
Deep Obstacle Avoidance∗

Keith Sullivan and Wallace Lawson
Naval Research Laboratory, Washington DC, USA
{keith.sullivan, ed.lawson}@nrl.navy.mil

Abstract
We present work on a robot system capable of
rapidly learning to avoid obstacles in previously un-
seen environments. We exploit deep learning’s gen-
eralized features to reason about when to turn left,
turn right, or drive straight within an indoor envi-
ronment. We present preliminary results of a deep
convolutional neural network trained without any
pre-training that can successfully avoid obstacles.

1 Introduction
For robots to be truly autonomous, they must be able to suc-
cessfully navigate through their environment, which inher-
ently means avoiding any obstacles that are present. Typi-
cally, robots accomplish obstacle avoidance using a ranging
sensor, and many algorithms have been developed assuming
the presence of a ranging sensor. Typical ranging sensors
include sonar, laser, optical flow, and depth sensors. How-
ever, all these sensors suffer from various issues: sonar is
susceptible to multi-path reflections and provides sparse an-
gular resolution; lasers provide denser angular resolution but
are complex and expensive; optical flow is computationally
expensive; and depth sensors tend not to work outdoors.

Ranging sensors provide a 2D slice of the environment,
which can cause problems for a 3D robot. While 3D laser
scanners can solve this problem, they produce large amounts
of data that is difficult to process quickly. For example, the
highly popular Velodyne HDL-64E produces over 2,200,000
3D points per second.

Replacing a ranging sensor with a camera allows a fuller
understanding of the environment which leads to better obsta-
cle avoidance. Cameras operate in a wide variety of lighting
conditions, are lightweight and low-powered enough to al-
low deployment on a variety different robotics platforms such
as ground and aerial vehicles. Still, processing image data
quickly enough to allow reasonable robot translation speeds
is a challenge.

Deep learning has shown great promise across a wide va-
riety of image based problems. The primary advantage of

∗Keith Sullivan was funded by the Naval Research Laboratory
under a Karles Fellowship, and Wallace Lawson was supported by
the Office of Naval Research.

using deep learning for obstacle avoidance is to remove the
difficulty in a priori knowing the appropriate features for the
current operating environment. While hand-crafted features
tend to work well for obstacle avoidance, they typically fail
when the robot is placed in environments that differ from the
training environment. Deep learning alleviates this issue by
using all the pixel information and does not rely on tuning
camera parameters, geometry, or camera calibration. Addi-
tionally, with current GPU technology, deep learning can run
at frame rate, sufficiently fast enough for accurate robot con-
trol.

This paper presents a robot capable of performing obsta-
cle avoidance in an indoor environment, where the system is
capable of rapidly learning features to avoid obstacles. By
exploiting deep learning’s general image features, we can
quickly train a robot to avoid obstacles in a previously un-
seen environment without need to make limiting assumptions
about environment including texture, illumination, and geom-
etry. In this paper, we train the robot to navigate through
the environment by providing labeled examples of situations
where it should turn left, turn right, or go forward. This in-
formation is used to train to a CNN with output neurons that
translate directly to navigation commands. We demonstrate
the performance of the algorithm in successfully navigating
through an environment.

2 Related Work
Vision-based techniques for obstacle avoidance fall into two
broad categories. The first category attempts to compute the
apparent motion – optical flow – of objects within the scene,
and based on this estimated motion, determine a control input
to avoid obstacles [Carloni et al., 2013; Herisse et al., 2008;
McCarthy and Bames, 2004]. Optical flow works well in
environments with enough texture to track individual pixels
across multiple frames, but fails in broad texture-less areas or
when illumination changes [Guzel and Bicker, 2010]. Addi-
tionally, optical flow is computational expensive without spe-
cialized hardware [Günyel et al., 2012].

The second category uses pixel-level texture information to
determine the appropriate control to avoid obstacles [Bonin-
Font et al., 2008; Desouza and Kak, 2002]. Obstacles are de-
fined as pixels that differ significantly from the ground and
are detected using standard computer vision features such
as SIFT [Guzel and Bicker, 2011] and FAST [Saitoh et al.,



2009]. These techniques fail in environments with visually
similar regions, wide illumination differences, and different
terrain types with geometrically similar structures.

Closest to our work, Giusti et al developed a CNN to con-
trol a quadcopter flying in a forest [Giusti et al., 2016]. The
authors collected training data by having a human walk with
a camera through the woods, and then trained a CNN to pro-
duce control commands to control the quadcopter for follow-
ing a path through the forest. While their work is directed
more towards following a specific path, we focus on general
navigation.

3 Network Structure
We use a convolutional neural network (CNN) to control the
robot. The network takes a RGB image as input. The CNN
has three outputs: turn left, turn right, and go forward. The
robot implements these outputs as constant rotational and/or
translational velocities.

The CNN architecture consists of alternating convolutional
layers [LeCun et al., 2012] with max pooling layers [Scherer
et al., 2010], followed by two fully connected layers. The
convolutional and pooling layers extract geometric informa-
tion about the environment while the fully connected layers as
a general classifier. In particular, our CNN has the following
structure:

• conv1 → Convolution layer of 75 filters of size 10x10
with stride of 10

• pool1 → Max pooling layer with kernel of 3x3 and
stride of 2

• conv2→ Convolution layer of 75 filters of size 5x5 with
stride of 1

• pool2 → Max pooling layer with kernel of 2x2 and
stride of 2

• conv3→ Convolution layer of 75 filters of size 5x5 with
stride of 1

• pool3 → Max pooling layer with kernel of 2x2 and
stride of 2

• fc1→ Fully connected layer of size 500

• relu1→ Rectified Linear Unit

• fc2→ Fully connected layer of size 500

• relu2→ Rectified Linear Unit

• softmax→ SoftMax layer with 3 outputs

The convolutional layers perform 2D convolution of their in-
put maps with a rectangular filter. When the previous layer
contains more than one map, the results of the convolutions
are summed and transformed by a hyperbolic tangent activa-
tion function. Higher activations occur where the filter bet-
ter matches the content of the map. The output of the max
pooling layers is the maximum activation of non-overlapping
square regions of the input, and these layers simply select the
winning neurons. The final softmax layer computes the acti-
vation for each of the three classes, which can be interpreted
as the probably of the input image requiring that robot con-
trol.

Without Obstacle With Obstacle
Forward 2133 648
Turn Left 2054 308
Turn Right 2319 0
Total 6506 956

Table 1: Number of training images

We implemented our CNN using Caffe [Jia et al., 2014],
and trained the network without any pre-training. The
weights were randomly initialized, and then adaptive gradi-
ent descent [Duchi et al., 2011] was used to minimize the loss
over the training set. We choose adaptive gradient descent to
maximize the predictive value of highly predictive but seldom
seen features.

Figure 1 shows a visualization of the 75 kernels of the
conv3 layer for representative images for turn left, turn right,
and go forward. More white regions indicate a positive acti-
vation, darker regions indicate a negative activation, and grey
regions indicate no activation. Note that even with our (rela-
tively) small training set, the CNN has learned different fea-
tures for each output from the softmax layer. There are some
interesting differences in the responses from the conv3 layer.
For example, many of the features from turning and quite
similar to each other. At the same time, the differences be-
tween features for turning (left or right) and going forward
are quite different. It’s clear that the network has been able
to key in on some distinctive features of the environment, and
that these features are visible in cases when the robot should
move forward.

4 Demonstration

To demonstrate our system, we constructed a constrained en-
vironment for a ground robot. Figure 2 shows the environ-
ment which measured approximately 4.8 meters by 4.8 me-
ters with walls approximately 1.25 meters high. We used a Pi-
oneer 3AT robot equipped with a Carnegie Robotics SL cam-
era/laser system, although we did not use the laser for these
experiments. The camera produced images at 1024x1024 res-
olution, and due to the circular projection, we cropped out
the center 750x750 for input into the CNN. Figure 3 shows
the complete robot. For training, we tele-operated the robot
around the environment to collect labelled images, while dur-
ing testing, the robot was fully autonomous with all calcu-
lations occurring on the on-board laptop running a NVIDIA
GeForce GTX 980M graphics card.

Training data was collected both without an obstacle (a
black plastic box visible in Figure 2) and with the obstacle
present. Table 1 shows the total number of training images
along with the breakdown between classes. For this paper,
we assume the robot will only turn left to avoid the obstacle.

Overall it took about 30 minutes to collect all the train-
ing images without the obstacle present, and an additional 30
minutes to train the CNN without any pre-training. At this
point, the robot successfully avoided the walls, and avoided
the obstacle independent of its location within the playpen.



Turn Left

Turn Right

Forward

Figure 1: Visualization of the features from the conv3 layer for example images for turn left, turn right, and go forward.



Forward

Turn Left

Turn Right

Figure 4: Example training images. The top row is go forward, the middle row is turn left, and the bottom row is turn right.



Figure 2: Robot playpen

Figure 3: Our robot

5 Discussion
Our obstacle avoidance approach works in simple indoor en-
vironment, but does demonstrate the deployment of a su-
pervised machine learning technique to a robotics problem.
There are several aspects of the problems worth investigat-
ing in future works. First is the issue of saliency in the image.
From the perspective of the ground robot, for example, it may
not be necessary to look at pixels that are high in the image,
since those have no bearing its current navigation. This may
not a problem in the constrained environment, but it could be
an issue in other situations, such as when there may be low
hanging obstacles.

Another interesting aspect for investigation is shifting from
supervised to semi-supervised or perhaps completely unsu-
pervised learning. A challenge deploying supervised learn-
ing to mobile robots is collecting labeled training data. The
technique we used in this paper – teleoperation followed by
manual labeling – works, but is time consuming, error prone,
and does not scale to larger action spaces.

As a first step to solve these issues, we plan to develop a
teleoperation system that will collect labeled images in real-
time as the human drives the robot: the labels will be based
on joystick positions. Similar to learning from demonstration
(LfD) [Sullivan et al., 2010; Sullivan, 2015], the human will
drive the robot around the environment collecting sufficient
training data, and then a CNN will be constructed (e.g., a
policy in LfD parlance). The demonstrator can then observe
the robot autonomous driving through the environment, and
collect additional training images to correct any errors.

The ultimate goal for our system is to have the robot learn
independent from human interaction. In other words, we
would the robot to learn to avoid obstacles without human
intervention. We foresee the system working as follows: the
robot would initially have a CNN with random weights and
would use this random CNN to move within the environment
(the robot would have some reinforcement signal to encour-
age forward movement rather than simply spinning in place).
As the robot moves around, it records images and labels them
with the output of the CNN. Once the robot senses an immi-
nent crash (via a laser, say) it would then enter training mode
to update its CNN. After updating the CNN, the procedure
begins anew, but with a now (hopefully) better performing
CNN. In this manner, we should be able to bootstrap obstacle
avoidance behavior within any environment. This approach
helps to move deep learning from a fully supervised approach
to a semi-supervised approach, which is more amenable to a
robotics implementation. Some recent work has used this ap-
proach to teach a robot to grasp arbitrary objects [Lenz et
al., 2015], but, to date, no research has sought to use semi-
supervised deep learning for robot control.

Finally, recent advances in neuromorphic technologies
have generated low-power extremely high frame-rate en-
abling technologies that can be used in an application such
as deep obstacle avoidance. While the use of a laptop with a
GPU on it can work for a limited amount of time, it still con-
sumes a significant amount of power, and cannot operate for
long periods of time without needing to be re-charged. Fur-
ther, in applications where a robot is moving quickly through



a cluttered environment, responses that are in the millisecond
range may be needed to avoid obstacles.

References
[Bonin-Font et al., 2008] Francisco Bonin-Font, Alberto Or-

tiz, and Gabriel Oliver. Visual navigation for mobile
robots: A survey. Journal of Intelligent and Robotic Sys-
tems, 53(3):263–296, 2008.

[Carloni et al., 2013] Raffaella Carloni, Vincenzo Lippiello,
Mario D’Auria, Matteo Fumagalli, Abeje Y Mersha, Ste-
fano Stramigioli, and Bruno Siciliano. Robot vision:
obstacle-avoidance techniques for unmanned aerial vehi-
cles. Robotics & Automation Magazine, 20(4):22–31,
2013.

[Desouza and Kak, 2002] G. N. Desouza and A. C. Kak. Vi-
sion for mobile robot navigation: a survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(2):237–267, Feb 2002.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, July 2011.

[Giusti et al., 2016] Alessandro Giusti, Jerome Guzzi, Dan
Ciresan, Fang-Lin He, Juan Pablo Rodriguez, Flavio
Fontana, Matthias Faessler, Christian Forster, Jurgen
Schmidhuber, Gianni Di Caro, Davide Scaramuzza, and
Luca Gambardella. A machine learning approach to vi-
sual perception of forest trails for mobile robots. IEEE
Robotics and Automation Letters, 2016.

[Günyel et al., 2012] Bertan Günyel, Rodrigo Benenson,
Radu Timofte, and Luc Van Gool. Stixels motion estima-
tion without optical flow computation. In Proceedings of
European Conference on Computer Vision (ECCV), pages
528–539. Springer, 2012.

[Guzel and Bicker, 2010] Mehmet Serdar Guzel and Robert
Bicker. Optical flow based system design for mobile
robots. In Proceedings of Robotics Automation and
Mechatronics Conference (RAM), pages 545–550. IEEE,
2010.

[Guzel and Bicker, 2011] Mehmet Serdar Guzel and Robert
Bicker. Vision based obstacle avoidance techniques. IN-
TECH Open Access Publisher, 2011.

[Herisse et al., 2008] Bruno Herisse, Francois-Xavier Rus-
sotto, Tarek Hamel, and Robert Mahony. Hovering flight

and vertical landing control of a vtol unmanned aerial ve-
hicle using optical flow. In Proceedings of IEEE Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 801–806. IEEE, 2008.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of
the 22Nd ACM International Conference on Multimedia,
pages 675–678, New York, NY, USA, 2014. ACM.

[LeCun et al., 2012] Yann A. LeCun, Léon Bottou,
Genevieve B. Orr, and Klaus-Robert Müller. Neural
Networks: Tricks of the Trade: Second Edition, chap-
ter Efficient BackProp, pages 9–48. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[Lenz et al., 2015] Ian Lenz, Honglak Lee, and Ashutosh
Saxena. Deep learning for detecting robotic grasps. The
International Journal of Robotics Research, 34(4-5):705–
724, 2015.

[McCarthy and Bames, 2004] Chris McCarthy and Nick
Bames. Performance of optical flow techniques for in-
door navigation with a mobile robot. In Proceedings of
IEEE International Conference on Robotics and Automa-
tion (ICRA), volume 5, pages 5093–5098. IEEE, 2004.

[Saitoh et al., 2009] T. Saitoh, N. Tada, and R. Konishi.
Indoor Mobile Robot Navigation by Central Following
Based on Monocular Vision. IEEJ Transactions on Elec-
tronics, Information and Systems, 129:1576–1584, 2009.

[Scherer et al., 2010] Dominik Scherer, Andreas Müller, and
Sven Behnke. Evaluation of pooling operations in con-
volutional architectures for object recognition. In Pro-
ceedings of the 20th International Conference on Artifi-
cial Neural Networks: Part III, ICANN’10, pages 92–101,
Berlin, Heidelberg, 2010. Springer-Verlag.

[Sullivan et al., 2010] Keith Sullivan, Sean Luke, and Vit-
toria Amos Ziparo. Hierarchical learning from demon-
stration on humanoid robots. Proceedings of Humanoid
Robots Learning from Human Interaction Workshop, 38,
2010.

[Sullivan, 2015] Keith Sullivan. Hierarchical Multiagent
Learning from Demonstration. PhD thesis, George Mason
University, 2015.


