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Abstract. We study a search game in which two multiagent teams com-
pete to find a stationary target at an unknown location. Each team plays
a mixed strategy over the set of search sweep-patterns allowed from its
respective random starting locations. Assuming that communication en-
ables cooperation we find closed-form expressions for the probability of
winning the game as a function of team sizes, and vs. the existence
or absence of communication within each team. Assuming the target is
distributed uniformly at random, an optimal mixed strategy equalizes
the expected first-visit time to all points within the search space. The
benefits of communication enabled cooperation increase with team size.
Simulations and experiments agree well with analytical results.
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1 Introduction

We consider the problem of team-vs.-team competitive search, in which two
teams of autonomous agents compete to find a stationary target at an unknown
location. The game is won by the team of the first agent to locate the target.
We are particularly interested in how coordination within each team affects the
outcome of the game. We assume that intra-team communication is a prerequisite
for coordination, and examine how the expected outcome of the game changes if
one or both of the teams lack the ability to communicate—and thus coordinate.

This game models, e.g., an adversarial scenario in which we are searching for a
pilot that has crashed in disputed territory, and we want to find the pilot before
the adversary does (see Figure 1). Both we and the adversary have multiple
autonomous aircraft randomly located throughout the environment to aid in
our respective searches (e.g., that were performing unrelated missions prior to
the crash), but neither agents nor adversaries have formulated a plan a priori.
In this paper we answer the questions: How does team size affect game outcome?
How beneficial is communication? What is an optimal search strategy?

In Section 4 we derive a closed-form expression for the expected outcome of
an “ideal game” in which both teams search at the maximum rate for the entire
game. A mixed Nash equilibrium exists at the point that each team randomizes
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target

sweep sensor

space searched by team 1

space searched by team 2

Fig. 1: Four agents (dark blue)
compete against three adver-
saries (light red) to locate a
target (black point). Communi-
cation enables members of the
same team to cooperate (e.g.,
blue team), lack of communica-
tion prohibits cooperation (e.g.,
red team). The sweep sensors
are, by definition, infinitesimally
thin in the direction of travel.

their distributed searches such that all points are swept at the same expected
time. An ideal game is impossible to realize in many environments due to a
number of boundary conditions; however, it provides a useful model that allows
us to evaluate how coordination affects game outcome. In Section 4.5 we extend
these results by bounding performance in non-ideal cases, and find that non-
ideal games become asymptotically close to ideal as the size of the environment
increases toward infinity. Related work is discussed in Section 2. Nomenclature,
a formal statement of assumptions, and the formal game definition appear in
Section 3. Supporting simulations and experimental results appear in Section 5;
discussion and conclusions appear in Sections 6 and 7, respectively.

2 Related Work

The target search problem was formalized at least as early as 1957 by [19], who
studied aircraft detection of naval vessels in a probabilistic framework. Varia-
tions of the problem have been studied in many different communities, resulting
in a vast body of related work. Indeed, even the subset of related work involving
multiagent teams is too large to cover here. Extensive surveys of different formu-
lations and approaches can be found in [6, 31, 8]. Previous work on target search
ranges from the purely theoretical (differential equations [21], graph theory [29],
game theory [26], etc.) to the applied (numerical methods [2, 12], control theory
[11, 15], heuristic search [23], etc.) and borrows ideas from fields as diverse as
economics [4, 9] and biology [18, 28].

One difference between the current paper and previous work is the scenario
that we consider, in which two teams compete to locate a target first. In coop-
erative search a single team of agents attempts to locate one or more targets
[30, 1] that may be stationary [15] or moving [18], and a key assumption is that
all searchers cooperate. In contrast, we assume an adversarial relationship exists
between two different teams of searchers.

Closely related pursuit-evasion games assume that one agent/team actively
tries to avoid capture by another agent/team [13, 22], leading to an adversarial
relationship between the searchers(s) and the target(s). Capture the flag [17]
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assumes that one team is attempting to steal a target that is guarded by the
other team. Our scenario differs from both pursuit-evasion and capture the flag
in that the adversarial relationship is between two different teams of searchers,
each individually performing cooperative search for the same target.

Our work shares similarities with 1-dimensional linear search [7], and cow
path problems [32, 24]. Differences include our extensions to higher dimensional
spaces, which themselves build on coverage methods that use lawn-mower sweep
patterns [5]. Our world model shares many of the same assumptions as [5]. In
particular, an initial uniform prior distribution over target location and perfect
sensors. Using sweep patterns for single agent coverage is studied by [5], while
[30] extends these ideas to a single multiagent team searching for a moving and
possibly evading target. Spires and Goldsmith use the idea of space filling curves
to reduce the 2D search problem to a 1D problem [25].

Our work explicitly considers how each team’s ability to communicate affects
the expected outcome of the search game. This allows us to analyze scenarios
in which teams have asymmetric communication abilities. A number of previous
methods have considered limited communication, but have done so in different
ways than those explored here. For example, robots were required to move such
that a communication link could be maintained [1], and/or the ability to commu-
nicate between agents was assumed to be dependent on distance [27, 15], limited
by bandwidth [11], adversaries [3], other constraints [14], or impossible [10].

3 Preliminaries

The search space is denoted X. The multiagent team is denoted G, the adversary
team is denoted A, and an arbitrary team is denoted T , i.e., T ∈ {G,A}. There
are n = |G| agents in the multiagent team, and m = |A| adversaries in the ad-
versary team. The i-th agent is denoted gi and the j-th adversary aj , where
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Both teams search for the same target q.
Agents, adversaries, and target are idealized as points, and we abuse our notation
by allowing them to indicate their locations in the search space, gi, aj , q ∈ X.

The term ‘actor’ is used to describe a member of the set G ∪ A. The state
space S = X ×Θ of a single actor includes position X and directional heading Θ.
Let Sgi represent the state space of the i-th agent. The product state space of the
team is SG = S1 × . . .× Sn. A particular configuration of the team is denoted
sG, where sG ∈ SG. Similarly, for the adversary sA ∈ SA = S1 × . . . × Sm. It
is convenient to define the product space of locations for each team. Formally,
g=(g1, . . . , gn)∈ XG=X1× . . .×Xn and a=(a1, . . . , am)∈ XA=X1× . . .×Xm

where we continue our abuse of notation that actors denote their own locations.
We use the subscript ‘0’ to denote a starting value. For example, the starting

location of gi is gi,0 and the starting configuration of the team is g0.

3.1 Assumptions

We consider search spaces embedded inD-dimensional Euclidean space,X ⊂ RD.
We assume X is “well behaved” such that X is bounded, convex, and has a
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Sweeping in R2
Sweeping in R3

Path in R2
Path in R3

1-D sensor footprint in R2
2-D sensor footprint in R3

2-D swept volume in R2
3-D swept volume in R3

t0

ta
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r

r

Fig. 2: Examples of sweep
sensing in R2 (Left) and
R3 (Right) for three dif-
ferent times t0 < ta < tb.
In R2 the sweep sensor
footprint is a 1-D line
segment oriented perpen-
dicular to the direction of
travel, in R3 it is a 2-D
patch oriented perpen-
dicular to the direction
of travel. Swept volume
increases as the robot
moves forward.

boundary ∂X that can be decomposed into a finite number of locally Lipschitz
continuous pieces. Our general formulation assumes X is a continuous4 space.

The target is assumed to be stationary. Let DX be the probability density
function for a uniform distribution over X. Agents, adversaries, and targets
are idealized as points, and have independent and identically distributed (i.i.d.)
initial locations drawn from according to DX . The Lebesgue measure in RD
is denoted LD(·). Let ΩX and ΩS be the smallest σ-algebras over X and S,
respectively. The (extension of) the Lebesgue measure inΩS is LΩS (·). Given our

assumptions, P(X̂) =
∫
X̂
DX(x) = LD(X̂)

LD(X) and P(Ŝ) =
LΩS

(Ŝ)

LΩS
(S) for all measurable

subspaces X̂ ⊂ X and Ŝ ⊂ S, respectively, where P (·) denotes the probability
measure, and the integrals are Lebesgue. The probability spaces over starting
locations and starting states are defined (X,ΩX ,P) and (S,ΩS ,P), respectively.

We assume agents and adversaries use sweep sensors with perfect accuracy
(see Figure 2). A sweep sensor in RD has an infinitesimally thin footprint defined
by a subset of a (D−1)-dimensional hyperplane oriented perpendicular to the
the direction of travel. We denote the sensor footprint Br, where r refers to
the radius of the smallest (D−1)-ball that contains the footprint, see Figure 2.
Although LD(Br) = 0 (e.g., the volume of a 2-dimensional disc is 0 in R3), the
target is detected as the sensor footprint sweeps past it. We assume X is “large”
in the sense that the minimum diameter of X is much greater than (“�”) r. In
“large” search spaces the sweep sensor provides a reasonable idealization of any
sensor with finite observation volume5.

4A discrete formulation can readily be obtained by replacing Lebesgue integrals
over continuous spaces with summations over discrete sets, and reasoning about the
probability of events directly instead of via probability density.

5Note that even for sensors with positive measure footprints, 0 < LD(Br) <∞
(e.g., a D-ball instead of a (D−1)-ball) nearly all space is searched as the forward
boundary of a sensor volume sweeps over it (in contrast to the space that is searched
instantaneously at startup due to being within some agent’s sensor volume).
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We assume that agents and adversaries cannot detect the opposite team or
physically interact with each other. This is a reasonable model when the envi-
ronment is large such that chance encounters are unlikely. Actors are ignorant
of their own teammates’ locations a priori (for example, as if all actors are per-
forming their own individual missions when the search scenario unexpectedly
develops). Actors are assumed to sweep at a constant forward velocity v, where
0 < v <∞, and to have infinite rotational acceleration so that they are able to
change direction instantaneously. Each actor may only change direction at most
a countably infinite number of times6. We assume that each team is rational and
will eventually sweep the entire space.

3.2 Paths, Multi-Paths, and Spaces

Let ρ denote a single actor’s search path, ρ ∈ S. Let B(s) denote the set of points
in X swept by that actor’s sensor when the actor is at a particular point s ∈ ρ.
The set of points swept by an actor traversing path ρ is therefore

⋃
s∈ρB(s).

A space covering path is denoted ρ̂ and has the property that its traversal will
cause all points in the search space to be swept, i.e., X ⊂

⋃
s∈ρ̂B(s) .

A search multi-path ψG is a set of paths containing one path ρi per agent in
the team G, i.e., ψG =

⋃
gi∈G{ρi}. Let ψ̂G denote a space covering search multi-

path. One traversal of ψ̂G by the members of G sweeps all points in the search
space,

⋃
s∈sG∈ψ̂G B(s) ⊂ X. Similarly quantities are defined for the adversary,

ψA =
⋃
aj∈A{ρj} and

⋃
s∈sA∈ψ̂A B(s) ⊂ X. Let ΨG (and ΨA) denote the space

of all possible search multi-paths given a team’s state space SG (and adversary’s
state space SA). Formally, ΨG =

⋃
{ψ | SG} and ΨA =

⋃
{ψ | SA}.

3.3 Communication and Coordination Models

The function C : {G,A} → {0, 1} denotes the communication ability of a team.
Communication within a particular team T is either assumed to be perfect
C(T ) = 1 or nonexistent C(T ) = 0. That is, team members can either commu-
nicate always or never. Communication enables coordination, which allows the
team to find a target more quickly in expectation. When C(T ) = 1, the members
of T attempt to equally divide the effort of searching X such that each x ∈ X is
swept by exactly one agent and each agent travels an equal distance. We investi-
gate the 2 by 2 space of game scenarios this allows, C(G)× C(A) = {0, 1} × {0, 1}.

3.4 Game Formulation

Given our assumptions, the first team to sweep the target’s location wins the
game. The family of competitive team target search games we consider is defined:

6This prevents “cheating” where an agent that continuously rotates through an
uncountably infinite number of points is able to use its zero-measure sweep sensor as
if it were a volumetric sensor of non-zero-measure (the measure of a countably infinite
union of sweep footprints is still 0).
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Random team target search games: Given a search space X, a station-
ary target q ∈ X, a multiagent team G = {g1, . . . , gn}, and an adversary team
A = {a1, . . . , am}; with initial locations drawn i.i.d. from DX(q), DX(gi,0), and
DX(gi,0), respectively; communication C(G), C(A) ∈ {0, 1}; and chosen move-
ment along multi-paths ψG ⊂ X and ψA ⊂ X; then team G wins iff q ∈ B(gi)
for some gi ∈ sG ∈ ψG before q ∈ B(aj) for some aj ∈ sA ∈ ψa.

3.5 Game Outcomes, Multi-Path Spaces, and Strategies

Let Ωoutcome = {ωlose, ωwin, ωtie} denote the space of game outcomes, where ωwin

is the event that a member of team G finds the target first, ωlose denotes the
event that an adversary finds the target first, and ωtie denotes a tie. Given our
formulation within a continuous space, ties are a measure 0 set, P (ωtie) = 0, that
can be ignored for the purposes of analyzing expected performance. In discrete
space one could break ties in a number of ways, e.g., by randomly selecting the
actor that finds the target first.

Strategies are equivalent to multipaths—any valid multi-path ψG that starts
at g0 is a particular search strategy for team G. Let Ψ denote the space of all
strategies. Let ΨG be a function that maps starting configurations g0 to the
subset of all valid strategies for G that begin at g0. Let Ω denote the (small-
est) σ-algebra over Ψ . Formally, ΨG : SG → Ω. The subset of all valid strategies
available to G given g0 is thus denoted ΨG(g0), where ΨG(g0) ⊂ Ψ .

A conditional mixed strategy is both: (1) conditioned on the event that team
G starts at a particular g0, and (2) mixed such that the particular strategy
ψG ∈ ΨG(g0) used by team G is drawn at random from ΨG(g0) according to a
chosen probability density Dg0

(ψG). By designing Dg0
(ψG) appropriately, it is

possible for team G to play any valid conditional mixed strategy given g0.

Given Dg0
(ψG), a probability measure function Pg0

can be constructed such

that
∫
ΨG(g0)

Dg0(ψG) = 1 and such that for all subsets Ψ̂ ⊂ ΨG(g0) we have

Pg0(ψG ∈ Ψ̂) =
∫
Ψ̂
Dg0(ψG).A particular conditional mixed strategy (conditioned

on g0 ∈ SG) is thus a probability space that can be represented by the triple
(ΨG(g0), ΩG(g0),Pg0

), where ΩG(g0) is the (smallest) σ-algebra over ΨG(g0).

A mixed strategy (ΨG, ΩG,PG) is the set of conditional mixed strategies
over all g0 ∈ SG, where ΩG =

⋃
g0∈SG ΩG(g0) and PG(ψ |g0) = Pg0

(ψ) for all
g0 ∈ SG. Note that a mixed strategy triple is not a probability space, per se, be-
cause it does not include the probability measure of the starting configurations
g0. That said, when a mixed strategy is combined with such a measure, e.g., the
measure implied by DX , then a probability space is the result. Analogous quan-
tities, (ΨA, ΩA,PA) and (ΨA(a0), ΩA(a0),Pa0), are defined for the adversary.

Given our assumption that the two teams cannot detect each other, one
team’s mixed strategy is necessarily independent of the other team’s starting
location. Let t(ψ, x) denote the earliest time at which a team following ψ sweeps
location x ∈ X. Given ψG and ψA, and a target at q (with location unknown to ei-
ther team), teamG wins if and only if t(ψG, q) < t(ψA, q). LetXwin(ψG, ψA) ⊂ X
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denote the subset of the search space where t(ψG, x) < t(ψA, x).

Xwin(ψG, ψA) = {x ∈ X | t(ψG, x) < t(ψA, x)}.

Team G wins if and only if q ∈ Xwin. When G plays ψG and A plays ψA, we get:

Proposition 1. Assuming the target is located uniformly at random in X, the
probability team G wins is equal to the ratio of search space it sweeps before the

adversary, P (ωwin|ψG, ψA) = LD(Xwin(ψG,ψA))
LD(X) .

The probability team G wins in a particular search space while playing a
particular adversary is calculated by integrating Dg0

(ψG) over ΨG(g0) for all
g0 and Da0

(ψA) over ΨA(a0) for all a0. Assuming the target and teams are
distributed uniformly at random, this is calculated:

P (ωwin) =
1

LΩSG
(SG)

∫
SG

1

LΩSA
(SA)

∫
SA

∫
ΨG(g0)

Dg0
(ψG)

∫
ΨA(a0)

Da0
(ψA)

LD(Xwin(ψG, ψA))

LD(X)
(1)

where the Lebesgue integrals are respectively over all g0 ∈ SG, all a0 ∈ SA, all
ψG ∈ ΨG(g0) and all ψA ∈ ΨA(a0).

We use “∗” to denote quantities related to optimality. An optimal mixed
strategy is defined: (Ψ∗G, ΩG,P∗G) = arg max((ΨG,ΩG,PG)) P (ωwin) .

4 Optimal Strategies for Ideal Games

Let Xswept denote the space team G has swept (Xswept is different from Xwin in
that Xswept may include space that has also been swept by the adversary). The
instantaneous rate team G sweeps new space is given by: d

dt [LD(Xswept)]. The
optimal instantaneous rate at which an agent sweeps new space can be expressed
as the agent’s velocity multiplied by the (D−1)-dimensional hypervolume of the
sensor footprint: vLD−1(Br). Given our assumptions, we have the following:

Proposition 2. The optimal instantaneous normalized rate that a single agent

sweeps new space is: c∗ = vLD−1(Br)
LD(X) .

4.1 Both Teams Can Communicate (ideal case)

The optimal instantaneous normalized rate (c∗) occurs when there is no sensor
overlap between agents. Building on Proposition 2 we get:

Corollary 1. The optimal instantaneous normalized rate that n agents can co-

operatively sweep new space is: d∗

dt [
LD(Xswept)

LD(X) ] = nvLD−1(Br)
LD(X) = nc∗.

In an “ideal” cooperative search we assume that the team can maintain the
optimal rate of sweep for the entire duration of search. The time required for an
ideal search with n agents is tn,sweep = 1/(nc∗). The game is guaranteed to end
by time tfinal = min(tn,sweep, tm,sweep).

We observe that any bias or predictability by a particular team (e.g., a mixed
strategy that leads to a subset of the environment being swept sooner or later
in expectation, over all possible starting locations) could be exploited by the
opposing team. This observation leads to the following proposition.
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Proposition 3. A mixed strategy that causes some portion of the environment
to be swept sooner or later, in expectation, over the set of all strategies and
distributions of agent and adversary starting locations is a suboptimal strategy.

As a corollary of proposition 3 we have the following:

Corollary 2. If an optimal ideal mixed strategy (Ψ∗G, ΩG,P∗G) exists for a team
G, then in that strategy the first sweep time for any point x ∈ X is distributed
uniformly at random between 0 and tn,sweep (over the space of all possible starting
configurations).

In an ideal game each team plays an optimal mixed strategy over a set of ideal
search strategies. The following is true by the definition of a Nash equilibrium:

Proposition 4. Assuming optimal ideal strategies exist for both teams, a mixed
strategy Nash equilibrium exists when both teams play an optimal mixed strategy.

At such a Nash equilibrium, the first sweep time of any point x by one team is
completely decorrelated from the first sweep time of x by the other team (over
the space of all possible actor starting locations).

Let Xnew(t) be the space that has not yet been swept by either team by time

t, and d
dt [

LD(Xnew(t))
LD(X) ] be the instantaneous normalized rate team G sweeps this

unswept space at time t. We note that, given a particular ψG and ψA,

LD(Xwin(ψG, ψA))

LD(X)
=

∫ tfinal

0

d

dt

[
LD(Xnew(t))

LD(X)

]
dt,

where tfinal = min( 1
nc∗ ,

1
mc∗ ). Thus, Equation 1 can be reformulated for the Nash

equilibrium of an ideal game with cooperation within both teams as:

P (ω∗win) =
1

LΩSG
(SG)

∫
SG

1

LΩSA
(SA)

∫
SA

∫
Ψ∗
G(g0)

∫
Ψ∗
A(g0)

Dg0
(ψG)Da0

(ψA)

∫ tfinal

0

d

dt

[
LD(Xnew(t))

LD(X)

]
dt

where integrals are Lebesgue. Using the independence of the two team’s optimal
mixed strategies, i.e., Dg0(ψG) and Da0(ψA) for all g0 and a0 yields:

P (ω∗win) =

∫ tfinal

0

1

LΩSG
(SG)LΩSA

(SA)

∫
SG

∫
SA

∫
Ψ∗
G(g0)

∫
Ψ∗
A(g0)

Dg0
(ψG)Da0

(ψA)
d

dt

[
LD(Xnew(t))

LD(X)

]
dt

We observe that the quantity inside the outermost integral describes the ex-

pected value of d
dt [

LD(Xnew(t))
LD(X) ] over all SG, SA, Ψ∗G, and Ψ∗A. For brevity we

denote the expected value of ‘·’ over all SG, SA, Ψ∗G, and Ψ∗A as E∗[·], i.e.,
E∗[·] ≡ ESG,SA,Ψ∗

G,Ψ
∗
A

[·]. Thus, formally,

E∗
[
d

dt
LD(Xnew(t))

]
=

1

LΩSG
(SG)LΩSA

(SA)

∫
SG

∫
SA

∫
ΨG(g0)

∫
ΨA(a0)

Dg0,(ψG)Da0(ψA)
d

dt

[
LD(Xnew(t))

LD(X)

]
Lemma 1. Assuming optimal ideal mixed strategies exist and both teams play
an optimal ideal mixed strategy,

E∗
[
d

dt
LD(Xnew(t))

]
= (1− tmc∗)nc∗ (2)
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Proof. At time t the adversary (operating according to its own ideal optimal

strategy) has swept tmvLD(Br)
LD(X) portion of the entire search space. The interplay

between the mixed ideal optimal strategies for each team forces the expected in-
stantaneous overlap between teams to be uncorrelated. Thus, for all t ∈ [0, tfinal],
the instantaneous expected rate team G sweeps LD(Xnew) is discounted by a

factor of 1− tmvLD(Br)
LD(X) vs. d∗

dtLD(Xswept).

E∗
[
d

dt
LD(Xnew(t))

]
=

(
1− tmvLD(Br)

LD(X)

)
d∗

dt

[
LD(Xswept)

LD(X)

]
.

Substitution with Proposition 2 and Corollary 1 yields the desired result. ut
In other words, team G covers new territory at a rate that decreases, in

expectation, proportionally to the proportion of space the adversary has covered
up to time t. Substituting this result back into the previous equations and noting
that tfinal = 1/(c∗max(n,m)):

P (ω∗win) =

∫ 1/(c∗ max(n,m))

0

(1− tmc∗)nc∗ dt.

Solving this equation yields the following theorem.

Corollary 3. The probability team G wins an ideal game assuming both G and
A are able to communicate and play optimal ideal mixed strategies is

P (ω∗win) =

{
n/(2m) when n ≤ m
1−m/(2n) when n ≥ m

.

4.2 Case 2: multiagent team G cannot communicate but the
adversary team A can (ideal case)

Given that the starting location of each agent on team G is sampled i.i.d. a
game in which team G cannot communicate is equivalent to the situation in
which the adversary team A plays n sub-games, one vs. each member {gi} ⊂ G,
and A wins the overall game if and only if it wins all n sub-games. Because the
target location is identical for each of these n sub-games, the n games are not
indipendent (as was erroniously assumed in a preliminary version of this work).
To win, the adversary must sweep the target before the particular agent of G
that happens to sweep the target first among all members of G. This can be
calculated by reformulating Equation 1 to integrate over the distribution of the
smallest of n first sweep times:

P (ω∗lose) =
m− (m− 1)n+1m−n

n+ 1

Combining P (ω∗tie) = 0 with Corollary 3 we get:

Corollary 4. The probability team G wins an ideal game, assuming team G
cannot communicate but the adversary team A can, and the adversary team A
plays optimal ideal mixed strategies, while each {gi} ⊂ G individually plays an
optimal ideal mixed strategy, is: P (ω∗win) = 1− P (ω∗lose) .
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4.3 Case 3: Team G can communicate but the adversary’s team A
cannot (ideal case)

This case is complementary to the previous one, due to symmetry and the fact
that P (ω∗tie) = 0. We swap n and m and also ωlose and ωwin from the results in
the previous section to get:

Corollary 5. The probability team G wins an ideal game, assuming team G can
communicate but the adversary team A cannot, and team G plays an optimal
ideal mixed strategy, while each of the adversary team’s individual uncoordinated
sub-teams {aj} ⊂ A for 1 ≤ j ≤ m plays an optimal ideal mixed strategy, is:

P (ω∗win) =
n− (n− 1)m+1n−m

m+ 1

We also note that P (ω∗lose) = 1− P (ω∗win) .

4.4 Case 4: Neither team can communicate (ideal case)

The case when neither team has communication must be analyzed separately,
but is somewhat trivial.

Theorem 1. The probability team G wins an ideal game, assuming no team can
communicate but all actors individually play an optimal ideal mixed strategy, is:

P (ω∗win) =
n

n+m
P (ω∗lose) =

m

n+m
.

Proof. Our assumption of uniformly random i.i.d. starting locations of actors
and target, combined with the fact that optimal mixed strategies decorrelate
the expected sweep time of any particular point x, means that, in expectation,
each actor has a 1/(n+m) chance of being the agent with the least amount of
travel (i.e., time) required to sweep q. The probability that team G finds the
target before A can be calculated as the ratio of agents to total actors. ut

4.5 Extensions to non-ideal games

The realization of an ideal game requires that an optimal mixed strategy exists
such that Equation 2 holds. In practice, this idealization is often broken by both
the startup locations of the actors and the boundary of the search space (see
Figure 3). However, it is possible to modify the equations for an ideal game
to obtain bounds on P (ωwin). This is accomplished by breaking the multiagent
search into two mutually exclusive phases: (1) a phase containing all portions of
the search wherein the agents of G are not able to perform an ideal search and (2)
a separate phase containing all other (ideal) portions of the search. Let tstartup

denote the time required for the non-ideal portion of search. We assume that the
adversaries in A are able to maintain an ideal search rate for the entire game,
which produces a lower bound on P (ωwin). Reversing the roles of adversaries
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Fig. 3: Left: Two agents start within r of each other, causing some area to be swept
by both of them (hashed). Right: a single robot turns near the boundary of the search
space as it moves from g1,0 → g1,a → g1,b → g1; this causes some space to be swept
multiple times (hashed) and space outside the search space to be swept (criss-crossed).

and agents provides an upper bound on P (ωwin); let t̃startup be the time it takes

A to perform non-ideal search in this case. Recall that c∗ = vLD(Br)
LD(X) . Also let

t̂final = min(tstartup + 1
nc∗ ,

1
mc∗ ) and t̃final = min(t̃startup + 1

mc∗ ,
1
nc∗ ).

Theorem 2. Assuming that both teams can communicate, and an optimal mixed
strategy exists for both teams, and that both teams play an optimal mixed strat-
egy, and that the game is ideal in every sense except for starting locations and
boundary effects, the probability team G wins is bounded as follows:

[∫ t̂final

tstartup

(1− tmc∗)nc∗ dt

]
− tstartupmc

∗ ≤ P (ωwin) ≤ 1−

[∫ t̃final

t̃startup

(1− tnc∗)mc∗ dt

]
− t̃startupnc

∗.

Proof. (Sketch) Non-ideal effects become increasingly detrimental to G’s proba-
bility of winning the game as they occur earlier and earlier in the game. Thus, it
is possible to construct a scenario that is even worse than a worst-case non-ideal
search (in terms of team G’s probability of winning the game) by: (1) assuming
that all negative ramifications of a non-ideal search happen at the beginning of
the search for team G, instead of whenever they actually occur, and (2) assum-
ing the adversary team A is allowed to realize an ideal sweep rate for the entire
game. The length of the non-ideal startup phase for the worse-than-worst case
can be bounded as follows: tstartup < c1rLD−1(∂X), where c1 is a dimensionally
dependent constant, r is sweep radius, and LD−1(∂X) is the surface area of the
search space boundary. ut

Theorem 2 shows that the proportion of time spent dealing with non-ideal
startup and boundary approaches zero as environments get larger vs. sensor
range, limr→0

tstartup

tfinal
= 0. In other words, the ideal equations model the non-

ideal case more-and-more accurately as the size of the environment increases.
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Fig. 4: Comparison of results predicted by analysis of the ideal case (left) vs. those
from a simulation experiment (right) for games with 1 to 5 Agents vs. 3 Adversaries.
Vertical axes measure the probability team G wins vs. its observed win ratio in repeated
random trials performed in simulation, respectively. Colors denote which teams may
or may not communicate. Each datapoint represents the mean result over 104 trials.

5 Simulations and Experiments

We compare the results derived in the previous section to repeated trials of search
and rescue in contested environments performed both in simulation and on a
mixed platform of real and virtual agents. For these simulations and experiments
we assume a discrete grid environment where movement is allowed along the
cardinal directions (note that this contrasts with the more general continuous
space formulation assumed in previous sections).

Multipaths are selected from a library of predefined sweep patterns, such that
each pattern forms a cycle, sweeps the entire space, and are designed to minimize
sweep overlap between different parts of the search. If an agent/adversary cannot
communicate with its team then it moves to the nearest point on a randomly
selected cycle and then follows it. If an agent (resp. adversary) can communicate
with its team then all team members agree on a cycle, divide the path into
n (resp. m) contiguous sub-paths, and then allocate one sub-path per team
member such that the cumulative distance traveled by the team to their start
locations is minimized. Next, each agent/adversary moves to its start point and
then searches its allotted sub-path. Unlike the ideal case, the probability of a tie
is non-zero; ties are broken by a coin toss weighted proportionally to the number
of {team members vs. all actors} that simultaneously discover the target.

Simulations are run in the Julia language using a 200 by 200 meter search
space composed of 1 by 1 meter grid cells. B is an L-∞ ball of radius 5 meters.
Locations of actors and target are determined uniformly at random over the set
of grid cells. Selected results comparing predictions based on the ideal case vs.
the average results from simulation of 4× 105 trials (104 trials per datapoint) are
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Fig. 5: The ideal case (dashed
lines) more accurately predicts the
mean result of Monte Carlo simu-
lations (solid lines) as L2(X) in-
creases. These particular results
are for games with 2 agents vs. 3
adversaries over various

√
L2(X).
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presented in Figures 4 and 5, each datapoint in the simulation curves represents
the mean results over 104 repeated trials.

The mixed platform combines Asctec Pelican quadrotor UAVs that have on-
board Odroid single board computers with simulated agents that run on a laptop
(Ubuntu 14.04). The quadrotors receive position measurements from a Vicon mo-
tion capture system and runs ETH-Zurich modular sensor fusion framework for
state estimation [20]. Robot Operating System (ROS) is used on all computers
for local interprocess communications and NRL’s Puppeteer framework is used
for coordination of all vehicles, which uses Lightweight Communications and
Marshalling [16] for intervehicle communications. Grid cells are 2 by 2 meters,
and the contested search space is 12 by 12 meters. We use a virtual target sensor
such that an actor discovers the target if their locations are closer than 1 meter.
All actors fly at an altitude of 2 meters, which corresponds to a field of view of
approximately 60◦ when searching for ground targets with a downward facing
camera. A random number generator is used to determine start location of the
real actors as well as the virtual actors and the target. We perform repeated tri-
als for a two agent team (consisting of one Asctec Pelican and one virtual agent)
vs. an adversary (Asctec Pelican). We perform 10 successful trials: 5 trials for
the case where team G can communicate and 5 for the case where it cannot.
Results from experiments with the mixed platform appear in Figure 6.

6 Discussion

Our analysis, simulations, and experiments show that using the ideal case to
predict P (ωwin) works reasonably well, and provides a more accurate prediction
as the size of the environment increases. We also show that the relative effects
of non-ideal startup locations and boundary conditions vanish, in the limit, as
the size of the environment increases.

With respect to communication symmetry vs. asymmetry, our results verify
the intuition that team G benefits from a situation in which G can communicate
and team A cannot. More interesting is the result that moving from a scenario
where both G and A can communicate to a scenario where neither G nor A can
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Fig. 6: Mixed platform experiments. A two agent team (consisting of a Pelican Quadro-
tor, blue, and a simulated agent, light-blue) vs. an adversary (Pelican Quadrotor, red)
to find a target (black). Left and Center: Examples of paths when agents do and do not
collaborate, respectively. Right: Game outcomes of repeated trials.

communicate benefits G only if n < m. The advantages of performing a coordi-
nated search vs. uncoordinated search increase vs. team size. Uncommunicating
larger teams will outperform uncommunicating smaller teams, in general.

7 Summary and Conclusions

We study the effects of cooperation on multiagent two-team competitive search
games, a class of games in which two multiagent teams compete to locate a
stationary target placed at an unknown location. Given an assumption that
communication is required for coordination, this enables us to analyze how com-
munication symmetry and asymmetry between teams affects the outcome of the
game. For the case involving perfect finite sweep sensors, random initial place-
ment of actors/target, and non-observability of the other team’s movements,
we find closed-form solutions for the probability of winning an “ideal game” in
which transient boundary effects are ignored.

A team maximizes its chances of winning by playing a mixed strategy such
that all points are eventually swept, the expected time a point is (first) swept is
identical for all points, and there is as little search overlap as possible. A Nash
equilibrium exists for an ideal game.

The chances of winning the search game increase vs. team size, and also
increase if the team is able to communicate. Moving from a situation in which
both teams can communicate to a situation where neither team can communicate
will benefit the smaller team and hinder the larger team (this effect becomes
stronger as the difference between the two teams’ sizes increases).

Monte Carlo simulations over random start locations and experimental re-
sults on a platform with AscTec Pelican quadrotor UAVs validate that the ob-
served outcomes of non-ideal games are predicted reasonably well by equations
derived for the ideal case, and that these predictions become more accurate as
the size of the search space increases.
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