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Abstract.  Effective collaboration between robots and humans requires the use of an 
efficient interface whereby a human can communicate and interact with a robot 
almost as efficiently as he/she would with another human.  In this interaction the 
human may act as a supervisor and/or collaborator with the robot.  Human-robot 
collaboration is facilitated by a number of capabilities built into the robot and robot 
interface, including voice recognition, natural language and gesture understanding, 
and behaviors supporting dynamic autonomy.  The inclusion of cognitively plausible 
representations and processes aboard the robot provides a further basis for 
facilitating collaboration between humans and robots, thereby reducing the human 
effort required to adapt to limitations of the robot as a non-human collaborator. 

 
 

Introduction 
 
Effective collaboration between robots and humans in accomplishing complex tasks 
requires the use of an efficient interface whereby a human can communicate and interact 
with a robot almost as efficiently as he/she would with another human.  This level of 
interaction requires a number of capabilities not often found in deployed robotic systems 
today.  These include voice recognition with integrated natural language understanding, 
recognition of human gestures (such as pointing to objects), and built-in behaviors for 
sequencing and executing tasks requiring various levels of control by  and interaction 
with  a human supervisor (we refer to this as dynamically adjustable autonomy, or 
dynamic autonomy).  Use of cognitive models aboard the robots may further enhance the 
human-robot interaction through use of a common set of representations, process steps and 
process times for processing sensory data, and expectations shared by both human and 
robot. 
   
 
1.  Dynamic Autonomy  
 
Dynamic autonomy allows the robot to dynamically adjust its behaviors depending upon 
and appropriate to the task(s) at hand [1].  The human operator is able to interact with the 
robot in a human-centric manner by providing verbal commands and gestures to the robot 
to perform tasks requiring varying levels of human interaction.  Some circumstances may 
require very fine-grained level operator control, while others may require less precision.  
Dynamic autonomy used in mobile robots provides a more flexible and operator-friendly 
interface and makes the robots more versatile. 



 

 We support dynamic autonomy in our system through a number of robot behaviors 
of varying complexity including collision-free navigation, path following, exploration, 
automatic prioritization of multiple command directives, and feedback from the robot to the 
operator. Feedback is provided by voice synthesis and through text strings requesting 
clarification if the robot isn’t able to understand the command(s).  Operation of the natural 
language interface with the gesture interpretation process and other command input modes 
is discussed in greater detail in the section describing the robot’s integrated goal-driven 
architecture. Figure 1 shows our human-centric multimodal interface for autonomous 
mobile robots.  
 

 
Figure 1.  Human-Centric Multimodal Interface 

 
Using this interface, commands may be communicated to the robot in a variety of human-
centric ways including verbally, through touch (on a PDA, touch tablet or keyboard), and 
through gesturing with hands and arms.  The robot passes a variety of information back to 
the operator such as sensor readings, video, navigation maps built using its array of on-
board sensors [2], and the status of commands sent to it. 
 
2.  Understanding Gestures 
 
One of the key modes of interaction with the robot is through the use of gestures.  Several 
types of gestural interfaces have been developed and used in the past.  For example, one 
gestural interface uses stylized gestures of arm and hand configurations (“natural” gestures) 
[3], while another is limited to the use of gestural strokes on a PDA display (“synthetic” 
gestures) [4]. In our system we combine both of these approaches, allowing both “natural” 
and “synthetic” gestures.  Our stylized gesture interface utilizes a structured-light 
rangefinder to detect the positions of the hands over several consecutive frames to generate 
trajectories for the gesture command.  The structured-light rangefinder emits a horizontal 



 

plane of laser light.  A camera mounted on the robot just above the laser is fitted with an 
optical filter which is tuned to the frequency of the laser.  The camera registers the 
reflection of the laser light off of objects in the room and generates a depth map (XY) based 
upon location and pixel intensity.  The data points for bright pixels (indicating closeness to 
the robot) are clustered. If a cluster is significantly closer to the robot than background 
scenery, it is interpreted as being a hand.  Hand locations are stored from several 
consecutive frames, and the positions of the hands are used to generate trajectories for the 
gesture command.  Each trajectory is analyzed to determine if it represents a valid gesture. 
The command corresponding to the matched gesture is then queued so that the multimodal 
interface, upon receiving another command, can retrieve the gesture from the gesture queue 
and combine it with the verbal command in the command interpretation system. 
 
3.  Natural Language Interface 
 
Our natural language interface combines a commercial speech recognition front-end with 
an in-house developed deep parsing system [1].  ViaVoice is used to translate the speech 
signal into text, which is then passed to our natural language understanding system, 
Nautilus, to produce both syntactic and semantic interpretations.  The semantic 
interpretation, interpreted gestures from the vision system, and command inputs from the 
computer or other interfaces are compared, matched and resolved in the command 
interpretation system (Figure 1).   
 Using our multimodal interface the human user can interact with the robot using 
both natural language and gestures.  The semantic interpretation is linked, where necessary, 
to gesture information via the Gesture Interpreter, Goal Tracker/Spatial Relations 
component, and Appropriateness/Need Filter, and an appropriate robot action or response 
results. For example, the human user can ask the robot “How many objects do you see?”  
ViaVoice analyzes the speech signal, producing a text string.  Nautilus parses the string and 
produces a representation something like the following, simplified here for expository 
purposes. 
 
(ASKWH  
  (MANY N3 (:CLASS OBJECT) PLURAL) 
 (PRESENT #:V7791                                                                                       (1)   
  (:CLASS P-SEE)                                                    

  (:AGENT (PRON N1 (:CLASS SYSTEM)YOU))  
   (:THEME N3)))  
 

The parsed text string is mapped into a kind of semantic representation, shown here, in 
which the various verbs or predicates of an utterance (e.g. see) are mapped into 
corresponding semantic classes (p-see) that have particular argument structures (agent, 
theme). For example “you” is the agent of the p-see class of verbs in this domain and 
“objects” is the theme of this verbal class, represented as “N3”—a kind of co-indexed trace 
element in the theme slot of the predicate, since this element is fronted in English wh-
questions.  If the spoken utterance requires a gesture for disambiguation, as in for example 
the sentence “Look over there,” the gesture components obtain and send the appropriate 
gesture to the Goal Tracker/Spatial Relations component which combines linguistic and 
gesture information.   
 The effectiveness of the natural language and gesture interfaces are further 
enhanced through use of a spatial reasoning component which allows humans and robots to 
communicate using spatial terms.  The spatial reasoning component is described next. 



 

4.  Spatial Reasoning 
  
Spatial reasoning is an important element of a human-centric interface because humans 
often think in terms of relative spatial positions, and use such relational linguistic 
terminology naturally in communicating with one another.  Our spatial reasoning 
component builds upon an existing framework of natural language understanding with 
semantic interpretation [5], and utilizes on-board sensors for detecting objects and map-
building through use of evidence grids.   
 Understanding spatial linguistic terms allows for more efficient and natural control 
of a dynamically autonomous mobile robot.  For example, we may want to give the robot a 
command such as “Go down the road 100 feet, turn right behind the building and proceed 
ahead 20 feet.  Then go into active surveillance mode.”  Or, in an office setting, “Go 
between the table and the chair, through the doorway, and down the hall to the left 50 feet.”   
Spatial reasoning increases the dynamic autonomy of the system by giving the operator a 
less restrictive vernacular for commanding the robot. 
 The spatial reasoning component of the multimodal interface allows the robot to 
provide feedback to the human operator using natural spatial terminology.  The human is 
able to query the robot about the relative spatial positions of objects in the environment, 
and the robot is able to respond using spatial terms.  This is demonstrated in the following 
dialogue.  
 
 Human: “Tell me what you see.”   
 Robot: “I see 3 objects.”   
 Human: “Where are they located?”  
 Robot:   “Object A is 5 feet in front of me.  Object B is 10 feet in front of me and  
       to my right. Object C is 20 feet to my left.” 
 
This natural spatial language is used to disambiguate spatial references by both humans and 
robots [5]. It provides a common interpretation for location expressions, such as “left” and 
“right”, as well as other relative directions.  For example, if the human commands the 
robot, “Turn left,” the robot must understand whose left is being referred to, the human’s or 
the robot’s.  Use of spatial language between humans and robots is currently under 
investigation by our group at NRL through human-factors experiments [6] where novice 
users provide instructions to the robot for performing various tasks where spatial 
referencing is required.  This work will result in development of a common language for 
spatial referencing geared to the needs and expectations of untrained and non-expert 
operators.  This common spatial language will be incorporated into the multimodal 
interface. 
 
5.  Cognitive Robots 
 
Spatial reasoning is only one aspect of incorporating greater cognitive capabilities into the 
robots.  Achieving effective collaboration between humans and robots will require the use 
of cognitive models on-board the robots. Embodied cognition, using cognitive models of 
human performance to augment a robot’s reasoning capabilities, facilitates human-robot 
interaction in two ways.  First, the more a robot behaves like a human being, the easier it 
will be for humans to predict and understand its behavior and interact with it.  Second, if 
humans and robots share at least some of their representational structure, communication 
between the two will be much easier.  For example, both in language use [7] and other 
cognition [8], humans use qualitative spatial relationships such as “up” and “north”.  It 



 

would be difficult for a robot using real number matrices to represent spatial relationships 
and transformations without also endowing it with qualitative representations of space.  In 
[9] and [10] we used cognitive models of human performance of the task to augment the 
capabilities of software agents. 
 In this effort we used two cognitive architectures based on human cognition for 
certain high-level control mechanisms in our robots.  These cognitive architectures are 
ACT-R [11] and Polyscheme [12]. 
 ACT-R is one of the most prominent cognitive architectures to have emerged in 
the past two decades as a result of the information processing revolution in the cognitive 
sciences.   Also called a unified theory of cognition, ACT-R is a relatively complete theory 
about the structure of human cognition that strives to account for the full range of cognitive 
behavior with a single, coherent set of mechanisms.  Its chief computational claims are: 
first, that cognition functions at two levels, one symbolic and the other subsymbolic; 
second, that symbolic memory has two components, one procedural and the other 
declarative; and third, that the subsymbolic performance of memory is an evolutionarily 
optimized response to the statistical structure of the environment. These theoretical claims 
are implemented as a production-system modeling environment.  The theory has been 
successfully used to account for human performance data in a wide variety of domains 
including memory for goals [13], human computer interaction [14], and scientific discovery 
[15].  In our system we use ACT-R to create cognitively plausible models of appropriate 
tasks for the robots to perform. 
 Second, we used Cassimatis’ Polyscheme architecture [12] for spatial, temporal 
and physical reasoning.  The Polyscheme cognitive architecture enables multiple 
representations and algorithms (including ACT-R models), encapsulated in “specialists”, to 
be integrated into inference about a situation.  We used an updated version of the 
Polyscheme implementation of a physical reasoner to help keep track of the robot’s 
physical environment. 
 
5.1 Perspective-Taking 
 
One feature of human cognition that is very important for facilitating human-robot 
interaction is “perspective-taking”. There is extensive evidence that human perspective-
taking is an important cognitive ability even for young children.  In order to understand 
utterances such as “the wrench on my left”, the robot must be able to reason from the 
perspective of the speaker what “my left” means. Our Polyscheme system uses a 
combination of AI techniques (called specialists) including reactive systems, neural 
networks, constraint graphs, rule-based systems, and category hierarchies.  These 
specialists are able to simulate other times, places, perspectives and possible worlds.  For 
example, using Polyscheme’s mental simulation capabilities to perform perspective taking, 
if someone says “Give me the wrench on my left,” Polyscheme creates a “possible world” 
for the speaker, identifies what wrench is on its left, and “gives” it to the speaker.   

 For both ACT-R and Polyscheme we have created preliminary models that can 
perform simple spatial perspective taking tasks.  There seem to be advantages and 
disadvantages to both systems:  ACT-R has more difficulty doing large scale simulations, 
but has a large amount of historical cognitive plausibility (e.g., there have been a large 
number of empirical and psychological studies validating ACT-R), while Polyscheme has 
comparatively less cognitive history.    Additionally, because the representations and 
operations of each system are a bit different, their behaviors are different and various tasks 
may be easier or more straightforward to model for one system than for another. 
 



 

6.  Mobile Robot Integrated Goal-Driven Architecture 
 

The natural language, gesture, spatial reasoning, and perspective-taking modules described 
previously must be integrated into a single coherent system in order to operate on the 
mobile robots. Figure 2 shows our mobile robot integrated goal-driven architecture.  This 
architecture is organized around providing integration and arbitration for goals presented 
though various interface modules.  Outputs for speech recognition, natural language 
understanding, gesture interpretation, and other interface modules are cached; command 
prioritization and resolution are then performed.   
 

 
Figure 2.  Mobile Robot Integrated Architecture 

 
Once goals are interpreted and resolved, they are passed to the Path Planning and 
Navigation routines, where they are integrated with low-level behaviors such as obstacle 
avoidance, exploration and path planning using the Vector Field Histogram (VFH) method 
[16].  The architecture maintains both short-term and long-term maps (not shown in Figure 
2), which are also important for several of the other processes such as Spatial Reasoning, 
PDA Interface, and Robot GUI. 
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7.  Conclusions 
 
This paper describes a robotic system architecture for a robot which can be used to 
collaborate with a human.  The capabilities required of the robot include voice recognition, 
natural language understanding, gesture recognition, spatial reasoning, and cognitive 
modeling with perspective-taking.  These represent a small subset of potential capabilities 
humans utilize with one another in collaborating to perform a task in a complex 
environment, and barely scratches the surface of capabilities we might want to build into an 
intelligent, collaborative robot.  We are currently performing human-subject experiments 
on cooperation in task performance  both with and without robots  in order to gain a 
better understanding of which capabilities are most critical aboard the robot.   
 Most of the capabilities described above have been successfully implemented and 
demonstrated on several robotic platforms.  We have most recently added cognitive models 
(using both ACT-R and Polyscheme) to provide perspective-taking capabilities.  Future 
work will focus on enhancing the cognitive models through expanded rulesets and 
cognitively plausible (in human terms) behaviors and reasoning mechanisms, and by adding 
learning capabilities to the models.  Parts of this architecture are also being extended to 
several robots designed specifically for enhanced human interaction, namely NASA’s 
humanoid robot Robonaut [17] and MIT’s clearly non-humanoid robot Leonardo [18].  We 
are also extending the architecture and methodology to include and study collaboration 
between teams of robots and humans.  
 

          
                                              

Figure 3.  Technology transitions being undertaken for this effort include  
NASA’s Robonaut and MIT’s Leonardo  

(Leonardo photo courtesy Cynthia Breazeal, © MIT Media Lab, 2002) 
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