is false or B is true. That’s clearly wrong, and so, 
according to these critics, the model theory is there-
fore wrong, too. In fact, their argument is flawed, 
because it fails to distinguish between possibilities 
and truth values. Two truth values such as true and 
false are inconsistent with one another. In contrast, 
the possibility of A is entirely consistent with the 
possibility of not-​A. Likewise, the conjunction of 
possibly (A & B) and possibly (not-​A & not-​B) is con-
sistent. Indeed, the model theory postulates that 
the meaning of A causes B in its strong sense refers 
to this conjunction of possibilities. Its weak sense 
adds a third possibility to the conjunction:  not-​A 
& B (see Table 10.2). The mere falsity of A does 
not establish that this conjunction of three possibili-
ties is true, nor does the mere truth of B. The same 
argument applies to conditionals, if A  then B (cf. 
Johnson-​Laird & Byrne, 2002). Hence, according 
to the model theory, the meaning of A causes B in its 
weak sense, and the meaning of a basic conditional, 
if A then B, both differ from the meaning of material 
implication in logic.

Counterfactual Conditionals  
and Causation

When the facts are known, it is appropriate to 
say, for instance, eating protein caused Evelyn to lose 

weight. But, as Hume (1748/​1988, p. 115) recog-
nized, it is equally appropriate to assert a “counter-
factual” conditional:  If Evelyn hadn’t eaten protein, 
then Evelyn might not have lost weight. The appropri-
ate counterfactual depends both on the nature of 
the causal relation and on the nature of the facts. 
Suppose, in contrast, that the causal relation still 
holds but the facts are that Evelyn didn’t eat protein 
and didn’t lose weight. A  different counterfactual 
captures the causal relation:

If Evelyn had eaten protein, then Evelyn would  
have lost weight.

The meanings of counterfactuals are straight-
forward. The assertion A causes B in its weak sense 
refers to a conjunction of three possibilities (Table 
10.2), but it also means that A and not-​B is impos-
sible. Hence, given this sense and that the facts are 
A and B, the two other possibilities are counterfac-
tual, where we define a counterfactual possibility as 
a contingency that was once possible but that didn’t 
in fact happen (Byrne, 2005; Johnson-​Laird & 
Byrne, 2002).

The meaning of a counterfactual conditional 
therefore depends on three principles. First, the nega-
tions of its two clauses refer to the facts but with a 
caveat, namely, when “still” occurs in the then-​clause, 
the clause itself describes the facts. Second, its two 
clauses refer to the main counterfactual possibility. 
Third, any other counterfactual possibility depends 
on the modal auxiliary that occurs in its then-​clause, 
which has the same force as its present tense mean-
ings: would means the event necessarily occurs, and 
might and could mean the event possibly occurs. But, 
their negations differ in scope: couldn’t means that the 
event is not possible, and mightn’t means the event 

Table 10.2  The Core Meanings of the Seven Possible Causal Relations in Terms of the Conjunctions 
of Temporally Ordered Possibilities to Which They Refer

The Seven Conjunctions of Possibilities Yielding Distinct Causal Relations

     a    b
not-​a not-​b
not-​a    b

     a    b
not-​a not-​b

     a    b
     a not-​b
not-​a not-​b
not-​a    b

     a    b
     a not-​b
not-​a not-​b

     a not-​b
not-​a not-​b
not-​a    b

     a not-​b
not-​a    b

     a    b
     a not-​b
not-​a    b

A causes B Weak Strong

A allows B Weak Strong

A prevents B Weak Strong

A allows not B Weak Strong

Note: Strong interpretations correspond to unique causes, preventers, and enablers; weak interpretations allow for others.
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possibly does not occur (see Table 10.1). Other cog-
nate modals express the same meanings.

As an example, consider again the counterfac-
tual conditional: If Evelyn had eaten protein, Evelyn 
would have lost weight. The first principle determines 
the facts about Evelyn:

Didn’t eat protein	   Didn’t lose weight [facts]

The second principle determines the main coun-
terfactual possibility about her:

Ate protein	 �  Lost weight [counterfactual  
possibility]

The third principle tells us that eating protein nec-
essarily leads Evelyn to lose weight—​there is no 
alternative in that case. The only counterfactual pos-
sibility that remains is therefore that Evelyn didn’t eat 
protein but for some unknown reason nevertheless 
lost weight. A corollary for interpretation is that, as 
the preceding examples illustrate, models have to 
keep track of the status of a contingency—​as a fact, a 
possibility, a counterfactual possibility, or an impossi-
bility (Byrne, 2005; Johnson-​Laird & Byrne, 2002).

Table 10.3 puts the three principles into prac-
tice. It presents the set of counterfactuals expressing 
the seven causal relations, in their strong and weak 
senses, depending on the facts of the matter. In gen-
eral, the meaning of causal counterfactuals resists 
analysis unless one considers the possibilities to 
which they refer. The experimental evidence suggests 
that counterfactuals tend to elicit mental models of 
the facts and only the main counterfactual alterna-
tive to them (Byrne, 2005). It is tempting to iden-
tify causation and counterfactuals. But, like regular 
conditionals, counterfactuals need not express causal 
relations (e.g., If the number hadn’t been divisible by 
2 without remainder then it wouldn’t have been even).

Are There Other Components in the 
Meanings of Causal Relations?

Experiments have shown that most participants 
list as possible the deterministic cases corresponding 
to the strong meanings of causes, prevents, enables, and 
enables_not (i.e., the participants tend to minimize 
the number of possibilities to which assertions refer; 
Goldvarg & Johnson-​Laird, 2001; Johnson-​Laird 
& Goldvarg-​Steingold, 2007). Is anything more at 
stake in the meanings of causal relations, that is, any-
thing more than a conjunction of temporally ordered 
possibilities? The question concerns the meaning of 
causal assertions in everyday life as opposed to one’s 
degree of belief in them or to how one might establish 
their truth (or falsity). For the latter, observational 

evidence can help, but experimentation is the final 
arbiter because one has to determine what happens 
given the putative cause, and what happens without 
it. If a conditional expresses the correct temporal rela-
tions between physical states, then it has a potential 
causal meaning, for example:

If the rooster crows, then the sun rises.

But, an adroit experiment will show that the preced-
ing conditional is false, and hence that the rooster’s 
crowing is not the cause of sunrise.

As skeptics sometimes claim, to say that A causes 
B at a minimum refers to an additional relation that 
goes beyond a universal succession of A followed 
by B (pace Hume, 1748/​1988, p. 115). Table 10.2 
presents such a relation. When A occurs, the only 
possibility is that B occurs, and so the relation is a 
necessary one (see Kant, 1781/​1934). Other theo-
rists have proposed various additional elements of 
meaning. But, before we consider them, we need to 
clarify the nature of our argument. In the model the-
ory, the interpretation of any assertion is open to a 
process of modulation in which knowledge of mean-
ings, referents, and context can eliminate models or 
add information to them over and above those con-
veyed by literal meanings (see, e.g., Johnson-​Laird 
& Byrne, 2002). It can add, for instance, a temporal 
relation between the clauses of a conditional, such 
as if he passed the exam, then he did study hard (see, 
e.g., Juhos, Quelhas, & Johnson-​Laird, 2012). The 
case against additional elements of meaning that we 
are going to make in what follows is against their 
addition to the core meanings of temporally ordered 
possibilities (see Table 10.2). But, modulation can 
incorporate these additional elements in the process 
of interpretation. For instance, Pearl’s (2009) cen-
tral assumption about causation is encapsulated in 
this principle: Y is the cause of Z if we can change Z by 
manipulating Y. But, we can manipulate a number 
so that it is or isn’t divisible by 2 without remainder, 
and the manipulation changes whether or not the 
number is even. This condition, however, doesn’t 
cause the number to be even. It necessitates its 
evenness. So, the criterion of manipulation lumps 
together mathematical necessity and causal neces-
sity. It is also equivalent to a recursive definition in 
which “cause” is referred to in its own definition:

Y causes Z =def A manipulation of Y causes Z to change.

And recursive definitions need a condition that 
allows the recursion to bottom out, otherwise they 
lead to infinite loops (cf. Woodward, 2003). The 
model theory provides such a condition for any 
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causal relation (see Table 10.2), and it allows modu-
lation to incorporate manipulation into the inter-
pretation of causation.

Some theorists have argued that part of the 
meaning of A enables B to happen is the existence of 
another factor that, when it holds, causes the effect 
(see Sloman et al., 2009). However, the truth of an 
enabling assertion doesn’t establish the necessary 
existence of a cause, for example:

The vapor enabled an explosion to occur, but luckily 
no cause occurred, and so there wasn’t an explosion.

If part of the meaning of “enabled” was the exis-
tence of a cause, then the previous assertion would 

be self-​contradictory. Modulation, however, can 
certainly add the existence of a cause.

When a rolling billiard ball collides with another 
stationary one, observers see the physical con-
tact and perceive that one ball caused the other to 
move (Michotte, 1946/​1963; White, Chapter  14 
in this volume). Some theorists have accordingly 
argued that physical contact or contiguity is part of 
the meaning of causal assertions (e.g., Geminiani, 
Carassa, & Bara, 1996). But, consider these claims:

Lax monetary policy enabled the explosion in credit 
to occur in the early 2000s.
The explosion in credit caused the 2008 financial crash.

Table 10.3  The Set of Counterfactual Conditionals Expressing Causal Relations Depending on the Facts 
of the Matter

The Facts

Causal Relation Strength Meaning not-​a not-​b not-​a b a b a not-​b

A causes B Weak      a    b
not-​a    b
not-​a not-​b

If A had 
happened, then 
B would have 
happened.

If A had 
happened, then 
B still would 
have happened.

If A hadn’t 
happened, then 
B mightn’t have 
happened.

The causal 
relation rules 
out this fact.

Strong      a    b
not-​a not-​b

If A had 
happened, then 
B would have 
happened.

The causal 
relation rules 
out this fact.

If A hadn’t 
happened, then 
B couldn’t have 
happened.

The causal 
relation rules 
out this fact.

A prevents B Weak      a not-​b
not-​a    b
not-​a not-​b

If A had 
happened, then 
B still couldn’t 
have happened.

If A had 
happened, then 
B couldn’t have 
happened.

The causal 
relation rules 
out this fact.

If A hadn’t 
happened, then 
B still mightn’t 
have happened.

Strong      a not-​b
not-​a    b

The causal 
relation rules 
out this fact.

If A had 
happened, then 
B couldn’t have 
happened.

The causal 
relation rules 
out this fact.

If A hadn’t 
happened, then 
B would have 
happened.

A allows B Weak      a    b
     a not-​b
not-​a    b
not-​a not-​b

If A had 
happened, then 
B might have 
happened.

If A had 
happened, then 
B still might 
have happened.

If A hadn’t 
happened, then 
B still might 
have happened.

If A hadn’t 
happened, then 
B still mightn’t 
have happened.

Strong      a    b
     a not-​b
not-​a not-​b

If A had 
happened, then 
B might have 
happened.

The causal 
relation rules 
out this fact.

If A hadn’t 
happened, then 
B couldn’t have 
happened.

If A hadn’t 
happened, then 
B couldn’t have 
happened.

A allows not-​B. Strong      a    b
     a not-​b
not-​a    b

The causal 
relation rules 
out this fact.

If A had 
happened, then 
B still might 
have happened.

If A hadn’t 
happened, then 
B still would 
have happened.

If A hadn’t 
happened, then 
B would have 
happened.

Note: From left to right, the columns show the causal relation, its interpretation as weak or strong, the possibilities to which it refers, and the 
four sorts of fact. Each entry presents an appropriate counterfactual conditional for the causal relation and the facts; the other possibilities in 
the causal relation become counterfactual given the facts. The weak interpretation of A allows not-​B is the same as for A allows B.
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It would be supererogatory even to try to establish 
a chain of physical contacts here. Conversely, the 
meaning of causation hardly legislates for the falsity 
of action at a distance: the meaning of cause doesn’t 
show that Newton’s physics is false. Hence, the 
meanings of elements interrelated by causal claims 
can modulate interpretation to add physical contact.

Reasoners know that the wind exerts a force that 
can blow trees down, that electricity has the power 
to turn an engine, that workers (or robots) on a 
production belt are a means for making automo-
biles, that the mechanism in a radio converts elec-
tromagnetic waves into sounds, that explanatory 
principles account for inflation, and that scientific 
laws underlie the claim that the moon causes tides. 
Theorists have accordingly invoked as part of causal 
meanings:  force (Wolff and Thorstad, Chapter  9 
in this volume), power (Cheng & Lu, Chapter 5 
in this volume), means of production (Harré & 
Madden, 1975), mechanisms and manipulations 
(Pearl, 2009), explanatory principles (Hart & 
Honoré, 1985), and scientific laws. Some of these 
factors, as Hume (1739/​1978) argued, are impos-
sible to define without referring to causation itself. 
Yet, a potent reason to infer a causal relation is 
relevant knowledge of any of these factors. If you 
are explaining the mechanism of a sewing machine 
to a child who persists in asking how?, there will 
come a point—​perhaps after you’ve explained that 
a catch on the rotating bobbin pulls a loop of the 
upper thread around it—​when you can no longer 
provide a mechanism. A mechanism is a hierarchy 
of causal relations (Miyake, 1986), and each rela-
tion may have its own underlying mechanism, but 
the recursion has to bottom out, or otherwise there 
is an infinite regress. There must be at least one 
causal relation for which there is no mechanism. 
The meaning of your final causal claim about the 
bobbin therefore need not refer to any mechanism. 
It follows that the core meanings of causal asser-
tions need not refer to mechanisms.

In sum, knowledge of any of the factors that 
theorists invoke—​force, power, means of produc-
tion, interventions, explanatory principles, and 
mechanisms—​can modulate the models based on 
core causal meanings, which do not embody them 
(see Khemlani, Barbey, & Johnson-​Laird, 2014, 
for an integration of force and the model theory). 
Hence, the various putative elements of meaning 
beyond those of temporally ordered possibilities can 
play a role in the interpretation of causal claims, 
but they are not part of the core meanings of such 
claims, on pain of circularity or infinite regress.

Mental Models of Causal Assertions
The model theory distinguishes between the 

meanings of assertions, and the mental models of 
the possibilities to which these meanings refer. In 
the theory’s computational implementation, the 
parsing of a sentence yields a representation of its 
meaning, and this representation is used to build or 
to update the mental models of the situation under 
description (Khemlani & Johnson-​Laird, 2012). 
Each mental model represents a distinct possibil-
ity (i.e., it represents what is common to the differ-
ent ways in which it may occur). The more models 
that individuals have to represent, the greater the 
load on working memory, and the more difficult 
reasoning becomes—​a result that is highly robust 
and that, as far as we know, has no counterexamples 
in the experimental literature (see, e.g., Johnson-​
Laird, 2006). Indeed, once reasoners have to deal 
with more than one or two mental models, their 
task becomes very difficult, as experiments have 
shown (e.g., Bauer & Johnson-​Laird, 1993; García-​
Madruga et al., 2001).

Table 10.2, which we presented earlier, shows 
the full set of possibilities to which the seven causal 
relations refer. In contrast, mental models are based 
on a principle of truth. They represent what is 
true in a possibility rather than what is false. The 
assertion

A will cause B to occur

has only two mental models:

a	    b
   …

The first mental model represents the possibility in 
which A occurs no later than B, and the second mental 
model has no explicit content, as denoted by the ellip-
sis, but stands in for other possibilities in which A does 
not occur. Hence, mental models represent the salient 
possibility in which the antecedent event and its causal 
consequence both hold. An enabling assertion

A will enable B to occur

has exactly the same mental models as the preceding 
ones. And a preventive assertion:

A will prevent B from occurring

has the mental models:

a    not-​b
   …

where not-​b denotes B not occurring. The assertion 
A will enable B not to occur has these mental models 
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as well. Of course, mental models are not letters or 
words, which we use here for convenience. They 
can be static spatiotemporal representations of the 
world, or kinematic simulations in which events 
follow one after the other (Khemlani, Mackiewicz, 
Bucciarelli, & Johnson-​Laird, 2013). Yet, just two 
sorts of sets of mental models represent all seven 
causal relations in Table 10.2, because mental mod-
els, which embody the principle of truth, do not 
distinguish between causes and enables, or between 
prevents and enables not to occur, in either their 
strong or weak senses.

For easy tasks, such as listing the possibilities to 
which an assertion refers, individuals can use the 
meaning of an assertion to flesh out mental models 
into fully explicit models of all the possibilities to 
which the assertion refers (as in Table 10.2). Even 
so, individuals begin their lists with the possibilities 
corresponding to mental models (Johnson-​Laird & 
Goldvarg-​Steingold, 2007). Only if they construct 
fully explicit models can they distinguish between 
causal and enabling assertions. A common miscon-
ception of the theory is that fully explicit models 
are used in all inferential tasks (pace Kuhnmünch & 
Beller, 2005). In fact, mental models are the foun-
dation of intuitions and most inferences.

Deductions from Causal Relations
Reasoning starts with perceptions, descriptions, 

or memories. We refer to “the premises” in order 
to include any of these sources, and we distinguish 
among three principal sorts of reasoning: the deduc-
tion of valid conclusions; the induction of conclu-
sions, such as generalizations that go beyond the given 
information; and a special sort of induction, known 
as abduction, which yields explanations. In what fol-
lows, we outline the model theory for each of these 
sorts of causal inference, starting with deduction.

Naïve individuals tend to reason based on men-
tal models, and to draw conclusions that hold in the 
set of mental models of the premises. In logic, an 
inference is valid if the truth of a conclusion follows 
from the truth of the premises (Jeffrey, 1981). But, 
in the model theory, for a premise to imply that a 
conclusion is true, the premise has to imply each of 
the possibilities to which the conclusion refers. In 
logic, inferences of this sort are valid:

A.
Therefore, A or B, or both

because the disjunction is true if one or both of its 
clauses are true. But, the inference is unacceptable 
according to the model theory, because the premise 

doesn’t imply the truth of one of the possibilities to 
which the conclusion refers: not-​A and B. Analogous 
principles hold for inferring probabilities (see, e.g., 
Khemlani, Lotstein, & Johnson-​Laird, 2015).

Individuals are able to deduce the consequences 
of causal chains. In one experiment (Goldvarg & 
Johnson-​Laird, 2001), the first premise interrelated 
two events, A and B, using a causal relation, and the 
second premise likewise interrelated B and C. The 
participants’ task was to say what, if anything, fol-
lowed from each pair of premises. The experiment 
examined all 16 possible pairs of relations based on 
causes, prevents, allows, and allows_not. The contents 
of the problems were abstract entities familiar to 
the participants (e.g., obedience causes motivation 
to increase), but which could plausibly occur in any 
sort of problem. One sort was of the form

A causes B.
B prevents C.
What, if anything, follows?

The premises yield the mental models, as shown in a 
computer program implementing the theory:

a    b    not-​c
     …

and, as the mental models predict, all participants 
in the experiment concluded that A prevents C. The 
same conclusion follows from fully explicit models 
representing all the possibilities to which the prem-
ises refer, though reasoners are most unlikely to con-
sider all of them. In contrast, these premises

A prevents B.
B causes C.

yield the mental models:

a    not-​b
b        c

…

All but one of the participants drew the conclu-
sion that these mental models predict A prevents C. 
But, the six fully explicit models of these premises 
show that all four contingencies between a and c, 
and their respective negations, are possible. Hence, 
all that follows is that A allows C and A allows_not 
C. In general, the results bore out the predictions 
based on mental models of the premises, rather than 
fully explicit models (see Barbey & Wolff, 2007, 
for a replication). To what extent performance also 
reflects an “atmosphere” effect in which participants 
draw conclusions biased by the verbs in the premises 
calls for further research (see Sloman et al., 2009).
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A crucial test for mental models is the occurrence 
of so-​called “illusory” inferences. These are fallacious 
inferences that occur because mental models embody 
the principle of truth, and so they do not represent 
what is false. Illusions occur in all the domains of 
reasoning for which they have been tested, including 
reasoning based on disjunctions and conditionals, 
probabilistic reasoning, modal reasoning, reasoning 
about consistency, and quantified reasoning (for a 
review, see Johnson-​Laird & Khemlani, 2013). They 
are a crucial test because no other theory of reason-
ing predicts them. Here is a typical instance of an 
illusory inference in causal reasoning:

One of these assertions is true and one of them is 
false:

Marrying Pat will cause Viv to relax.
Not marrying Pat will cause Viv to relax.

The following assertion is definitely true:
Viv will marry Pat.

Will Viv relax?

The rubric to the problem is equivalent to an exclu-
sive disjunction of the first two premises, and so, as 
the program shows, they yield the following mental 
models of Viv’s state:

marry  relax  (first premise is true)
not-​marry  relax  (second premise is true)

The third assertion eliminates the second model, and 
so it seems that Viv will relax. But, when one premise 
is true, the other premise is false. If the first premise 
is false, then Viv won’t relax even though Viv mar-
ries Pat. If the second premise is false, then Viv won’t 
relax even though Viv doesn’t marry Pat. Either way, 
on a weak interpretation of cause, Viv won’t relax. On 
a strong interpretation of cause, the premises imply 
nothing whatsoever about whether Viv will relax. It is 
therefore an illusion that Viv will relax. Nearly every-
one in an experiment made illusory inferences, but 
they made correct inferences from control premises 
(Goldvarg & Johnson-​Laird, 2001).

Causes Versus Enabling Conditions
Consider the first inference at the start of the chapter:

Eating protein will cause Evelyn to gain weight.
Evelyn will eat protein.
Will Evelyn gain weight?

The mental models of Evelyn’s state from the causal 
premise are as follows:

Eating protein      Gain weight
             …

The categorical premise that Evelyn will eat protein 
eliminates the second implicit model, and so it fol-
lows that Evelyn will gain weight. Only 2% of par-
ticipants failed to draw this conclusion. The same 
conclusion follows from mental models when the 
first premise states an enabling condition:

Eating protein will allow Evelyn to gain weight.

Only those individuals who flesh out their models 
of the enabling assertion to represent the alternative 
possibility:

Eating protein      Not gain weight

will infer that Evelyn may or may not gain weight. 
Many people (32%), but not all, are able to envis-
age this alternative possibility in which Evelyn eats 
protein but does not gain weight (Goldvarg & 
Johnson-​Laird, 2001). A similar study used “when” 
instead of “if ” (e.g., when magnetism occurs, mag-
netism causes ionization), and yielded similar results 
(Sloman et al., 2009).

Readers should try to identify the cause and the 
enabler in the following scenario:

If you take the drug Coldgon, then, given that you 
stay in bed, you will recover from the common cold 
in one day. However, if you don’t stay in bed, then 
you won’t recover from the common cold in one day, 
even if you take this drug.

Reasoners are most unlikely to envisage all the pos-
sibilities to which this description refers, but they 
should be able to think of the most salient ones, 
which are represented in mental models:

Take drug      stay in bed       recover
Take drug  not stay in bed  not recover
              …

Reasoners should therefore realize that staying in 
bed is the catalyst that enables the drug to cause the 
one-​day cure.

An experiment compared scenarios such as the 
preceding with those in which the causal roles were 
swapped around, for example:

If you stay in bed, then given that you take the drug 
Coldgon, you will recover from the common cold in 
one day. However, if you don’t take this drug, then 
you won’t recover from the common cold in one day, 
even if you stay in bed.

Eight scenarios ranged over various domains—​
physical, physiological, mechanical, socioeconomic, 
and psychological—​and counterbalanced the order 
of mention of cause and enabler. The participants 
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read just one version of each scenario. They identi-
fied the predicted causes and enablers on 85% of 
trials, and each of them did so more often than not, 
and each scenario bore out the difference (Goldvarg 
& Johnson-​Laird, 2001). Cheng and Novick 
(1991) showed that their participants could distin-
guish between causes and enablers in similar sorts 
of everyday scenarios, but, for reasons pertaining to 
their probabilistic theory, their scenarios described 
enabling conditions that were constant throughout 
the events in the scenario, such as the presence of 
gravity, whereas causes were not constant, such as a 
boy pushing a girl. But, the present study swapped 
the roles of causes and enablers from one scenario 
to another, and neither was constant. In the preced-
ing example, a person might or might not stay in 
bed, and might or might not take Coldgon. Hence, 
constancy is not crucial for individuals to identify 
an enabler, and inconstancy is not crucial for them 
to identify a cause.

Linguistic cues, such as “if ” versus “given that,” 
might have signaled the distinction between causes 
and enablers (Kuhnmünch & Beller, 2005). But, 
when these cues were rigorously counterbalanced or 
eliminated altogether, individuals still reliably dis-
tinguished between causes and enablers (see Frosch 
& Byrne, 2006). Likewise, when scenarios con-
tained only a cause, or only an enabler, and used the 
same linguistic cue to introduce both, individuals 
still reliably identified them (Frosch, Johnson-​Laird, 
& Cowley, 2007). This follow-​up study contrasted 
causes and enablers within six scenarios about 
wrongdoing, such as:

Mary threw a lighted cigarette into a bush. Just 
as the cigarette was going out, Laura deliberately 
threw petrol on it. The resulting fire burnt down her 
neighbor’s house.

The participants again distinguished between those 
individuals whose actions caused criminal events, 
such as Laura, and those who enabled them to occur, 
such as Mary. Moreover, they judged causers to be 
more responsible than enablers, liable for longer 
prison sentences, and liable to pay greater damages. 
It is regrettable that neither English nor American 
law makes the distinction between causers and 
enablers (Johnson-​Laird, 1999)—​a legacy of Mill’s 
(1874) views, as embodied in judicial theory (see 
Hart & Honoré, 1985; Lagnado & Gerstenberg, 
Chapter 29 in this volume).

According to the model theory, a single instance 
of A and not-​B refutes A causes B in either its strong 
or its weak sense (see Table 10.1). The refutation 

of an enabling relation is more problematic. In its 
strong sense, it is necessary to show that the effect 
can occur in the absence of the enabler; in its weak 
sense, only temporal order is at issue. A further diffi-
culty is that both causes and enablers have the same 
mental models. Frosch and Johnson-​Laird (2011) 
invited their participants to select which sort of evi-
dence, A and not-​B or not-​A and B, provides more 
decisive evidence against each of eight causal and 
eight enabling assertions, such as

Regular exercise of this sort causes a person to build 
muscle.

and:

Regular exercise of this sort enables a person to build 
muscle.

Every single participant chose A and not-​B more often 
than not-​A and B, but, as the theory predicts, they 
chose not-​A and B reliably more often as a refutation 
for enables (25% of occasions) than for causes (10%), 
even though it refutes the strong meaning of causes 
too. They had an analogous bias in judging whether a 
single observation sufficed to refute a claim.

The general conclusion from these studies is that 
individuals distinguish between causes and enabling 
conditions in deductions, in inferring the role of 
actors in scenarios, and in assessing refutations of 
causal claims. In each of these cases, the distinc-
tion follows from the model theory’s deterministic 
account of the meanings of causes and enables (see 
Table 10.2). It is not at all clear that theories that 
do not base the distinction between these relations 
on different sets of possibilities can explain these 
results (cf. Ali et  al., 2011; Sloman et  al., 2009). 
The model theory makes further predictions about 
ternary causal relations, such as:

Staying in bed enables Coldgon to cause you to 
recover in a day.

Ternary relations of the sort A enables B to cause C 
are distinct from a conjunction of A enables C and 
B causes C, and so challenge the representational 
power of probabilistic networks, whose binary links 
have no natural way to represent them.

Inductions of Causal Relations
Learning is often a matter of inducing causal rela-

tions from observations of the relative frequencies in 
the covariations of contingencies (see, e.g., Perales 
& Shanks, 2007; Lu et al., 2008; and see Perales, 
Catena, Cándido, & Maldonado, Chapter 3 in this 
volume). Conditioning and reinforcement learning 
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also concern causation (see Le Pelley, Griffiths, & 
Beesley, Chapter  2 in this volume). Probabilistic 
inductions at one level can feed into those at a higher 
or more abstract level in a hierarchical Bayesian net-
work (e.g., Tenenbaum, Griffiths, & Kemp, 2006). 
Once the network is established, it can assign values 
to conditional probabilities that interrelate variables 
at one level or another (see Griffiths, Chapter 7 in 
this volume). Yet, causal relations are deterministic, 
and it is our ignorance and uncertainty that force us 
to treat them as probabilistic (Pearl, 2009, Ch. 1).

Inductive reasoning can yield deterministic 
causal relations. For instance, Robert Boyle carried 
out experiments in which he varied the pressure of 
a gas, such as air, and discovered that the pressure 
of a given quantity of gas at a fixed temperature is 
inversely proportional to the volume it occupies. 
This well-​known law is deterministic, and so it is 
ironic that its ultimate explanation is the statistical 
kinetic theory of gases. Inductions of causal rela-
tions are also the intellectual backbone of medi-
cine (see Lombrozo & Vasilyeva, Chapter  22 in 
this volume). A  typical example is the discovery 
of the pathology and communication of cholera. 
When it first arrived in Britain in the nineteenth 
century, doctors induced that they were dealing 
with a single disease with a single pathology, not a 
set of alternative diseases, because of its common 
symptoms and prognosis. The induction reflected 
the heuristic that similar causes have similar effects 
(Hume, 1748/​1988, p. 80). How the disease was 
communicated from one person to another was 
more mysterious. The arrival of an infected person 
in a particular place often led to an outbreak there. 
Doctors induced that the illness was either infec-
tious or contagious. Sometimes, however, the dis-
ease could leap distances of several miles. Doctors 
induced that it could be conveyed through the 
air. The prevalence of cholera in slums with their 
stinking air seemed to corroborate this “miasmal” 
hypothesis. The doctor who discovered the true 
mode of the disease’s communication, John Snow, 
was an expert on anesthesia, and his familiarity 
with Boyle’s law and the other gas laws enabled 
him to infer the impossibility of the miasmal 
account (Johnson-​Laird, 2006, Ch. 27). His bias 
toward parsimony led him to induce a common 
cause. Infected individuals could transmit some 
sort of particle of the disease, even perhaps an ani-
malcule, to others who were in contact with their 
fecal matter. If these particles got into the water 
supply, they could then be transmitted over larger 
distances. Snow constructed a causal chain that 

explained both the pathology of the disease and 
its communication. And he made many observa-
tions that corroborated the idea. He then turned 
to a series of brilliant natural experiments. He 
found streets in London supplied with water from 
two companies, one that drew its water from the 
Thames downstream from the main sewer outflows 
and one that drew it upstream from them. As he 
predicted, 20 times more deaths from the disease 
occurred in those households supplied from the 
downstream company than in those supplied from 
the upstream company. Frequencies accordingly 
entered into his tests of the theory, but not into 
its mechanism.

As the preceding account suggests, inductions 
are easy. There was no shortage of hypotheses about 
what caused cholera to spread from person to per-
son: infection, contagion, miasma. Knowledge can 
lead to an induction from a single observation—​a 
claim supported by considerable evidence (see, e.g., 
Johnson-​Laird, 2006, Ch. 13; White, 2014). One 
source of such inferences is knowledge of a poten-
tial mechanism (see Johnson & Ahn, Chapter 8 in 
this volume), which itself may take the form of a 
model—​a point that we elucidate later. Likewise, 
“magical’’ thinking, which underlies common 
beliefs in all societies, is a result of induction and 
the Humean heuristic that similar causes have simi-
lar effects (Johnson-​Laird, 2006, Ch. 5). The hard 
task is to use observation and experiment to elimi-
nate erroneous inductions. It is simple to refute the 
strong claim:

The rooster’s crowing causes the sun to rise.

The observation that the sun also rises when the 
rooster does not crow suffices. The weaker claim 
that the rooster’s crowing suffices for the sun to 
rise but other putative causes exist too, calls for an 
experiment in which the rooster is made to crow, 
say, at midnight. General causal claims, however, are 
notoriously difficult to refute. That is the business of 
experimental sciences.

At the center of the model theory is the idea 
that the process of interpretation builds models. 
In induction, modulation increases information. 
One way in which it does so is to add knowledge 
to a model. For instance, it sets up causal relations 
between events in the model in so-​called bridging 
inferences (Clark, 1975), that is, inferences that 
build a bridge from an assertion to its appropriate 
antecedent. An experiment showed the potency 
of such inferences (Khemlani & Johnson-​Laird, 
2015). In one condition, the experiment presented 
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sets of assertions for which the participants could 
induce a causal chain, for example:

David put a book on the shelf.
The shelf collapsed.
The vase broke.

In a control condition, the experiment presented 
sets of assertions for which the participants could 
not readily infer a causal chain, for example:

Robert heard a creak in the hall closet.
The faucet dripped.
The lawn sprinklers started.

When a subsequent assertion contradicted the first 
assertion in a set, the consequences were quite dif-
ferent between the two conditions. In the causal 
condition, the contradictory assertion:

David didn’t put a book on the shelf

led to a decline in the participants’ ratings of the 
strength of their beliefs in each of the subsequent 
assertions: only 30% of them now believed that the 
vase broke. In the control condition, the contradic-
tory assertion:

Robert did not hear a creak in the hall closet

had no reliable effect on the participants’ strength of 
belief in the subsequent assertions. All of them con-
tinued to believe that the lawn sprinklers started. 
This difference in the propagation of doubt is attrib-
utable to the causal interpretation of the first sort 
of scenario, and the near impossibility of a causal 
interpretation for the second scenario.

The model theory assumes that knowledge and 
beliefs can themselves be represented in models, 
and so the essence of modulation, which occurs in 
bridging inferences, is to make a conjunction of two 
sets of models:  one set represents the possibilities 
to which assertions refer, and the other set repre-
sents possibilities in knowledge. A simple example 
of the process occurs when knowledge modulates 
the core interpretation of conditionals by block-
ing the construction of models (see Johnson-​Laird 
& Byrne, 2002). A  slightly different case is likely 
to have occurred in Snow’s thinking about cholera. 
The received view was that cholera was transmitted 
in various ways—​by infection or contagion when 
there was physical contact with a victim or by a 
miasma in other cases:

Physical contact      contagion  transmission
Physical contact      infection    transmission
No physical contact  miasma    transmission

Snow’s knowledge of the gas laws yielded two nega-
tive cases:

Physical contact      infection  no transmission
No physical contact  miasma    no transmission

In deductive reasoning, the conjunction of two 
inconsistent models, such as the models in these 
sets concerning infection and miasma, results in the 
empty model (akin to the empty set), which repre-
sents contradictions. But, when one model is based 
on knowledge, it takes precedence over a model 
based on premises (Johnson-​Laird, Girotto, & 
Legrenzi, 2004). Precedence in the conjunction of 
the two sets of models above yields models in which 
no transmission occurs by infection or miasma, and 
only one mechanism transmits the disease:

Physical contact contagion transmission

Snow knew, however, that the disease could also 
be transmitted over distances. Induction could 
not yield its mode of transmission. An explanation 
called for a more powerful sort of inference, abduc-
tion, to which we know turn. In Snow’s case, it led 
to an explanation based on the transmission of “par-
ticles” of the disease through the water supply. This 
idea was never accepted in his lifetime, but he had 
inferred the disease’s mode of transmission without 
any knowledge of germs, and his “particles” were 
later identified as the bacterium Vibrio cholerae.

Abductions of Causal Explanations
A fundamental aspect of human reasoning is 

abduction: the creation of explanations. Like induc-
tions, they increase information, but unlike induc-
tions, they also introduce new concepts that are not 
part of their premises. Abduction, in turn, depends 
on understanding, and according to the model 
theory, if you understand, say, inflation, the way a 
computer works, DNA, or a divorce, then you have 
a mental model of them. It may be rich in detail 
or simple—​much as a clock functions as a model 
of the earth’s rotation (Johnson-​Laird, 1983, p. 2). 
Abductions usually concern causation. Investigators 
have studied them in applied domains, such as med-
ical diagnosis (see Meder & Mayrhofer, Chapter 23 
in this volume). To illustrate the role of models in 
abductions, we consider two cases: the resolution of 
causal inconsistencies and the reverse engineering of 
electrical circuits.

Explanations of Inconsistencies
When you are surprised in daily life, something 

has usually happened contrary to your beliefs or their 
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consequences. You believe that a friend has gone to 
fetch the car to pick you up, and that if so, your 
friend should be back in no more than five minutes. 
When your friend fails to return within 20 minutes, 
this fact refutes the consequences of your beliefs. 
A  large literature exists in philosophy and artificial 
intelligence on how you then ought to modify or 
withdraw your conclusion and revise your beliefs—​a 
process that is known as “non-​monotonic” or “defea-
sible” reasoning (see, e.g., Brewka, Dix, & Konolige, 
1997). What is more important in daily life, how-
ever, is to explain the origins of the inconsistency—​
why your friend hasn’t returned—​because such an 
explanation is vital to your decision about what to 
do. But, where do explanations come from?

The answer has to be from knowledge (see 
Lombrozo and Vasilyeva, Chapter  22 in this vol-
ume). Some explanations are recalled, but many are 
novel:  they are created from knowledge of causal 
relations, that is, models in long-​term memory of 
what causes, enables, and prevents various events. 
This knowledge can be used to construct a simula-
tion of a causal chain. A computer program imple-
ments the process (see Johnson-​Laird et al., 2004). 
To understand it, readers should try to answer the 
following question:

If someone pulled the trigger, then the pistol fired.
Someone pulled the trigger. But the pistol did not fire.
Why not?

The program constructs a model of the possibility 
described in the first two assertions:

trigger pulled      pistol fired

But, as it detects, the third assertion is inconsistent 
with this model. The conditional expresses a useful 
idealization, and the program builds a model of the 
facts, and its counterfactual possibilities (cf. Pearl, 
2009, Ch. 7):

trigger pulled  not(pistol fires)  [the facts]
trigger pulled       pistol fires       [�counterfactual 

possibilities]
…

The program has a knowledge base consisting of 
fully explicit models of several ways in which a pis-
tol may fail to fire (i.e., preventive conditions such 
as something jammed the pistol, there were no bullets 
in the pistol, its safety catch was on). The model of the 
preceding facts triggers one such model, which the 
program chooses arbitrarily if the evidence leaves 

open more than one option, and the model takes 
precedence over the facts to create a possibility, for 
example:

not(bullets in pistol)  trigger pulled  not(pistol fires)

The new proposition, not(bullets in pistol), elicits a 
cause from another set of models in the knowledge 
base, for example, if a person empties the bullets from 
the pistol, then there are no bullets in the pistol. In this 
way, the program constructs a novel causal chain. 
The resulting possibility explains the inconsistency: a 
person intervened to empty the pistol of bullets. And 
the counterfactual possibilities yield the claim:

If the person hadn’t emptied the pistol, then it would 
have had bullets, and it would have fired.

The fact that the pistol did not fire has been used 
to create an explanation from knowledge, which 
in turn transforms the generalization into a coun-
terfactual claim. Intervention is sometimes said to 
demand its own logic (Sloman, 2005, p. 82; see also 
Glymour, Spirtes, & Scheines, 2000; Pearl, 2000), 
but the standard machinery of modulation copes 
with precedence given to models based on knowl-
edge in case of inconsistencies (Johnson-​Laird, 
2006, p.  313). This same machinery handles the 
“non-​monotonic” withdrawal of conclusions and 
modification of beliefs.

The theory predicts that explanations consist-
ing of a causal chain, such as a cause and effect, 
should be highly plausible. They should be rated 
as more probable than explanations consisting of 
the cause alone, or the effect alone. An experiment 
corroborated this prediction in a study of 20 differ-
ent inconsistent scenarios (see Johnson-​Laird et al., 
2004). The participants rated the probability of var-
ious putative explanations, and they tended to rank 
the cause-​and-​effect explanations as the most proba-
ble. Hence, individuals do not always accommodate 
a new fact with a minimal change to their existing 
beliefs (see also Walsh & Johnson-​Laird, 2009). The 
acceptance of a conjunction of a cause and effect 
calls for a greater change than the acceptance of just 
the cause or the effect. Another study showed that 
individuals also rate explanations as more probable 
than minimal revisions to either the conditional 
or the categorical premise to restore consistency 
(Khemlani & Johnson-​Laird, 2011). Contrary to a 
common view, which William James (1907, p. 59) 
first propounded, the most plausible explanation is 
not always minimal.
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Figure 10.1 A diagram of the two different positions of a switch 
making or breaking two alternative circuits. 

Causal Abduction and Reverse Engineering
The lighting in the halls of many houses has 

an ingenious causal control, using a switch on the 
ground floor and a switch on the upper floor. If 
the lights are on, either switch can turn them off; 
if the lights are off, either switch can turn them on. 
The reader should jot down a diagram of the wiring 
required for this happy arrangement. The problem 
is an instance of “reverse engineering”: to abduce a 
causal mechanism underlying a system of a known 
functionality. A study of the reverse engineering of 
such circuits revealed a useful distinction between 
two levels of knowledge—​global and local (Lee & 
Johnson-​Laird, 2013). A  simple switch closes to 
make a circuit and opens to break the circuit, but a 
more complicated switch is needed for the lighting 
problem. It has two positions, and in one position it 
closes one circuit, and in the other position it both 
breaks this circuit and closes a separate circuit. It 
can also be used merely to make or break a single 
circuit. Figure 10.1 is a diagram showing the two 
positions of such a switch.

An experimental study examined naïve indi-
viduals’ ability to reverse-​engineer three sorts of 
circuits containing two switches: a circuit in which 

the light comes on only when both switches are on 
(a conjunction), a circuit in which the light comes 
on when one or both switches are on (an inclusive 
disjunction), and the hall circuit in which the light 
comes on when one switch or else the other is on 
(an exclusive disjunction). Each problem was pre-
sented in a table showing the four possible joint 
positions of the two switches and whether the light 
was on or off in each case. The participants knew 
nothing about wiring circuits in series or in parallel, 
but the experimenter described how the switch in 
Figure 10.1 worked, and explained that electricity 
“flows” when a circuit is completed from one termi-
nal on a battery (or power source) to the other. The 
task was to design correct circuits for the three sorts 
of problem in which, as the participants knew, there 
was already one direct connection from the power 
to the light.

Figure 10.2 shows simple solutions for the 
three circuits. The experimenter video-​recorded 
how people wired up actual switches, and in other 
experiments how they drew a succession of circuit 
diagrams to try to solve a problem, or else diagrams 
of pipes and faucets for three isomorphic problems 
about the flow of water to turn a turbine. Most 
participants focused either on getting the circuit to 
deliver one correct output at a time (i.e., a single 
causal possibility), taking into account the posi-
tions of both switches, but a few tried to get one 
switch at a time to work correctly. The difficulty 
of reverse engineering should depend on the num-
ber of possible configurations, determined by the 
number of variable components (the switches), the 
number of their settings that yield positive outputs 
(the light comes on), and the interdependence of 
the components in controlling the outputs. Only 
the exclusive disjunction depends on the joint posi-
tions of the two switches both to turn the light on 
and to turn it off. The results showed that both 
the number of settings with positive outcomes 

a and b a or b a or else b

Figure 10.2 Minimal circuits for a and b, a or b, and a or else b. The rectangle and the circle represent the battery and the bulb, 
respectively, and each black dot represents a terminal of a switch of the sort shown in Figure 10.1. The light is on in the circuits shown 
for and and or, but off in the circuit for or else. 
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and interdependence increased the difficulty of 
the task, and so conjunctions were easier than dis-
junctions, which in turn were easier than exclusive 
disjunctions.

A computer program implementing abduction 
solves the problems. It explores models of the cir-
cuits by making arbitrary wirings under the con-
trol of local or global knowledge, or both (see Lee 
& Johnson-​Laird, 2013). The program has access 
to five local constraints, which govern individual 
components in the model: a single wire should not 
connect a terminal on a switch or light to itself or 
to any other terminal on the same component, it 
should not be duplicated or be the converse of an 
existing wire, and it should not connect the power 
directly to the light (because of the pre-​existing con-
nection between them). The program also had access 
to six global constraints, which govern the model as 
a whole:  the circuit should yield the given output 
for each switch position, it should contain at least 
six wires, it should connect the battery to at least 
one switch, it should connect the light to at least 
one switch, and each switch should have a wire on 
its single terminal and another wire on at least one 
of its double terminals. Table 10.4 shows the results 
of 20,000 computer simulations in each of several 
conditions depending on the constraints governing 
its performance. As it shows, global constraints are 
more efficient than local constraints, but the two 
combined increase performance to a level compa-
rable to that of the human participants. Like them, 
the program almost always fails with an exclusive 
disjunction. Yet, in a rare instance, it did discover 
a novel circuit for the exclusive disjunction, which 
Figure 10.3 presents, and which is a two-​dimensional 
solution unlike the one in Figure 10.2 in which one 
wire crosses over another.

The program uses abduction to produce circuits, 
and deduction to test their causal consequences. 
This procedure is common in the creation of 

explanations. Reasoners also used both abduction 
and deduction to create informal algorithms for 
rearranging the order of cars in a train on a track 
that included a siding (Khemlani et al., 2013).

Conclusions
The theory of mental models accounts for the 

meaning of causal relations, their mental represen-
tation, and reasoning from them. It proposes mean-
ings that are deterministic. A causes B means that 
given A the occurrence of B is necessary; A allows B 
means that given A the occurrence of B is possible; 
and A prevents B means that given A the occurrence 
of B is impossible. If these relations were probabi-
listic, then necessity would tolerate exceptions and 
be equivalent to possibility, and causes would be 
equivalent to enables. The consilience of evidence 
corroborates deterministic meanings. For instance, 
the inference at the head of this chapter:

Eating protein will cause Evelyn to gain weight.
Evelyn will eat protein.
Will Evelyn gain weight?

elicited an almost unanimous response of “yes,” 
which is incompatible with a probabilistic interpre-
tation of causation. Likewise, other studies, which 
we have described in this chapter, bore out deter-
ministic predictions (e.g., individuals treat a single 

End

Start

Figure 10.3 A novel two-​dimensional circuit for a or else b that 
the computer program discovered. Start corresponds to the 
battery, and End to the bulb, with their other two terminals 
connected directly. Either position in which one switch is up 
and the other is down causes the current to flow. 

Table 10.4  Mean Number of Times in 20,000 Trials in Which the 
Program Reverse Engineered and, or, and or else Switch Circuits, 
Depending on the Constraints on Its Generative Process

Type of Problem Local 
Constraints

Global 
Constraints

Local and Global 
Constraints

a and b 41 3316 4881

a or b, or both 95 619 1359

a or else b, but  
not both

  0 1 6

Source: Based on Lee & Johnson-​Laird (2013).
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counterexample as refuting causation). Of course, 
causal claims can be explicitly probabilistic, as in 
this example from Suppes (1970, p. 7):

Due to your own laziness, you will in all likelihood 
fail this course.

Likewise, generic assertions, whether they are about 
causes:

Asbestos causes mesothelioma

or not:

Asbestos is in ceiling tiles

can tolerate exceptions (Khemlani, Barbey, & 
Johnson-​Laird, 2014). But, just as inferences dif-
fer between conditionals with and without proba-
bilistic qualifications (Goodwin, 2014), they are 
likely to do so for causal relations. Skeptics may 
say that fully explicit models of real causal relations 
should contain myriad hidden variables (preventers, 
enablers, alternative causes) in complex structures, 
and so they ought to be much more complex than 
the models in this chapter. We agree. And we refer 
readers to the models of causal relations in real legal 
cases (Johnson-​Laird, 1999). They soon overtake 
the reasoning ability of naïve individuals—​just as 
comparable estimates of probabilities do (Khemlani, 
Lotstein, & Johnson-​Laird, 2015). Other theories of 
causation postulate other elements in its meaning, 
such as forces, mechanisms, and interventions. The 
model theory accommodates these elements, but not 
in the meanings of causal relations. They are incor-
porated into the model as a result of modulation—​
the process that integrates models of knowledge and 
models of discourse, with the former taking prece-
dence over the latter in case of conflicts. Modulation 
in the process of interpretation incorporates knowl-
edge of these other elements into models.

The model theory is sometimes wrongly classi-
fied as concerned solely with binary truth values. In 
fact, as this chapter has aimed to show, it is rooted 
in possibilities. They readily extend to yield exten-
sional probabilities based on proportions of pos-
sibilities or their frequencies (Johnson-​Laird et al., 
1999), and non-​extensional probabilities based on 
evidence (Khemlani, Lotstein, & Johnson-​Laird, 
2015). And possibilities yield seven, and only seven, 
distinct causal relations: strong and weak meanings 
of causes, prevents, and allows and allows_​not, with 
the weak meanings of the latter two relations being 
identical. The only proviso in their meanings is that 
their antecedents cannot occur after their effects. 
The mental models of these relations represent the 

situations they refer to, and they are identical for 
causes and allows unless individuals flesh out their 
models with explicit models of other possibilities. 
This identity is reflected in experimental results—​
individuals often infer an effect from the statement 
of either a cause or an enabling condition. It is 
also reflected in a long tradition that the difference 
between the two relations lies, not in their mean-
ings, but in other factors such as normality, con-
stancy, and relevance—​a tradition that still lives in 
common law. Mental models suffice for many infer-
ences. The principle that they represent only what is 
possible given the truth of the premises yields sys-
tematic illusory inferences. But, only fully explicit 
models elucidate ternary relations of the sort:

Staying in bed enables Coldgon to cause your recovery 
from a cold in one day.

Such relations cannot be reduced to a conjunction 
of causing and enabling.

Inductions of causal relations rely on knowledge, 
especially those inductions—​known as abductions—​
that yield explanations. In daily life, abductions rely 
on knowledge of causes and their effects. The model 
theory explains the process in terms of modulation, 
which also explains how individuals cope with incon-
sistencies:  models of knowledge take precedence 
over other sorts of model. Hence, abduction leads to 
explanations that resolve inconsistencies, to the non-​
monotonic withdrawal of conclusions, and to the revi-
sion of beliefs. We have illustrated this role of models 
and their role in reverse engineering. The latter sort of 
abduction depends on both knowledge of local con-
straints governing the components in a model, and 
knowledge of global constraints on models as a whole.

In sum, causal relations refer to conjunctions of 
temporally ordered possibilities. Human reasoners 
envisage these possibilities in mental models, which 
highlight only the salient cases. They use their 
knowledge to modulate these representations, and 
they infer the consequences of the resulting models.

Future Directions
Psychological research into causation is burgeon-

ing, and so we describe here three directions of 
research most pertinent to the model theory.

1. Reasoning in certain domains depends on 
the use of a kinematic model that unfolds in time 
to represent a succession of events (Khemlani 
et al., 2013). Such mental simulations should also 
underlie causal reasoning, but the hypothesis has 
yet to be tested in experiments.
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2. “The reason for Viv divorcing Pat was 
infidelity.” Are reasons merely causes of another 
sort? Many philosophers have supposed so (see, 
e.g., Dretske, 1989), but to the best of our 
knowledge no empirical research has examined this 
idea. Perhaps some reasons are causes of intentions 
rather than direct causes of actions (Miller & 
Johnson-​Laird, 1976).

3. The treatment of causal relations as 
probabilistic has been very fruitful. But, the 
evidence that we have considered supports 
deterministic meanings for causation, and the 
use of probabilities as a way to treat human 
ignorance—​a Bayesian approach that we have 
defended for the probabilities of unique events 
(Khemlani, Lotstein, & Johnson-​Laird, 2015). 
A major task for the field is to reach a consensus 
about how to incorporate probabilities into causal 
reasoning in a way that distinguishes between 
causes and enabling conditions.
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