
Autonomous Robots 6, 293–308 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Integrating Exploration, Localization, Navigation and Planning
with a Common Representation

ALAN C. SCHULTZ, WILLIAM ADAMS AND BRIAN YAMAUCHI ∗

Navy Center for Applied Research in Artificial Intelligence (NCARAI), Naval Research Laboratory,
Washington, DC 20375-5337, USA

schultz@aic.nrl.navy.mil

Abstract. Two major themes of our research include the creation of mobile robot systems that are robust and
adaptive in rapidly changing environments, and the view of integration as a basic research issue. Where reasonable,
we try to use the same representations to allow different components to work more readily together and to allow
better and more natural integration of and communication between these components. In this paper, we describe
our most recent work in integrating mobile robot exploration, localization, navigation, and planning through the
use of a common representation, evidence grids.

Keywords: mobile robots, localization, planning, navigation, exploration, evidence grids, integration

1. Introduction

A central theme of our research is the view of inte-
gration as a basic research issue, studying the combi-
nation of different, complementary capabilities. One
principle that allows integration is the use of unifying
representations. Where reasonable, we try to use the
same representations to allow different components to
work more readily together and to allow better and
more natural integration of and communication be-
tween these components. In the work reported here,
the unifying representation is the evidence grid, a
probabilistic metric map. In this paper, we describe
how using evidence grids as a unifying representa-
tion not only allows for better integration across tech-
niques, but also allows reuse of data in learning and
adaptation.

We have developed and integrated techniques for
autonomous exploration, map building, and continu-
ous self-localization. Further, we have integrated these
techniques with methods for navigation and planning
obtained from other research groups, modifying their
systems to use our common representation. In addition,
this integrated system includes methods for adapting
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maps to allow for robust navigation in dynamic
environments. As a result of this integration, the sys-
tem allows a robot to enter an unknown environment,
map it while remaining confident of its position, and
robustly plan and navigate within the environment in
real time.

In the next section, we describe the common repre-
sentation we use for integrating the various techniques.
In Sections 3 and 4, we present our results in local-
ization and exploration, along with our integration of
these techniques. The integration of a mechanism to
make the the map adaptive to changes in the environ-
ment is presented in Section 5. In Sections 6 and 7
we introduce the components for planning and reac-
tive navigation, and show how they integrate into the
system using our representation. In Section 8, we de-
scribe the overall integrated architecture and describe
experiments to verify that the resulting system works
robustly and repeatably, and present the results of these
experiments.

2. Unifying Representation

We use evidence grids (Moravec and Elfes, 1985)
as our spatial representation. An evidence grid is a
probabilistic representation which uses Cartesian grid
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cells to store evidence that the corresponding region in
space is occupied.

Each cell contains a real value in the range(−1, 1)
that represents the amount of evidence that a cell is
occupied (1) or unoccupied (−1), or indicates that there
is not enough information to determine the occupancy
of the cell.1

Evidence grids have the advantage of being able to
fuse information from different types of sensors. To
update an evidence grid with new sensor readings, the
sensor readings are interpreted with respect to a sensor
model that maps the sensor datum at a given pose to
its effect on each cell within the evidence grid.2 The
interpretation is then used to update the evidence in the
grid cells in real time using a probabilistic update rule.
Evidence grids have been created that use different
updating methods, most notably, Bayesian (Moravec
and Elfes, 1985), and Dempster-Shafer (Hughes and
Murphy, 1992). In the results reported here, Bayesian
updating is used.

In this study, we use sonar sensors in combination
with a planar structured light range finder. Sonar sen-
sors can provide only coarse evidence of occupied
space due to their wide field, but they are very effec-
tive at determining empty space, as an object anywhere
within that space would likely have resulted in a shorter
sensed range. The structured light range finder has the
opposite properties. It can sense occupied space at a
high resolution, but its horizontal, 2-D nature prevents
it from sensing objects above or below the structured
light plane. It therefore cannot be used with any confi-
dence to rule the intervening space as empty.

For the sonar sensor model, grid cells in an arc at
the sensed range receive a higher evidence of being
occupied, while cells between the sensor and the sensed
distance receive reduced evidence of being occupied.
Since a sonar sensor is more likely to detect an object
near its axis, cells closer to the sensor’s axis receive
larger adjustments than cells far from the axis. More
information on the sonar sensor model is available in
(Moravec, 1988). The sensor model for the structured
light range finder provides strong evidence at the cell
where the range datum lies, but makes no adjustment
to any intermediate cells.

In order to reduce the effect of specular reflections,
we have developed a technique we call laser-limited
sonar. If the laser returns a range reading less than the
sonar reading, we update the evidence grid as if the
sonar had returned the range indicated by the laser, in
addition to increasing the occupancy probability of the
cells actually returned by the laser.

Although evidence grids may represent a three-
dimensional space, our initial results examine a single
horizontal layer of the evidence grid that is located at
the height of the sensors.

We create two types of representations with the ev-
idence grids: short-term perception maps, and long-
term metric maps. The short-term maps store very
recent sensor data that does not contain significant
odometry error, and these maps are used for obstacle
avoidance and for localization. The long-term maps
represent the environment over time, and are used for
navigation and path-planning.

2.1. Long-Term Maps

A long-term map is an evidence grid representation of
the environment that is built from many sensor read-
ings, over a long time period in that region of space.
Typically, each long-term map will represent approxi-
mately one “room” in the environment. All sensor data
contributes to this map, and this map can be used by
other robotic processes, such as navigation and path
planning. Figure 1 shows an evidence grid of the robo-
tic laboratory at NCARAI. The white space represents
cells that have evidence of the cellnot being occupied
(free space), the darker areas represent evidence of the
cell being occupied, and the gray areas (like in the outer
parts of Fig. 1) indicate cells where neutral evidence
exists.

Figure 1. Long-term map of laboratory.
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Figure 2. A short-term perception map.

2.2. Short-Term Perception Maps

A short-term (or local) perception map represents the
immediate temporal and spatial environment of the
robot as an evidence grid. Only very recent sensor read-
ings of the robot contribute to the local perception map.
Several local perception maps of the robot’s environ-
ment may exist at the same time, each with a different
amount of sensor data contributing to the “maturity”
of that map. A local perception map is considered ma-
ture when it has accumulated the maximum desirable
amount of positional error. After a map has matured,
it is used and then discarded.

Figure 2 shows a local perception map recorded by
the robot while it was in the upper, left hand corner of
the room in Fig. 1. (The short-term map is rotated 45◦

with respect to the long-term map.) The white and dark
areas have the same meaning as in the previous figure.
Note that objects are present in the local perception
map that were not present when the long-term map
was created.

3. Learning Where You Are:
Continuous Localization

Evidence grids provide a uniform representation for
fusing temporally and spatially distinct sensor read-
ings. However, the use of evidence grids requires that
the robot be localized within its environment. Due to

odometric drift and non-systematic errors such as slip-
page and uneven floors, odometry errors typically
accumulate over time making localization estimates
degrade. This can introduce significant errors into ev-
idence grids as they are built. We have addressed this
problem by developing a method forcontinuous local-
ization, in which the robot corrects its position esti-
mates incrementally and on the fly (Schultz and Adams,
1998).

Continuous localization exploits the fact that the
robot’s odometric error usually increases gradually
over time, except in extreme cases such as when the
robot hits an obstacle. By re-localizing often, less effort
is required to correct the error in odometry.

Continuous localization builds local perception
maps of the robot’s local environment. These maps
typically contain very small amounts of error, and are
used to locate the robot within a global, long-term map
via a registration process. (In Section 4 we will de-
scribe how these long-term maps are created.) The re-
sults from this process are used to correct the robot’s
odometry.

Figure 3 shows the process of continuous localiza-
tion. The robot builds a continuous series of local per-
ception maps of its immediate environment. At the
beginning of each interval, a new local perception map
is created. During the time interval, new sensor data
are fed to the new map and the previous maps still in
memory. Each local perception map is of short dura-
tion and contains only a small amount of dead reckon-
ing error. After several time intervals, the oldest (most
“mature”) local perception map is used to position the
robot within the long-term map by registering the two

Figure 3. Continuous localization.
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maps and is then discarded. The number of local per-
ception maps that exist simultaneously and the amount
of data that is entered into each map are runtime pa-
rameters of the system.

The registration process involves a search in the
space of offsets in translation and rotation that mini-
mizes the error in the match between the short-term
and long-term maps. Since we expect the odometry
error to be small, we restrict the registration search to
be between±6 in. in translation and±2◦ in rotation.
(These values can also be changed as runtime para-
meters.) This restricted search space allows the search
to be completed quickly, specifically before the interval
expires and the next registration is attempted.

For each tested pose in the registration search, the
mature local perception map is rotated and translated by
the difference in pose (the offset) and a match score is
calculated based on agreement between the cell values
of the local perception map and the long-term map,
summed across all cells. The match scores for all tested
poses are then used to determine the offset that is likely
to have the highest match score. This offset is applied
to the robot’s odometry, placing it at the pose which
causes its local perceptions to best match the long-term
map. After the registration takes place the most mature
map is discarded, and a new local perception map is
created.

Two experiments were performed to determine the
effectiveness of continuous localization at reducing
odometric error, and to determine which of several
match functions and search functions yield better
results.

3.1. Effectiveness of Continuous Localization

The first experiment was conducted in a room measur-
ing roughly 26× 30 ft, open in the center with book-
cases, desks, and chairs around the edges of the room.
The robot was commanded to follow a square path near
the center of the room, 8 ft on each side, by traveling
to each corner’s coordinates in turn. Continuous local-
ization ran independently of the motion process, main-
taining 4 short-term perception maps and re-localizing
approximately every 8 ft (each mature short-term map
contained sensor data gathered during the most recent
32 ft of travel). The registration search method used
wascenter-of-masswith thebinarymatch function (de-
scribed in detail in Section 3.2).

Ten runs were made, with each run consisting of
80 laps around the square, a distance of 2560 ft

Figure 4. Effect of continuous localization.

(approximately 2 h duration). The distance between
the robot’s odometic position and its true position was
computed at the same corner for each lap. This mea-
sure includes rotational error, as motion causes error in
orientation to be reflected as an error in position.

The results are displayed in Fig. 4 as an average
across all ten runs. The robot’s non-localized pose (sim-
ple dead-reckoning) steadily drifted, growing with-
out bound. The localized curve shows that continuous
localization was able to keep the robot’s pose error at a
constant level, averaging 5.35 in. (136 mm) with a stan-
dard deviation of 2.08 in. (53 mm) across all points of
all runs.

3.2. Search and Match Functions

The second set of experiments were run to determine
the best of several search routines and matching func-
tions that could be used to register the long-term and
short-term perception maps.

In order to describe the search routines, it is useful
to first describe the search space in which they work.
The search space is all possible poses within±6 in. in
translation and±2◦ in rotation of the robot’s current
pose. This corresponds to a three dimensional space
with axesx, y and theta.

The two search routines tested were aniterated hill
climberand acenter-of-mass calculation.

The iterated hill climber search (designated in the
text and graphs asH ) uses an initial resolution to
divide the space into pose cells. The match between
the short-term perception map and the long-term map
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is computed for the robot’s pose and the center of the
26 immediately neighboring pose cells (33 − 1). If a
neighbor is found with a better match, then the process
repeats using that pose cell as the center. If no neighbor
is found to be better, then the hill climber re-divides the
space at double the resolution and repeats the process.
The search stops when a predetermined resolution is
reached. For the experiments reported here, an initial
step size of 1.5 in. and 1.25◦ was used, with a final
resolution of 0.375 in. and 0.3125◦.

The “center-of-mass” search (designated in this
paper asC) similarly divides the search space into pose
cells, but picks a random pose within each pose cell
and uses those random poses to compute a set of match
scores that are distributed throughout the search space.
The match scores are normalized to the range [0, 1],
raised to the fourth power to exaggerate the peak, and
then a center-of-mass calculation is performed for all
cells. The exaggeration of the peak is necessary be-
cause the match score is typically very flat within the
small search space, and without it the center-of-mass
calculation would always pick a pose near the center
of the search space (very close to the robot’s current
pose). The center-of-mass calculation is preferable to
simply choosing the pose cell with the maximum score
because the sparse sampling of the space (one pose per
pose cell) can create additional noise, and sampling at a
higher resolution would be computationally prohibitive
for real time operation.

The two match functions examined in this work are
designated thebinary match(referred to in this paper
asB), and theproduct match(referred to in this paper
asP). For both functions, the short-term map is aligned
with the long-term map according to the test pose cur-
rently being processed by the search. The evidence
from each grid cell of the short-term map is compared
to the evidence stored in the spatially-correspondent
grid cell of the long-term map, and the score summed
across all grid cells. Given the alignment for which the
match score is to be computed, ifCL is the correspond-
ing cell in the long-term map to the short-term map cell
CS, then we define the match score:

MatchScore=
∑
all CS

CellScore
(
CSi ,CLi

)
For each match function, the cell scores are de-

termined as follows. The binary match function (B)
compares the cells’ evidence for simple agreement. It
returns 1 if the cells agree occupied or agree empty,
and returns 0 if they disagree or if either cell has no

evidence (a value of 0):

CellScoreb
(
CSi ,CLi

) =


1 if CSi > 0,CLi > 0

1 if CSi < 0,CLi < 0

0 otherwise

The product match function (P) determines the
degree of agreement, taking the product of the cells’
actual evidence, each cell’s evidence being a value be-
tween−1 (empty) and 1 (occupied). Cells in agree-
ment produce a score in the range (0, 1], depending on
the confidence of their individual evidence. Cells in
disagreement produce a score in the range [−1, 0), and
if either cell has no evidence, a score of 0 is produced:

CellScorep
(
CSi ,CLi

) = CSi CLi

Early work with the continuous localization method
revealed that the search space had large regions in
which many registration poses resulted in the same
match scores. This effect was suspected of causing the
hill climber to give up early due to the inability to find a
better neighbor in the search space, resulting in a non-
optimal choice of pose. To counter this problem, inter-
polation (designated withI in the following text and
graphs) can be performed on the long-term grid cells,
such that the center of each grid cell retains its original
evidence, but other locations within that grid cell have
evidence values bilinearly interpolated with neighbor-
ing grid cells. When the search routine aligns the cen-
ter of the short-term map cells with the long-term map
cells, the interpolated evidence value of the long-term
map is used for computing the match score. Small vari-
ations in pose (map alignment) can thus yield differing
corresponding interpolated long-term map cell values
and thus differing overall match scores.

To evaluate the various combinations, the same en-
vironment was used as in the first experiment, with the
robot following the same square path and with pose er-
ror being measured at the same corner. Eight trials were
conducted, with each trial being a unique combination
of search routine, match function and interpolation. (In
the following figures and discussion, each trial is des-
ignated by the combination of lettersH,C, B, P, I in-
dicating which of the above techniques are being used.
For each trial, 5 runs were made (except CP and CPI
which had 10 runs). Each run consisted of 40 mea-
sured points (40 laps), with the pose error measured as
before.
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Figure 5. Different search and match functions compared.

Shown in Fig. 5 is the average pose error across all
runs for each trial. Error bars indicate a 95% confidence
interval. As a group, the center-of-mass combinations
were significantly better (p= .01) than those using the
hill climber. In all cases, the binary and product match
functions performed equivalently. Being of roughly
comparable computational cost, we have chosen the
product match function (P).

TheCP andCPI combinations did not have signifi-
cantly different performance, nor did interpolation have
any consistent effect overall. Interpolation’s smooth-
ing of the search space appears unnecessary when used
with the center-of-mass search, which performs its own
smoothing during the averaging process inherent to
it. Since interpolation incurs additional computational
cost without providing any additional benefit, theCP
combination was selected for future work.

3.3. Related Localization Approaches

Yamauchi (1996) uses evidence grids to perform oc-
casional localization by matching evidence grids. In
that study, evidence grids are created for each specific
“place” along the robot’s path. When the robot revis-
ited a specific place, it created a new evidence grid
to match against the evidence grid for that location to
correct its position.

An alternate search method by Lu (Lu and Milios,
1994) looks promising although it is intended for free-
form scans without the use of evidence grids, and the
effect of using it on the artificially rasterized data of
evidence grids is an open question.

In an approach similar to that presented here,
Schiele and Crowley (1994) compared grid matching
to other localization methods that included detecting
and matching edge segments in the evidence grids.
Their work did not give quantitative results on matching
evidence grids, nor did it examine various methods for
matching or searching for poses. The work presented
here seeks to determine the sensitivity of grid matching
to changes in some of its fundamental parameters and
determine suitable values for them.

Many localization techniques rely on structures in
the environment that can serve as landmarks, for ex-
ample, vertical structures such as door posts and poles
(Chenavier and Crowley, 1992), large planes (Horn and
Schmidt, 1995), geometric beacons (Leonard, 1992),
or regions classified by type (e.g., corridor, intersec-
tion, doorway, room) aided by assumptions about the
geometry of such structures (Koenig and Simmons,
1998).

Using specific landmarks often requires the robot to
perform special maneuvers in order to locate or rec-
ognize these landmarks (Bauer, 1995). In our work,
such maneuvers are unnecessary. Because our method
uses all available sensor data without the require-
ment of specific features in the environment, the robot
can localize itself transparently while carrying out its
assigned task.

4. Learning New Environments:
Frontier-Based Exploration

In preceding sections we have presented a method for
localization that requires a long-term map of the en-
vironment. In additional to localization, other robotic
tasks also generally require some sort of map. In order
to operate in previously unknown environments with-
out assistance, the robot therefore needs the ability to
explore and build maps autonomously.

We have developed an exploration strategy based on
the concept of frontiers, regions on the boundary be-
tween open space and unexplored space. When a robot
moves to a frontier, it can see into unexplored space
and add the new information to its map. As a result, the
mapped territory expands, pushing back the bound-
ary between the known and the unknown. By mov-
ing to successive frontiers, the robot can constantly in-
crease its knowledge of the world. We call this strategy
frontier-based exploration(Yamauchi, 1997).

A process analogous to edge detection and re-
gion extraction in computer vision is used to find the
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Figure 6. Frontier detection: (a) evidence grid, (b) frontier edge
segments, and (c) frontier regions.

boundaries between open space and unknown space in
the evidence grid. Any open cell adjacent to an un-
known cell is labeled a frontier edge cell. Adjacent
edge cells are grouped into frontier regions. Any fron-
tier region above a certain minimum size (roughly the
size of the robot) is considered a frontier. Figure 6(a)
shows an evidence grid built by a real robot in a hall-
way adjacent to two open doors. Figure 6(b) shows
the frontier edge segments detected in the grid. Figure
6(c) shows the regions that are larger than the minimum
frontier size. The centroid of each region is marked by
crosshairs. Frontier 0 and frontier 1 correspond to open
doorways, while frontier 2 is the unexplored hallway.

Once frontiers have been detected within a particu-
lar evidence grid, the robot attempts to navigate to the
nearest accessible, unvisited frontier. When the robot
reaches its destination (or if the navigation routine de-
termines that the robot cannot get to the frontier), it
performs a sensor sweep using laser-limited sonar, and
adds the new information to the evidence grid. The
robot then detects frontiers in the updated grid, and
navigates to the nearest remaining accessible, unvis-
ited frontier.

We have demonstrated that frontier-based explo-
ration can successfully map real-world office environ-
ments (Yamauchi, 1997), and that this technique scales
well for use in multi-robot environments (Yamauchi,
1998). In relatively small environments, such as a sin-
gle office, frontier-based exploration was capable of
mapping accurately using dead reckoning for position
estimation. However, for larger environments, dead
reckoning errors would generate large errors in the
generated maps. In the next section, we show how
continuous localization and frontier-based exploration
were integrated to allow accurate mapping of large
environments.

4.1. Integrated Exploration and Localization

Frontier-based exploration provides a way to ex-
plore and map an unknown environment, given that
a robot knows its own location at all times. Continuous
localization provides a way for a robot to maintain an
accurate estimate of its own position, as long as the
environment is mapped in advance. The question of
how to combine exploration with localization raises a
“chicken-and-egg” problem: the robot needs to know
its position in order to build a map, and the robot needs
a map in order to determine its position. By integrating
continuous localization and frontier-based exploration,
we can solve this problem, allowing the robot to explore
and build a map while maintaining an accurate estimate
of its position (Yamauchi et al., 1998).

This works because the exploration strategy will only
take the robot as far as the edge of its “known world,”
such that about half of its sensors can still see the old,
known environment, which can be used to localize,
while its other sensors are extending the map into the
unknown environment. Frontier-based exploration and
continuous localization run in parallel. Whenever the
robot arrives at a new frontier, it adds to the map of
the environment and passes this map to continuous lo-
calization. Continuous localization uses this map of
the known world as its long-term map. As the robot
navigates to the next frontier, continuous localization
constructs local perception maps based on the robot’s
recent perceptions, and compares them to the long-term
map to correct the robot’s position estimate. When the
robot arrives at the new frontier, its position estimate
will be accurate, and new sensor information will be in-
tegrated at the correct location within the map.

4.2. Effectiveness of Integrated Exploration
and Localization

To measure the effectiveness of our combined system
we conducted a set of experiments in a hallway envi-
ronment (70 ft long). This hallway, like many of those
in office buildings, is cluttered with obstacles, and also
contains large alcoves.

We initially constructed a ground truth grid (Fig. 7)
for a hallway environment by manually positioning
the robot at viewpoints throughout the hallway and
sweeping the robot’s sensors. This ground truth grid is
used only to measure the accuracy of the learned map,
and not as an aid to exploration or localization. The
five Xs correspond to the robot’s starting locations for
the exploration trials, and the four crosshairs indicate
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Figure 7. Ground truth evidence grid for hallway.

Figure 8. Map learned without localization.

reference points for measuring map error. By measur-
ing the difference between the actual position of these
reference points and the position of these points in the
learned map, the amount of positional error incorpo-
rated into the learned map can be estimated. We refer
to this metric as the reference point error for the learned
map.

Our first set of trials measured the performance of
frontier-based exploration without continuous local-
ization. Five exploration trials were conducted from
starting locations distributed throughout the hallway.
Figure 8 shows a map learned with the robot starting
at the position marked with theX. As the robot ex-
plored, positional error constantly accumulated. This
particular map has a reference point error of 7.0 ft.

Frontier-based exploration without localization was
successful at mapping the entire hallway in 60% of the
trials. In the two unsuccessful trials, the positional error
was sufficiently large to prevent further exploration. In
the successful trials, the average reference point error
for the learned maps was 7.9 ft.

Our second set of trials measured the system’s per-
formance using frontier-based exploration in combina-
tion with continuous localization. We used the same
hallway environment, the same starting points for
the robot, and the same ground truth evidence grid.
Frontier-based exploration again directed the robot to
explore the environment, but continuous localization

Figure 9. Map learned with localization.

also regularly updated the robot’s position estimate as
the robot explored.

Figure 9 shows the map learned with continuous lo-
calization enabled starting from the same initial posi-
tion as in Fig. 8. This map has a reference point error of
only 0.4 ft, which is equal to the width of a single grid
cell. The entire hallway was successfully mapped in
all of the trials, and the reference point error averaged
over the five learned maps was 2.1 ft.

4.3. Related Exploration Approaches

While other systems have been developed for mobile
robot exploration, they have been limited to constrained
environments, e.g., where walls are either parallel or
perpendicular to each other (Lee, 1996; Thrun and
Bücken, 1996) and sufficiently uncluttered as to allow
reliable line fitting to the sensor data (Thrun, 1998),
or where the entire environment can be explored using
wall-following (Mataric, 1992). Our system differs in
being able to explore unstructured environments where
walls and obstacles may be of any shape and orienta-
tion.

5. Learning Dynamic Environments:
Adaptive Long-Term Maps

In addition to initial mapping of an unknown environ-
ment, we are also interested in learning and represent-
ing changes that occur after the robot has finished ex-
ploration but do not require complete re-exploration.
These changes can include opened or closed doors,
moved furniture, temporary storage of bulky items, and
stationary people. To this end, we have extended the
continuous localization algorithm to allow the long-
term map to be updated with recent sensor data from
the short-term perception maps, making the long-
term map adaptive to the environment (Graves et al.,
1997).
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In the continuous localization process, after the ma-
ture short-term perception map is used to correct the
robot’s dead reckoning, the odometry correction is also
applied to the short-term perception map itself. Its cells
are then combined with the spatially corresponding
cells of the long-term map using Bayesian updating
(dashed lines in Fig. 3). The cells are weighted by a
learning rate that controls the effect the short-term map
has on the long-term map.

Because the short-term maps are constructed over
time, the correction produced by the registration actu-
ally corrects the average error accumulated during that
time. If there is systematic pose error (e.g., due to the
mechanics of the robot), then the correction reflects the
amount of error at some point in the recent past, not
the current error. A small amount of error will there-
fore remain in the pose-corrected mature short-term
map and will be added into the long-term map, causing
a slow blurring of the long-term map.

5.1. Effectiveness of Adaptive Long-Term Maps

Two experiments were run to determine, for a changing
environment, if the mean odometry error is comparable
under both the learning and non-learning techniques,
if the learning technique could provide accurate maps
of the modified environment, and the effect of the slow
long-term map blurring on localization.

The first experiment established a mean odometry
error for each localization technique when the long-
term map represented the true room configuration. The
experiment was composed of one learning trial and
one non-learning trial, each having eight runs. All runs
used the same room configuration. Each run consisted
of the robot beginning at a randomly determined pose
and then wandering around the room randomly for fifty
minutes, avoiding obstacles while continuous localiza-
tion corrected its odometry. The robot stopped to allow
recording of its internal odometry and true location at
1 min intervals. These paired pose readings allowed us
to compute the error in the robot’s odometry over the
course of each run.

The second experiment tested each technique’s abil-
ity to provide accurate localization when the a priori
long-term map significantly differed from the robot’s
true environment. Before each run, eight objects (such
as chairs, desks, etc.) were moved in the real world,
though their positions in the a priori map did not
change. Each object was displaced 30 in. in a random
direction from its original position and then rotated a

Figure 10. Effect of adaptive long-term map on localization.

random amount between−30◦ and+30◦ from the orig-
inal orientation. During each run the objects remained
static. For each of eight distinct room configurations,
one learning and one non-learning run were conducted.
The learning rate was set to 10% (a weight of 0.1) and
the random wandering scheme from the first exper-
iment was used. Again, the robot was stopped each
minute to record its internal odometry and true loca-
tion.

The results are summarized in Fig. 10. Each data
point in the graph represents the average of the eight
runs for each of the learning (dotted line) and non-
learning (solid line) trials. The data points on the left
show the average translational error when the true room
did not deviate from the a priori map, and the data
points on the right show the experiments where the
room differed significantly from the a priori map.

As expected, in cases where the room had no
changes, continuous localization with learning per-
formed no better than the non-learning version (4.91 in.
of translational error compared to 4.54 in. of error).

In the second experiment, where the room differed
significantly from the map, the learning technique’s
mean odometry error of 9.29 in. performed marginally
better than the non-learning result of 10.02 in. of error.

In addition to the odometry data collected, the long-
term maps used during the learning experiments were
recorded at each update. These were used to produce
an animation of the state of the long-term map while it
was adapting to the environment in one of the learning
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Figure 11. (a) Initial long-term map, and (b) Long-term map after
several minutes.

trials with relocated objects. In Fig. 11(a), the initial
frame of this animation is shown. This map is accurate
for a room with no difference from the original map,
but is incorrect for the current, altered room of this run.
In Fig. 11(b), a frame from several minutes into the run
shows how the map quickly converged to the true room
configuration.

Three observations can be made from these results.
First, the original, unmodified continuous localiza-
tion technique performed much better than anticipated
when the true room deviated from the a priori map
used for localization. This robustness seems to be a re-
sult of the way registration is performed, which uses
a match score that tends to ignore differences between
the maps, and concentrates on similar regions. Note
that in these experiments, furniture was moved, but not
all of the furniture nor the walls of the room. If the
walls of the room were moved, we would expect to see
a corresponding error in the localization.

A second observation is that with learning, the map
quickly adapts to the changes in the environment, and
learns the correct room layout. In the animations, it is
possible to see rapid changes in the evidence grid as
the map adapts due to the new sensor readings.

The third observation, noticed from the animations,
is that after a long period of updating the odometry,
some noise would start accumulating in the long-term
map because of errors in the content and registration
of the short-term map (the short-term maps are only
localized to an average error of about 5 in. as exhibited
in Section 3.1). This effect was noticed only after long
periods of updating (30 to 60 min after the map had
adapted to reflect the relocated objects new positions).
Despite the accumulated noise when learning, for each
room configuration the robot’s pose was kept to the
same accuracy whether learning was employed or not.

6. Learning to Get Around: Trulla

While experiments up to this point used simple navi-
gation schemes, we have extended our system to use
Trulla, a propagation-based path planner (Hughes et al.,
1992). Trulla uses a navigability grid to describe which
areas in the environment are navigable (considering
floor properties, obstacles, etc.). In order to integrate
Trulla into our system, we note that Trulla’s notion of a
navigability grid is similar to our long-term metric map,
providing an opportunity to use our common evidence
grid representation to support navigation.

Trulla works as follows: beginning from the cell
containing the goal, the neighboring cells are explored
outward, and each is assigned its own subgoal. Each
newly tested cell is assigned the closest subgoal of its
already-tested neighbors, if that subgoal is visible from
the new cell. If none of the neighbors’ subgoals are di-
rectly visible, then the new cell lies around the corner
of an obstacle, and the neighbor with the closest sub-
goal is itself assigned as the subgoal of the new cell.
In this manner, the shortest paths to the goal are prop-
agated out to all cells. Since each cell can only point
to a closer subgoal, the paths that Trulla produces do
not suffer from local minima. Once the subgoals are
determined, each cell is assigned the direction to its
subgoal, resulting in a field of vectors that point in the
direction of the shortest path to the goal (see Hughes
et al. (1992) for more details on Trulla).

We have replaced Trulla’s navigability grid with
our long-term map—cell occupancy probabilities are
mapped to navigability values. As the long-term map
adapts to changes in the environment, as described in
Section 5, Trulla can update its paths in real time to
reflect the robot’s current knowledge about the world.

Figure 12(a) shows an example of a native Trulla
navigability grid and the vectors to get from any grid
cell to the goal, located in the upper, left-hand cor-
ner. Figure 12(b) shows the same area as represented
by the long-term map. Figure 12(c) shows the vectors
produced for the same goal after a change has occurred
to the environment and the long-term map has been
updated by continuous localization.

Although the long-term map can adapt to somewhat
rapid and persistent changes in the environment, very
fast changes, such as a person walking through the
room, will not appear in the long-term map. Paths gen-
erated by Trulla will avoid persistent obstacles but are
not sufficient to prevent collisions with transient ob-
stacles. In related work, Trulla has previously been
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Figure 12. Paths generated by Trulla: (a) native representation, (b) paths using long term map, and (c) paths after adaption.

combined with reactive navigation to avoid collisions
with unmodeled obstacles (Murphy et al., 1996). In
the work reported here, Trulla is combined with Vector
Field Histogram navigation to avoid transient obstacles
and to perform reactive navigation.

7. Reactive Navigation: VFH

Vector Field Histogram (VFH) is a reactive navigation
method that uses recent, local sensor perception to drive
a robot towards a specified goal (Borenstein and Koren,
1991). It was chosen over other methods because of its
performance, and because it uses a similar representa-
tion of the environment, making integration easier.

VFH uses the Histogrammic In-Motion Mapping
(HIMM) method to construct an occupancy grid from
sensor readings filtered through a simple sensor model.
The area of the HIMM grid immediately surrounding
the robot is divided into arcs, and for each arc an object

Figure 13. Integration of vector field histogram.

density is computed as the weighted sum of the occu-
pancy values of the grid cells contained by the arc.

Given a goal, VFH searches for the contiguous set
of arcs with sufficiently low object density which best
matches the direction to the goal. Because the method
models the robot as a point object, the free path cannot
be blindly followed—the robot’s body would collide
with the edges and corners of obstacles.

To compensate for this assumption, the HIMM grid
is also used to compute a potential field. The resulting
repulsion vector is added to the vector from the chosen
set of arcs to provide a force away from nearby obsta-
cles while generally heading in the chosen direction.
The robot is steered in the direction of this summed
heading vector.

In our integration, illustrated in Fig. 13, we replace
the HIMM occupancy grid with our unifying evidence
grid representation, specifically, the short-term per-
ception map produced by continuous localization. The
short-term perception map allows VFH to consider all
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sensors, and yields a more consistent and less noisy
picture of the robot’s immediate environment.

8. Integrated Architecture

Figure 14 illustrates the complete architecture. When
heading into an unknown environment, the robot au-
tonomously maps the environment, producing the ini-
tial long-term map.3 Continuous localization runs in
parallel, regularly correcting the odometry of the robot.
While continuous localization maintains the robot’s
odometry, it regularly produces the short-term per-
ception maps and updates the long-term map, both
of which are sent to a separate Map Server process.
The Map Server allows the sensor-fused perceptions
of the immediate environment to be shared among the
various processes, reducing the sensor bottleneck and
replicated sensor data gathering and fusion code.

The user (or possibly some other high-level process)
specifies a navigation goal to Trulla, which consults
the Map Server for the current long-term map and com-
putes the vector field describing the best path from each
cell to the goal. Trulla sends the vector field to VFH,
which uses the robot’s current position to index the
vector field and get the direction to the goal. VFH then
retrieves the short-term map from the Map Server, com-
putes the object density and potential field, and steers
the robot. VFH repeats this sequence until the goal is
reached.

While VFH is steering the robot, continuous local-
ization continues to correct odometry and produce

Figure 14. Architecture of integrated system.

short-term and adapted long-term maps. When a new
long-term map is available, Trulla replans and sends
the new vector field to VFH. When new vector fields
or a new short-term map is available, VFH uses them
to reactively navigate along the current path to the
goal.

8.1. Effectiveness of Integrated System

To demonstrate the capability of our integrated system
to plan and navigate reliably in environments with un-
expected changes, we conducted four experiments. All
four experiments used an environment of two rooms
separated by a common wall that contained two pas-
sages through which the robot could move from one
room to the other. The robot was required to navigate
from one room to the other starting with a long-term
map learned through exploration. One of the passages
was then changed (blocked or unblocked), requiring
continuous localization to adapt the map and Trulla
to replan accordingly, with VFH providing reactive
navigation.

In the first two experiments, the system was given
the long-term map shown in Fig. 15(a), with both pas-
sages open. However, the left passage was physically
blocked as shown in Fig. 15(b). This was the “unex-
pected blockage” configuration. In the second two ex-
periments, the robot was given the long-term map from
Fig. 15(b), which showed the left passage blocked, but
the environment was actually configured as shown in
Fig. 15(a), with both passages open. This was the “un-
expected opening” configuration.

Each room configuration was repeated using learn-
ing rates of 0.1 and 0.5. Ten runs were performed
for each experiment, with varying start and goal loca-
tions chosen near the left side of the environment to

Figure 15. Initial room maps: (a) both passages open, and (b) left
passage blocked.
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ensure the robot would have an opportunity to sense
the changes.

We expected that the higher learning rate would yield
faster adaptation and replanning and more blurring
around the edges of the map, while the lower learning
rate would take longer to adapt but cause less blurring of
the map edges. The match of the left passage area of the
adapted map with the a priori map for the actual config-
uration (how well it learned the change) was expected
to be roughly the same with either learning rate.

For the unexpected blockage experiments, the robot,
as expected, planned a path through the left opening,
which its map indicated was open. Approaching the
blockage, VFH detected and tried to navigate around
the blockage. Continuous localization accumulated
evidence of the blockage and updated the long-term
map. When the long-term map sufficiently represented
the blockage, Trulla replanned its next path through the
right passage, which VFH then followed to the goal.
The run ended when the robot reached the goal. For the
unexpected opening experiments, the robot planned a
path through the right passage according to its map, un-
aware of the shortcut. As the robot passed by the closer
opening on its way to the planned passage, sensor read-
ings showing that the left passage was in fact open were
obtained as chance permitted, and the long-term map
updated. After one or more traversals past the opening,
the long-term map indicated the left passage was open
and Trulla planned a path through it as the shorter route.

In both the unexpected blockage and unexpected
opening experiments, the runs continued until the robot
actually traversed the unexpected opening. In the two
unexpected blockage experiments, the change is con-
sidered learned when the planned paths change enough
to cause the robot to follow a path through the right pas-
sage, even if the left passage is not completely blocked
off in the long-term map. In the two unexpected open-
ing experiments, the change is considered learned when
Trulla can first plan a path through the opening in the
current direction of travel which has a significant effect
on the overall vector field, even if the robot’s current
position at that time causes it to instead follow a path
through the right passage.

All runs were completed without any collisions.
During one run of the unexpected opening experiment
with learning rate 0.1, the robot’s odometry was cor-
rupted (due to a communication network error) and the
robot was unable to complete the run. All results for
that experiment are based on the nine successful runs.

Figure 16 shows the effectiveness of learning in
terms of the match between the learned maps and the
actual environment configuration as represented by the
initial maps. Values shown are the percentage of cells
in agreement—occupied, empty, or unknown. The av-
erage time to learn the change in the environment (as
defined above) and the average error in the robot’s pose
(periodically measured during each run) are shown in
Table 1.

The lower set of lines in each graph of Fig. 16 illus-
trates the percentage of matching cells in the local area
around the left passage between the adapted map and
the initial long-term map which included the change.
Initially there is a low match score because the robot
started with a map that did not match the environment,
but the match improves over time as the long-term map
adapts to the true state of the environment. Although
the match score would ideally rise to 100%, it does
not because of blurring and incomplete learning. The
blockage is incompletely learned because the robot can
only see the front until it replans through the alternate
opening and passes to the rear of the blockage. The
upper set of lines in each graph shows the match be-
tween the remainder of the adapted map and the initial
long-term map. Before learning has had any effect the
match is perfect, but over time the edges blur from the
inaccuracies in pose.

As shown in Table 1, for a given learning rate, learn-
ing the blocked passage case was faster than learning in
the unexpected opening case because the robot could
gather a lot of sensor data while VFH was trying to
navigate the blocked passage prior to the replanning.
Learning that the passage was open took longer be-
cause it was dependent on getting occasional readings
of the area while the robot followed its path through
the other passage.

As expected, the learning rate had a significant ef-
fect on the ability to quickly adapt to changes. A higher
learning rate results in a faster ability to learn the
changes in the environment. In addition, there are no
significant differences in the pose error as corrected by
continuous localization.

By examining the differences across the 10 runs for
each of the four experiments, we can examine the abil-
ity of the system to perform reliably and repeatably. As
can be seen within each graph in Fig. 16, the difference
among the runs was very small. The shape of the curves
is almost identical, with the main difference being in
the length of time required to notice the difference.
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Figure 16. Effect of learning on long-term maps: (a) unexpected blockage, rate 0.1, (b) unexpected blockage, rate 0.5, (c) unexpected opening,
rate 0.1, and (d) unexpected opening, rate 0.5.

9. Conclusion

We have created a system which allows robot can enter
a previously unknown indoor environment, map that
environment while maintaining accurate position in-
formation, and robustly plan and navigate within that
environment. The system is designed to be adaptive to

Table 1. Effects of learning rate: summary.

Learning rate

0.1 0.5

Unexpected avg time: 123 sec 46 sec

Blockage avg pose error: 10.3 in 10.3 in

Unexpected avg time: 493 sec 120 sec

Opening avg pose error: 7.8 in 6.4 in

rapid changes in the environment. Using a unified rep-
resentation for localization, exploration, reactive nav-
igation and planning components enhanced the abil-
ity to integrate these components, allowing for more
efficient data reuse. The common representation not
only helped in integrating our own modules, but also
made it easy to integrate the modules of other research
groups.

Experimental results were presented for the effect
of the learning rate on adaptation to changing environ-
ments, and also to show that the system performs reli-
ably and repeatable. Work continues on a method for
storing, identifying and using previously learned en-
vironments, using a topological representation for the
overall world in which the robot works. In addition, we
are enhancing the algorithms to eliminate an assump-
tion that the robot is on level ground.
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Notes

1. In the Bayesian method, a value of 0 indicates that being occupied
or being empty are equally likely, and this value is generally used
as thepriors. In the Dempster-Shafer method, not having enough
evidence can be explicitly modeled.

2. These sensor models may be learned or may be explicitly mod-
eled. Our results use a simple, untuned, explicit model.

3. We are currently extending the system to recognize previously
explored environments in which case the map is simply retrieved.
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