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Abstract

In physical domains (military or athletic), team be-
haviors often have an observable spatio-temporal
structure, defined by the relative physical positions
of team members over time. In this paper, we
demonstrate that this structure can be exploited to
recognize football plays in the Rush 2008 foot-
ball simulator. Although events in the simulator
are stochastically generated, we present a method
for reliably recognizing football plays at a very
early stage using multiple support vector machines;
moreover, we demonstrate that having this early in-
formation about the defense’s intent can be utilized
to improve offensive team play. Our system evalu-
ates the competitive advantage of executing a play
switch based on the potential of other plays to im-
prove the yardage scored and the similarity of the
candidate plays to the current play. Our play switch
selection mechanism outperforms both the basic of-
fense and a greedy yardage-based switching strat-
egy.

1 Introduction
This paper addresses the problem of early recognition of op-
ponent intent in adversarial team games. In physical domains
(military or athletic), team behaviors often have an observable
spatio-temporal structure, defined by the relative physical po-
sitions of team members. This structure can be exploited to
perform behavior recognition on traces of agent activity over
time. There are three general types of cues that can be used
to perform recognition:

• spatial relationships between team members and/or
physical landmarks that remain fixed over a period of
time;

• temporal dependencies between behaviors in a plan or
between actions in a team behavior;

• coordination constraints between agents and the actions
that they are performing.

This paper describes a method for recognizing defensive
plays from spatio-temporal traces of player movement in the

Figure 1: Screenshot of the Rush 2008 football simulator.
The offense team (shown in red) is using the play split 8 and
being countered by the defense (shown in blue) using a 31
formation (variant 1).

Rush 2008 football game (see Figure 1) and using this infor-
mation to improve offensive play. To succeed at American
football, a team must be able to successfully execute closely-
coordinated physical behavior. To achieve this tight physi-
cal coordination, teams rely upon a pre-existing playbook of
offensive maneuvers [Association, 2000b] to move the ball
down the field and defensive strategies [Association, 2000a]
to counter the opposing team’s attempts to make yardage
gains. Rush 2008 simulates a modified version of Ameri-
can football with 8 players per team; plays in Rush are com-
posed of a starting formation and instructions for each player
in the formation. These instructions are similar to a condi-
tional plan and include choice points where the players can
make individual decisions as well as pre-defined behaviors
that the player executes to the best of its physical capability.

Although there have been other studies examining the
problem of recognizing completed football plays, we present
results on recognizing football plays online at an early stage
of play. and demonstrate a mechanism for exploiting this
knowledge to improve a team’s offense. Our system evaluates
the competitive advantage of executing a play switch based on
the potential of other plays to improve the yardage scored and



the similarity of the candidate plays to the current play. Our
play switch selection mechanism outperforms both the basic
offense and a greedy yardage-based switching strategy. Cal-
culating the relative similarity of the current play compared
to the proposed play is shown to be a necessary step to reduce
confusion on the field and effectively boost performance. .

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes related work on team behavior recognition
in games and simulation environments. Section 3 describes
the Rush 2008 football simulator, which was developed from
the open source Rush 2005 football game [Rush2005, 2005].
The potential for improving yardage gains through intelligent
play choice is discussed in Section 4. Section 5 presents our
support-vector based classification approach for early play
recognition and results for defensive play recognition. In Sec-
tion 6 we present our play switching mechanism and intro-
duce the play similarity metric used for calculating switches.
We present results for our offensive play improvement proce-
dure (described in Section 7) in Section 8, before concluding
the paper with some discussion on the potential uses of early
intent recognition.

2 Related Work

Previous work on team behavior recognition has been pri-
marily evaluated within athletic domains, including Ameri-
can football [Intille and Bobick, 1999], basketball [Bhandari
et al., 1997; Jug et al., 2003], and Robocup soccer simula-
tions [Riley and Veloso, 2000; 2002; Kuhlmann et al., 2006].
To recognize athletic behaviors, researchers have exploited
simple region-based [Intille and Bobick, 1999] or distance-
based [Riley and Veloso, 2002] heuristics to build accurate,
but domain-specific classifiers. For instance, based on the
premise that all behaviors always occur on the same playing
field with a known number of entities, it is often possible to
divide the playing field into grids or typed regions (e.g., goal,
scrimmage line) that can be used to classify player actions.
In contrast, we train our classifiers on raw observation traces
and do not rely on a field-based marker system.

Most of the camera-based sports analysis work has focused
on extracting observation traces, addressing problems such
as field rectification and player tracking [Intille and Bobick,
1994]) and has spent relatively little effort on play recogni-
tion and opponent modeling. In Intille and Bobick’s original
system, football play recognition [Intille and Bobick, 1999] is
performed on player trajectories using belief networks both to
recognize agent actions from visual evidence (e.g., catching
a pass) and to determine the temporal relations between ac-
tions (e.g. before, after, around). Jug et al. [Jug et al., 2003]
used a similar framework for offline basketball game anal-
ysis. More recently, Hess et al. demonstrated the use of a
pictorial structure model to classify football formations from
snapshots [Hess et al., 2007]. These systems were used for
post-game analysis of formations and behaviors only and did
not address the problem of online intention recognition.

In Robocup, there has been some research on team in-
tent recognition geared towards the Robocup coach compe-
tition. Techniques have been developed to extract specific
information, such as home areas [Riley et al., 2002], op-

ponent positions during set-plays [Riley and Veloso, 2002],
and adversarial models [Riley and Veloso, 2000], from logs
of Robocup simulation league games. This information can
be utilized by the coach agent to improve the team’s scor-
ing performance. For instance, information about opponent
agent home areas can be used triggers for coaching advice
and for doing “formation-based marking”, in which different
team members are assigned to track members of the oppos-
ing team. However, the focus of the coaching agents is to
improve performance of teams in future games; our system
immediately takes action on the recognized play to evaluate
possible play switches.

3 Rush Football

Football is a contest of two teams played on a rectangular
field that is bordered on lengthwise sides by an end zone. Un-
like American football, Rush teams only have 8 players on the
field at a time out of a roster of 18 players. and the field is 100
yards by 63 yards. The game’s objective is to out-score the
opponent, where the offense (i.e., the team with possession
of the ball), attempts to advance the ball from the scrimmage
line into their opponent’s end zone. In a full game, the offen-
sive team has four attempts to get a first down by moving the
ball 10 yards down the field. For this paper we only examine
play combinations in isolation, rather than embedded in the
full structure of a game. If the ball is intercepted or fumbled,
ball possession transfers to the defensive team.

Pro vs 23 Power vs 31 Split vs 2222

Table 1: Three offensive and defensive configurations. Of-
fensive players are shown in white and the defense in blue.

A Rush play is composed of (1) a starting formation and (2)
instructions for each player in that formation. A formation is
a set of (x,y) offsets from the center of the line of scrimmage.
By default, directions for each player consist of (a) an off-
set/destination point on the field to run to, and (b) a behavior
to execute when they get there. Play instructions are simi-
lar to a conditional plan and include choice points where the
players can make individual decisions as well as pre-defined
behaviors that the player executes to the best of their physical
capability. Rush includes three offensive formations (power,
pro, and split) and four defensive ones (23, 31, 2222, 2231) 1.
Each formation has eight different plays (numbered 1-8) that
can be executed from that formation. Offensive plays typi-
cally include a handoff to the running back/full back or a pass
executed by the quarterback to one of the receivers, along
with instructions for a running pattern to be followed by all
the receivers. An example play from the split formation is
given below:



Table 2: Offensive Plays from Power Formation
Play Variant Description

1 handoff to RB
2 handoff to RB
3 handoff to RB
4 handoff to FB
5 pass towards the left
6 pass using hook routes
7 pass to FB
8 general pass play

• the quarterback will pass to an open receiver;

• the running back and full back will run hook routes;

• the left wide receiver will run a corner right route;

• the right wide receiver will run a hook route;

• the other players will block for the ball holder.

Figure 1 shows an example execution of the above pass-
ing play being countered by the the defense using a 31 for-
mation (variant 1). The quarterback has already thrown the
ball which is currently in the air between the 40 and 50 yard
lines. In Rush defensive plays, the players are given the role
of guarding zones of the field or pursuing specific offensive
players. In Figure 1, the defense is countering with this allo-
cation of players to tasks:

• the defensive linemen are chasing the quarterback;

• the linebacker is pursuing the running back;

• the cornerbacks are following their respective wide re-
ceivers;

• Safety 1 is guarding the high zone;

• Safety 2 is guarding the middle zone;

Table 2 gives general descriptions of possible plays that
can be executed from the power starting positions using the
lineup: QB, RB, FB, WR1, TE1, OL1, O2, OL3. Rush teams
have a roster of offensive and defensive players, each pos-
sessing unique physical capabilities, which are specified in a
game configuration file using a ten point scale to designate
the player’s power, speed, skill, and endurance. The team
compositions are loosely modeled after players on various
NFL teams. The experiments described in this paper were
run with the Atlanta Falcons (offense) vs. the New England
Patriots (defense).

A player’s physical capabilities affect his running speed,
ability to handle the ball, and to block and tackle other play-
ers. In a mechanical sense, Rush treats both players and the
ball as 2-dimensional rectangular objects capable of infinite
acceleration. As soon as a player or the ball starts to move,
it takes on a constant velocity, with the exception that the
ball will accelerate downwards due to gravity. When objects
overlap, a collision occurs. A collision between players may
result in a tackle if a player is carrying the ball or performing
a block for the ball carrier.

Table 3: Yardages for Best and Worst Offensive Choices
Offense Defense Best (yds) Worst (yds) Avg (yds)
power 23 10.84 2.41 5.82
power 31 12.82 2.04 5.83
power 2222 7.82 3.67 5.19
power 2231 9.56 3.82 6.93
pro 23 11.34 2.52 6.65
pro 31 17.3 4.77 9.32
pro 2222 23.71 5.47 9.99
pro 2231 16.95 6.78 11.35
split 23 14.74 6.65 10.26
split 31 14.96 3.53 10.71
split 2222 51.82 6.01 17.13
split 2231 51.81 7.43 17.91

4 Competitive Advantage of
Intention Recognition
This section discusses how knowledge of the opponents’ in-
tended play affects the yardage scored by teams in Rush 2008.
Although the players’ physical capabilities affect the outcome
of individual events, such as blocks, handoffs, and distance
covered, the play choice is of key importance in determining
the total yardage scored on a play. Each play specifies a par-
ticular allocation of players to tasks and positions; different
allocations leave various openings in the field which could be
exploited by the opponent. Unlike in real football, it is not
possible for players to conceal the location of the ball in the
Rush simulator to divert attention away from the ball carrier.
However, we show that recognizing the opponents’ intention
can still confer significant competitive advantage by examin-
ing the expected outcome of teams executing different play
combinations. For the purposes of this paper, we focus on
yardage gained over a single play, independent of the team’s
down or other plays that the team has executed in the past.

To study the effectiveness of different plays, we ran each
play combination 50 times (a total of 38400 games) to de-
termine the expected yardage for each play combination in
the teams’ playbooks and examine the impact of play selec-
tion on yardage gained. Table 3 clearly shows that there is
a large difference between the best response case for the of-
fense (the offense playing their best play vs. the worst de-
fense), the worst scenario (the offense playing their weakest
play vs. the best defense), and the average yardage scored for
all play combinations using that pair of formations. Although
we don’t have any direct control over the defense’s choice of
formation and play variant, we could in theory increase our
yardage by playing our best response play. However, with-
out prior information about the defense’s choice of play, the
best way to gain this competitive advantage is through accu-
rate early play recognition, gaining knowledge of the other
team’s intent sufficiently early in the play to exploit holes in
the current defense.

5 Play Recognition using SVM
In this paper we focus on intent recognition from the view-
point of the offense: given a series of observations, our goal is



to recognize the defensive play as quickly as possible in order
to maximize our team’s ability to intelligently respond with
the best offense. Thus, the observation sequence grows with
time unlike in standard offline activity recognition where the
entire set of observations is available. We approach the prob-
lem by training a series of multi-class discriminative clas-
sifiers, each of which is designed to handle observation se-
quences of a particular length. In general, we expect that the
early classifiers should be less accurate since they are oper-
ating with a shorter observation vector and because the posi-
tions of the players have deviated little from the initial forma-
tion.

There are 12 initial configurations for the players (choice
of 3 formations for the offense and 4 for the defense). We for-
mulate the problem as follows. LetA = {a1, a2, . . . , a16} be
the set of agents in the scenario, where the index of each agent
maps to its role, as given by the starting configuration. We
observe the 2D position of each agent at every time step, en-
abling us to construct an observation vector, x(t) at time t that
is a concatenation of the observed states of every agent. Thus,
the dimensionality of the observation vector is 32t. Since the
offense can select from a set of 8 plays from each initial con-
figuration, the goal of the intent recognition is to output a
label y(t) ∈ {1 . . . 8}, and the baseline accuracy for this task
is 12.5%.

We perform this classification using support vector ma-
chines [Vapnik, 1998]. Support vector machines (SVM) are
a supervised binary classification algorithm that have been
demonstrated to perform well on a variety of pattern classifi-
cation tasks, particularly when the dimensionality of the data
is high (as in our case). Intuitively the support vector machine
projects data points into a higher dimensional space, specified
by a kernel function, and computes a maximum-margin hy-
perplane decision surface that separates the two classes. Sup-
port vectors are those data points that lie closest to this deci-
sion surface; if these data points were removed from the train-
ing data, the decision surface would change. More formally,
given a labeled training set {(x1, y1), (x2, y2), . . . , (xl, yl)},
where xi ∈ <N is a feature vector and yi ∈ {−1,+1} is
its binary class label, an SVM requires solving the following
optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

constrained by:

yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

The function φ(.) that maps data points into the higher di-
mensional space is not explicitly represented; rather, a ker-
nel function, K(xi,xj) ≡ φ(xi)φ(xj), is used to implicitly
specify this mapping. In our application, we use the popular
radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Several extensions have been proposed to enable SVMs to
operate on multi-class problems (with k rather than 2 classes),

such as one-vs-all, one-vs-one, and error-correcting output
codes. We employ a standard one-vs-one voting scheme
where all pairwise binary classifiers, k(k − 1)/2 = 28 for
every multi-class problem in our case, are trained and the
most popular class is selected. When multiple classes re-
ceive the highest vote, we select the winning one with the
lowest index; the benefit of this approach is that classifica-
tion is deterministic but it can bias our classification in fa-
vor of lower-numbered plays. For a real game system, we
would employ a randomized tie-breaking strategy. Many ef-
ficient implementations of SVMs are publicly available; we
use LIBSVM [Chang and Lin, 2001].

We train our classifiers using a collection of simulated
games in Rush collected under controlled conditions: 40 in-
stances of every possible combination of offense (8) and de-
fense plays (8), from each of the 12 starting formation con-
figurations. Since the starting configuration is known, each
series of SVMs is only trained with data that could be ob-
served starting from its given configuration. For each con-
figuration, we create a series of training sequences that ac-
cumulates spatio-temporal traces from t = 0 up to t ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10} time steps. A multiclass SVM (i.e.,
a collection of 28 binary SVMs) is trained for each of these
cases. Although the aggregate number of binary classifiers
is large, each classifier only employs a small fraction of the
dataset and is therefore efficient (and highly paralellizable).
Cross-validation was used to tune the SVM parameters (C
and σ) for all of the SVMs.

Classification at testing time is very fast and proceeds as
follows. We select the multiclass SVM that is relevant to the
current starting configuration and time step. An observation
vector of the correct length is generated (this can be done
incrementally during game play) and fed to the multi-class
SVM. The output of the intent recognizer is the system’s best
guess (at the current time step) about the opponent’s choice of
defensive play and can help us to select the most appropriate
offense, as discussed below.

5.1 Evaluation of Play Recognition
For the experiments reported in this paper, we collected a test-
ing set of Rush games with 10 instances of every combination
of offensive and defensive plays from each of the different
starting configurations. We created observation vectors from
this test set for each of the six selected timesteps, resulting
in a data set with 72 configurations, each with 640 instances
(10 instances of each offense play vs. a defense play). The
dimensionality of the problem ranged from 64 (for the short-
est observation vector) to 320 (for the longest). Deterministic
tie breaking was used to return a forced choice for plays with
equal numbers of votes (lowest play number wins).

Table 4 summarizes the experimental results for different
lengths of the observation vector (time from start of play),
averaging classification accuracy across all starting forma-
tion choices and defense choices. We see that at the earli-
est timestep, our classification accuracy is at the baseline but
jumps sharply near perfect levels at t = 3. This strongly con-
firms the feasibility of accurate intent recognition in Rush,
even during very early stages of a play. At t = 2, there is in-
sufficient information to discriminate between offense plays



(perceptual aliasing), however by t = 3, the positions of the
offensive team are distinctive enough to be reliably recog-
nized. The only case where there is insufficient information
to discriminate between play variants is when the defense is
using formation 23. Play variant 1 and play variant 2 in this
formation are extremely similar, differing only in the deploy-
ment of 2 players; hence, play variant 1 is consistently mis-
classified as being play variant 2 even at t = 10.

6 Offensive Play Switches
To improve offensive performance, our system evaluates the
competitive advantage of executing a play switch based 1) on
the potential of other plays to improve the yardage scored and
2) the similarity of the candidate plays to the current play.
First, we train a set of SVM models to recognize defensive
plays at a particular time horizon as described in the previous
section; this training data is then used to identity promising
play switches. A play switch is executed:

1. after the defensive play has been identified by the SVM
classifier

2. if there is an stronger alternate play based on the yardage
history of that play vs. the defense

3. if the candidate play is sufficiently similar to the current
play to be feasible for immediate execution.

Rather than calculating play similarity based on executions
of individual traces, for every play combination, we create a
probability distribution model (shown in Table 5) to describe
the players’ positions over time, based on the training data.
We use this probabilistic representation of the team’s spatial-
temporal traces to determine the similarity between the plays,
using a feature set described in the next section. To determine
whether to execute the play switch for a particular combina-
tion of plays, the agent considers the set of all offensive plays
shown to gain more than a threshold ε value. The agent then
selects the play in that list most like the current play for each
play configuration and caches the preferred play in a lookup
table.

When a play is executed, the agent will use all observations
up to, and including observation 3 to determine what play the
defense is executing before performing a lookup to determine
the play switch to make. The process is ended with execution
of a change order to all members of the offensive team. Cal-
culating the feasibility of the play switch based on play sim-
ilarity is a crucial part of improving the team’s performance;
in the results section, we evaluate our similarity-based play
switch mechanism vs. a greedy play switching algorithm that
focuses solely on the potential for yardage gained.

6.1 Play Similarity Metric
To calculate play similarities, we create a feature matrix for
all offensive formation/play combinations based on the train-
ing data. To store the spatio-temporal traces used to calculate
play similarity, we create a probability distribution model of
the movements l of all offensive players A = {a1, . . . , a8}
for all time steps t, based on our training samples (s). Let∑
sAlt indicate the number of times playerA visited location

Table 5: Single execution trace from Power-3 vs 2222-3 (top
left) and Power-5 vs 2222-1 (top right). The ball position is
marked in red. Probabilistic trace models (bottom) for the
same plays; increased dot sizes indicate higher probabilities
of the player (or ball) being at a particular location at a given
time.

l at time = t. The probability athlete A will visit location L
at time t is calculated using the formula:

P (Alt) =
∑
sAlt

50

For each player and every location the player visits, we
store the probability the player will be at a specific location at
a given time, and the players four initial movements are used
to create a feature vector.

The features collected for each athlete A are

Max(X): The rightmost position traveled to by A

Max(Y): The highest position traveled to by A

Min(X): The leftmost position traveled to by A

Min(Y): The lowest position traveled to by A

Mean(X): =
PN−1

i=0 Xi

N

Mean(Y): =
PN−1

i=0 Yi

N

Median(X): = Sort(X)i/2
Median(Y): = Sort(Y )i/2
FirstToLastAngle: Angle from starting point (x1, y1), to

ending point (x2, y2), is defined as atan
(
4y
4x

)
Start Angle: Angle from the starting point (x0, y0) to

(x1, y1), defined as atan
(
y
x

)
End Angle: Angle from the starting point (xn−1, yn−1) to

(xn, yn), defined as ATan
(
4y
4x

)



Table 4: Play recognition results
Offense Defense t = 2 3 4 5 6 7 8 9 10
Power 23 12.50% 87.50% 87.50% 87.20% 87.28% 87.24% 87.24% 86.94% 86.83%
Pro 23 12.50% 87.50% 87.50% 87.57% 87.24% 87.65% 87.61% 87.83% 87.54%
Split 23 12.50% 87.50% 87.50% 87.39% 87.46% 87.54% 87.87% 87.24% 87.43%
Power 31 12.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Pro 31 12.50% 100.00% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Split 31 12.50% 100.00% 100.00% 100.00% 100.00% 100.00% 99.96% 99.96% 99.96%
Power 2231 12.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Pro 2231 12.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Split 2231 12.51% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.96% 99.93%
Power 2222 12.47% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Pro 2222 12.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Split 2222 12.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Total Angle: =
∑N−1
i=0 atan

(
yi+1−yi

xi+1−xi

)
Total Path Distance: =

∑N−1
i=0

(
2
√
xi2 + yi2

)
Feature set F for a given play c contains all the features for

each offensive player in the play and is described as

−→
Fc = {Ac1 ∪Ac1 ∪Ac2 ∪ · · · ∪Ac8}

These features are similar to the ones used in [Rubine,
1991] and more recently, by [Wobbrock et al., 2007] to match
pen trajectories in sketch-based recognition tasks, but gener-
alized to handle multi-player trajectories. To compare plays,
we use the sum of the differences (L1 norm) between each
feature Fci. This information is used to build a similarity
matrix Mij for each possible offensive play combination as
defined below.

Mij =

‚‚‚−→Fc

‚‚‚−1∑
c=0

∆
−→
Fc

i, j = 1 . . . 8
There is one matrix M for each offensive formation

Oβ , where β = {pro, power, split} are the offensive
formations. Defensive formation/play combinations are
indicated by Dαp, where α = {23, 31, 2222, 2231} and
p represents plays 1..8. M for a specific play configuration
is expressed as OβDαpMi, given i (1. . . 8) is our current
offensive play. The purpose of this algorithm is to find a
value j (play) most similar to i (our current play), with a
history (based on earlier observation) of scoring the most
yardage. This process is accomplished for every offensive
play formation against every defensive play formation and
play combination. When the agent is constructing the lookup
table and needs to determine the most similar play from a list,
given current play i, it calls the method, min(OβDαpMi)
which returns the most similar play.

7 Improving the Offense
Our algorithm for improving Rush offensive play has two
main phases, a preprocess stage which yields an play switch
lookup table and an execution stage where the defensive play

is recognized and the offense responds with an appropriate
play switch for that defensive play. As described in Section 5
we train a set of SVM classifiers using 40 instances of every
possible combination of offense (8) and defense plays (8),
from each of the 12 starting formation configurations. This
stage yields a set of models used for play recognition during
the game. Next, we calculate and cache play switches using
the following procedure:

Step 1: Collect data by running the RUSH 2008 football
simulator 50 times for every play combination.

Step 2: Create yardage lookup tables for each play com-
bination. This information alone is insufficient to
determine how good a potential play is to transition to.
The transition play must resemble our current offensive
play or the offensive team will spend too much time
retracing steps and perform very poorly.

Step 3: Create a probabilistic trace representation for all 50
training plays with field locations and probabilities of
the players being observed in these locations.

Step 4: Create feature matrix for all offensive formation/play
combinations using the probabilistic trace representa-
tion.

Step 5: Create the final play switch lookup table based on
both the yardage information and the play similarity.

To create the play switch lookup table, first the agent
extracts a list of offensive plays L given the requirement
yards (Li) > epsilon where ε is the smallest yardage gained
in which the agent does not consider changing the current
offensive play to another. We used ε = 1.95 based on a
quadratic polynomial fit of total yardage gained in 6 tests with
ε = {MIN, 1.1, 1.6, 2.1, 2.6,MAX} where MIN is small
enough no plays are selected to change and MAX where all
plays are selected for change to the highest yardage play with
no similarity comparison. Second, from the list L find the
play most similar (smallest value in the matrix) to our current
play i using Min(OβDαpMi) and add it to the lookup file.

During execution, the offense uses the following proce-
dure:



1. At each observation less than 4, collect movement traces
for each play.

2. At observation 3, use LIBSVM with the collected move-
ment traces and previously trained SVM models to iden-
tify the defensive play.

3. Access the lookup file to find best(i) for our current play
i.

4. Send a change order command to the offensive team to
change to play best(i).

8 Empirical Evaluation
The algorithm was tested using the RUSH 2008 simulator for
ten plays on each possible play configuration in three separate
trials. We compared our play switch model (using the yardage
threshold t = 1.95 as determined by the quadratic fit) to the
baseline Rush offense and to a greedy play switch strategy
(t = max) based solely on the yardage.

Overall, the average performance of the offense went from
2.82 yards per play to 3.65 yards per play (t = 1.95) with an
overall increase of 29%, ±1.5% based on sampling of three
sets of ten trials. An analysis of each of the formation com-
binations (Figure 2) shows the yardage gain varies from as
much as 100% to as little as 0.1%. Overall, performance is
consistently better every configuration tested. In all cases,
the new average yardage is over 2.3 yards per game with no
weak plays as seen in the baseline, for example, Power vs. 23
(1.4 average yards per play) and Power vs. 2222 (1.3 average
yards per play). Results with t = max clearly shows sim-
ply changing to the greatest yardage generally results in poor
performance from the offense.

Figure 2: Comparison of play switch selection methods. Our
play switch method (shown in red) outperforms both baseline
Rush offense (blue) and a greedy play switch metric (green).

Power vs. 23 is dramatically boosted from about 1.5 yards
to about 3 yards per play, literally doubling our yardage.
Other combinations, such as Split vs 23 and Pro vs. 32
already scored good yardage and improved less dramatically
at about .2 to .4 yards more than the gains in the baseline
sample. In this table we see all the split configurations do
quite well; this is unsurprising given our calculations of the
best response. However, when the threshold is not in use
and the plays are allowed to change regardless of current
yardage, the results are drastically reduced. The reason

seems to be associated player miscoordinations accidentally
induced by the play switch; by maximizing the play simi-
larity simultaneously, the possibility of miscoordinations is
reduced. Figure 3 shows yardage gained by the best play
switch strategy over the Rush baseline offense. Power vs 23
experiences the greatest enhancement and Split vs. 31 the
least. It is interesting to note Split vs. 23 performed best in
the baseline tests and power vs. 23 the worst indicating an
inversely proportional expected gain by the algorithm.

Figure 3: The play-yardage gain over baseline Rush offense
yielded by our play switch strategy.

9 Discussion
There are a number of ways that the offensive team could
utilize the information provided by an early play recognition
system, other than through our play switch mechanism. An-
other possibility would be to use the play information to pre-
dict the future positions of the defensive players and moving
towards those coordinates instead of the ones specified in the
initial play.

Another question is how to utilize less accurate play recog-
nition to improve offensive play. Since Rush is a simulated
game, it is possible for the intent recognizer to perfectly ob-
serve the environment, which may be an unrealistic assump-
tion in the real world. To address this, we replicated our ex-
periments under conditions where both training and test data
were corrupted by observation noise introduced outside the
simulation environment. In this case, classification accuracy
at t = 3 ranged from 60% to 90%. In this case, it would
be possible to have the offensive team consider the informa-
tion contained in the confusion matrix when evaluating play
switches by maintaining multiple hypotheses about the de-
fensive play. The agent could use risk-minimization metrics
when considering possible counter responses to multiple hy-
potheses, choosing to accept smaller, but less risky yardage
gains.

Also it is possible that poorer play recognition might not
make a difference in all cases if the play can be countered in
similar ways. For instance, in formation 23, our SVM clas-
sifier persistently misclassifies play variant 1 as 2, resulting
in a poor accuracy. However the play only subtly in player



action choice, and often not at all in execution trace. In this
case, even though the classifier performs poorly, the resulting
offense would be unlikely to suffer.

One question is whether the assumption of playbook
knowledge, common to any plan recognition system, is rea-
sonable for this domain, since real teams try hard to keep
their playbooks secret. A play recognition system would
have to compensate for this in the same way that real-life
coaches do—by watching and analyzing footage from previ-
ous games or from earlier in the same game. We believe that
investigating unsupervised and semi-supervised approaches
to this problem is a fruitful area for future research; we have
demonstrated the applicability of an unsupervised clustering
approach for analyzing Rush football plays to improving re-
inforcement learning [Molineaux et al., 2009].

10 Conclusion

In this paper, we present an approach for early, accurate
recognition of defensive plays in the Rush 2008 football sim-
ulator. We demonstrate that a multi-class SVM classifier
trained on spatio-temporal game traces can enable the of-
fense to correctly anticipate the defense’s play by the third
time step. Using this information about the defense’s in-
tent, our system evaluates the competitive advantage of ex-
ecuting a play switch based on the potential of other plays
to improve the yardage scored and the similarity of the can-
didate plays to the current play. Our play switch selection
mechanism outperforms both the basic Rush offense and a
greedy yardage-based switching strategy, increasing yardage
while avoiding the miscoordinations accidentally induced by
the greedy strategy during the transition from the old play to
the new one. In future work, we plan to look adapting our
current method to be more robust against poor play recogni-
tion.

11 Acknowledgments
Gita Sukthankar was partially supported by an ONR Summer
Faculty Fellowship (2008).

References
[Association, 2000a] American Football Coaches Associa-

tion, editor. Defensive Football Strategies. Human Ki-
netics Publishers, 2000.

[Association, 2000b] American Football Coaches Associa-
tion, editor. Offensive Football Strategies. Human Kinetics
Publishers, 2000.

[Bhandari et al., 1997] I. Bhandari, E. Colet, J. Parker,
Z. Pines, R. Pratap, and K. Ramanujam. Advanced Scout:
Data mining and knowledge discovery in NBA data. Data
Mining and Knowledge Discovery, 1(1):121–125, 1997.

[Chang and Lin, 2001] C.-C. Chang and C.-J. Lin. LIB-
SVM: a library for support vector machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.tw/
˜cjlin/libsvm.

[Hess et al., 2007] R. Hess, A. Fern, and E. Mortensen.
Mixture-of-parts pictorial structures for objects with vari-
able part sets. In Proceedings of International Conference
on Computer Vision, 2007.

[Intille and Bobick, 1994] S. Intille and A. Bobick. Visual
tracking using closed-worlds. Technical Report 294, MIT
Media Lab, 1994.

[Intille and Bobick, 1999] S. Intille and A. Bobick. A frame-
work for recognizing multi-agent action from visual evi-
dence. In Proceedings of National Conference on Artificial
Intelligence, 1999.

[Jug et al., 2003] M. Jug, J. Pers, B. Dezman, and S. Ko-
vacic. Trajectory based assessment of coordinated human
activity. In Proceedings of the International Conference
on Computer Vision Systems (ICVS), 2003.

[Kuhlmann et al., 2006] G. Kuhlmann, W. Knox, and
P. Stone. Know thine enemy: A champion RoboCup coach
agent. In Proceedings of National Conference on Artificial
Intelligence, 2006.

[Molineaux et al., 2009] Matt Molineaux, David Aha, and
Gita Sukthankar. Beating the defense: Using plan recogni-
tion to inform learning agents. In Proceedings of Florida
Artifical Intelligence Research Society, 2009.

[Riley and Veloso, 2000] P. Riley and M. Veloso. On behav-
ior classification in adversarial environments. In L. Parker,
G. Bekey, and J. Barhen, editors, Distributed Autonomous
Robotic Systems 4. Springer-Verlag, 2000.

[Riley and Veloso, 2002] P. Riley and M. Veloso. Recogniz-
ing probabilistic opponent movement models. In A. Birk,
S. Coradeschi, and S. Tadorokoro, editors, RoboCup-
2001: Robot Soccer World Cup V. Springer Verlag, 2002.

[Riley et al., 2002] P. Riley, M. Veloso, and G. Kaminka.
An empirical study of coaching. In H. Asama, T. Arai,
T. Fukuda, and T. Hasegawa, editors, Distributed Au-
tonomous Robotic Systems 5. Springer-Verlag, 2002.

[Rubine, 1991] D. Rubine. Specifying gestures by example.
Computer Graphics, Volume 25, Number 4, pages 329–
337, 1991.

[Rush2005, 2005] Rush2005, 2005. http:
//sourceforge.net/projects/rush2005/.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. Wi-
ley & Sons, Inc, 1998.

[Wobbrock et al., 2007] J. Wobbrock, D. Wilson, and
L. Yang. Gestures without libraries, toolkits or training:
a $1 recognizer for user interface prototypes. In Sympo-
sium on User Interface Software and , Proceedings of the
20th annual ACM symposium on User interface software
and technology, 2007.


