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Abstract 

Associative learning is an essential feature of human cognition, 
accounting for the influence of priming and interference effects 
on memory recall. Here, we extend our account of associative 
learning that learns asymmetric item-to-item associations over 
time via experience (Thomson, Pyke, Trafton, & Hiatt, 2015) 
by including link maturation to balance associations between 
longer-term stability while still accounting for short-term 
variability. This account, combined with an existing account of 
activation strengthening and decay, predicts both human 
response times and error rates for the fan effect (Anderson & 
Reder, 1999). This represents the highest fidelity replication of 
a human experiment for modeling that we are aware of. 
Keywords: associative learning; interference; cognitive 
models; fan effects 

Introduction 
Associative learning is an essential component of human 
cognition, thought to be part of many mental phenomena such 
as classical conditioning (Rescorla & Wagner, 1972), 
similarity judgments (Hiatt & Trafton, 2013), and memory 
recall (Thomson, Pyke, Trafton, & Hiatt, 2015).  Despite its 
ubiquity, it is difficult to model directly due to its entangled 
ties to other aspects of cognition (e.g., memory decay). 

Perhaps associative learning’s most studied effect is that of 
priming (and its converse interference). Priming occurs when 
the retrieval of one memory facilitates the retrieval of 
another. Conversely, interference occurs when a memory 
primes multiple other memories instead of just the ones that 
are useful or relevant to the current situation. Those other 
memories are said to interfere with the useful one. When 
there is high interference, recognition accuracies are 
relatively lower and recognition response times relatively 
longer when compared to situations where there is low 
interference, ostensibly due to having lower overall 
activation in memory. Assuming that the degree of 
interference is positively correlated with the number of 
competing associations, then having more competing 
associations (i.e., a higher fan) will lead to relatively higher 
error rates and latencies than memories having relatively 
fewer competing associations. This effect is most popularly 
known as the fan effect (Anderson, 1974).  

In this paper we will extend our account of associative 
memory embodied in a cognitive architecture (Thomson, 
Bennati & Lebiere, 2014) to account for the fan effect 
experiment. This account of associative memory has already 
successfully predicted the complicated results of a multi-trial 
free and serial recall task, including asymmetric contiguity 
effects that strengthen over time (Thomson et al., 2015).  
Here, we extend our theory to include link maturation to 

balance associations between longer-term stability while still 
accounting for shorter-term variability. We then use the 
theory as part of a cognitive model that performs the fan 
effect experiment using the same stimuli and presentation 
times as the human participants.  

By doing this, we become the first theory of associative 
memory to explain how associations are learned and updated 
throughout the fan effect experiment. Previous models 
considered only associations at the end of the experiment 
(Anderson & Reder, 1999; Schneider & Anderson, 2012; 
Anderson, 1974; Rutledge-Taylor and West, 2008); our 
model enhances their understanding of associative memory 
by describing the process of how these end-state associations 
are reached.  

Associative Learning in Memory Recall 
Our account of associative learning is situated in the 
cognitive architecture ACT-R/E (Adaptive Character of 
Thought-Rational / Embodied; Trafton et al., 2013), an 
embodied version of the cognitive architecture ACT-R 
(Anderson et al., 2004).  ACT-R is an integrated theory of 
human cognition in which a “production system operates on 
a declarative memory” (Anderson et al., 1998). In ACT-R, 
recall and latency depend on three main components: 
activation strengthening, activation noise, and associative 
activation.  These three values are summed together to 
represent an item’s total activation.  When a recall is 
requested, the item with the highest total activation is 
retrieved, subject to a retrieval threshold; if no item’s 
activation is above the threshold, the retrieval is said to fail 
and no item is recalled. The latency of the recall is also 
inversely correlated to the recalled item’s activation. 

Activation Strengthening 
ACT-R’s well-established theory of activation strengthening 
(also called base-level activation) has been shown to be a 
very good predictor of human declarative memory (Anderson 
et al., 1998; Anderson, 2007). Intuitively, activation 
strengthening depends on how frequently and recently a 
memory has been relevant in the past, and is calculated as: 

𝐵𝑖 = ln(∑ 𝑡𝑗
−𝑑𝑛

𝑗=1 )    (1) 
where n is the number of times an element i has been accessed 
in the past, tj is the time that has passed since the jth access, 
and d is the learning parameter, specifying an element’s rate 
of decay.  Importantly, this equation predicts that items that 
have occurred recently, or have been rehearsed more, are 
more likely to be recalled than those that have not. 
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Associative Activation 
In our account, associative strengths are learned, 
strengthened, and weakened over time as new elements are 
learned or prior elements re-experienced. These associations 
are learned between relevant working memory items within 
temporal proximity to one another, leading from earlier to 
later items (Thomson, Bennati, & Lebiere, 2014). The 
strength of the learned association (or how strongly an 
existing association is increased) is influenced by the amount 
of time that passes between when the items were each in 
working memory. If one item is immediately followed by 
another in working memory, they will become very strongly 
associated; on the other hand, if an item has been out of 
working memory for a while before another is added, they 
will be only weakly associated. Additionally, associations are 
asymmetric; an association can be stronger from an item i to 
an item j, for example, than the association from item j to item 
i (or, there could be no association from item j to item i at all). 

To balance the rate of associative learning between long-
term stability and short-term variability, link maturation was 
included as an additional parameter. Associative link 
maturation slows the rate of strengthening and weakening 
based on the number of times the link has been used. This 
supports long-term stability of well-experienced associative 
links while allowing for rapid short-term learning of new 
associative elements. In neural networks, maturation is 
equivalent to the process of settling to reach a stable 
equilibrium (Wills et al., 2005; Eliasmith, 2005). Maturation 
is set using a logistic function: 

    𝑀 = 1 − 1
1+𝑒−(ln(𝑡𝑖𝑚𝑒𝑠𝐼𝑛𝐶𝑜𝑛𝑡𝑒𝑥𝑡)∗𝑀𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒)   (2) 

The maturation rate controls the steepness of the curve, or, in 
other words, controls how quickly links will stabilize.  

To compute associative strength from an item j to an item 
i, the learning mechanism computes an increment Iji: 

    𝐼𝑗𝑖 = 𝑙𝑟 ∗ 𝑤 ∗ 𝑀         (4) 
where lr is a learning rate parameter, w is the weight of the 
increment determined by the strength of the items in working 
memory (scales from 0 to 1), M is maturation, and R is 
refraction. This increment is used to update link strength as 
follows: 

    𝑆𝑗𝑖 = 𝑆𝑗𝑖𝑃𝑟𝑖𝑜𝑟 ∗ (1 − 𝐼𝑗𝑖) + (𝐼𝑗𝑖 ∗ 𝑚𝑎𝑠)       (5) 
where is the strength of the link from j to i, SjiPrior is the prior 
strength of Sji, Iji is the learning increment from above, and 
mas is a parameter controlling the maximum possible 
associative strength. 

When a new link is learned or existing link updated that 
shares a source j with other existing links, then each of those 
other links are discounted proportionally to the weight that 
the original link is updated (e.g., Sji is updated so Sjk is 
discounted): 

     𝑆𝑗𝑘 = 𝑆𝑗𝑘𝑃𝑟𝑖𝑜𝑟 ∗ (1 − 𝐼𝑗𝑘)        (6) 
where Ijk is computed using the weight from the link from j to 
i, but using the maturation M from the link from j to k. 
Equation 6 normalizes the amount link j to k is discounted 
based on the degree to which it has settled. This allows for 

newer links to rapidly change while providing for long-term 
stability for more mature links.  

This discounting function attenuates link strengths 
consistent with interference accounts of memory. As more 
concepts compete in memory, the amount of associative 
strength from each concept is reduced. In a balanced 
environment, this discounting will approximate the statistical 
likelihood 𝑃(𝑖/𝑗), which is the odds of perceiving or 
retrieving i immediately prior to j. 

Armed with an understanding of our modeling framework, 
we now turn to the fan effect experiment itself. 

The Fan Effect Experiment 
To understand the fan effect, we consider Anderson and 
Reder (1999) classical fan experiment They capture the fan 
effect in a recognition task where participants begin by 
learning 48 pairs of people and places. Persons and places 
could appear in multiple pairs, and each pair was shown for 
five seconds. Then, during testing, participants respond yes 
(target) or no (foil) to whether presented statements were 
previously studied: the person is in the place (e.g., ‘the hippie 
is in the park’). In the testing phase, participants were 
provided a monetary reward based on their total score. The 
score was computed by providing 1 point for each correct 
response, plus an additional point for each 100 ms of response 
times faster than 1500 ms. This induced a speed-accuracy 
trade-off into the experiment. 

The experiment proceeded according to three phases: a 
study phase, drop-out training, and then a testing phase. In 
the study phase, each stimulus pair was presented once on the 
screen for 5 seconds. In the drop-out training phase, 
participants were presented with questions ‘Who is in the 
location?’ and ‘Where is the person?’ Participants had to 
respond with all persons associated with the location (or vice 
versa). Participants had to correctly answer all these 
questions for person and location to complete the phase. 
Participants completed two of these drop-out training phases. 
Finally, in the testing phase, participants would respond yes 
or no to queries ‘the person was in the location’ with 
participants receiving feedback on their response.  

The experiment manipulated the test stimuli in two 
different ways. The first was to manipulate the fan of the 
persons and places. In this experiment, fan is the number of 
persons associated with a place, and vice versa. Fan is 
controlled by varying the number of persons in each place, or 
the number of places with each person (e.g., ‘the hippie is in 
the bank’ or ‘the soldier is in the park’). Here, the fan of one 
term (person/place) was fixed at 2, while the fan of the other 
term (place/person respectively) was varied to be either 2 
(low-fan) or 4 (high-fan).  

The second manipulation was to control the composition of 
the set of test stimuli shown to participants by manipulating 
different target and foil conditions. There were four target 
conditions: facilitation, interference, suppression and control. 
In the facilitation condition, each target (e.g., ‘the biker is the 
tower’) was ‘facilitated’ by being repeated 5 times each in the 
stimuli set. In the interference condition each target was 
repeated only one time in the stimuli set, and was considered 
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interference because the target’s person or place overlapped 
with a target from the facilitation condition (i.e., ‘the biker is 
in the factory’, or ‘the doctor is in the tower’).  

The other two conditions were the suppression and control 
conditions. In these conditions, each target appeared once in 
the stimuli set, and consisted of facts that were seen in the 
interference (but not facilitation) condition, such as factory 
and doctor in the above examples. Examples of suppression 
targets included: ‘the writer is in the factory’, and ‘the doctor 
is in the bank’. Due to a particularity in the original study, 
there is limited difference between suppression and control 
stimuli, because the controls were designed such that they 
would functionally suppress stimuli from the suppression 
condition (e.g., ‘the monk is in the bank’). They are different 
insofar as the suppression stimuli were effectively two steps 
removed from the facilitation condition, while the control 
trials were effectively three steps removed.  

Foils were classified according to three conditions: high-
frequency foils, which used person/place concepts from the 
facilitation condition but with novel pairings, and were 
repeated 4 times each in the stimuli set; low-frequency foils, 
which had novel pairings of person/place concepts from the 
interference, suppression, or control conditions and appeared 
once each in the stimuli set; and mixed foils, which created 
novel pairings using one high-frequency concept from the 
facilitation condition and one low-frequency concept from 
the interference, suppression, or control conditions and were 
repeated only once in the stimuli set. In total, there were 48 
target sentences and 54 foil sentences in the stimuli set. 

The test stimuli set was presented three times in successive 
blocks, and all stimuli were presented in each block. 
Feedback was provided for 1 second after participants’ 
responses, with an additional 1 second inter-trial interval1.  

The results of this study were consistent with interference 
effects: there were longer latencies and more errors in the 
high-fan (i.e., fan of 4) conditions relative to the low-fan (i.e., 
fan of 2) conditions for both targets and foils, with both high-
frequency (i.e., facilitation) targets and foils having relatively 
higher accuracy and quicker latencies than their 
corresponding low-frequency counterparts. They also 
predicted lower relative accuracy in the interference 
condition relative to the suppression and control conditions, 
and no difference between suppression and control.   

Prior Modeling of the Fan Effect 
There have been several attempts to mathematically model 
fan effects (Anderson & Reder, 1999). Most prominent is 
Anderson and Reder’s (1999) model whose equations were 
grounded in the ACT-R cognitive architecture (Anderson and 
Lebiere, 1998). This model can be broken down into three 
related equations.  

 

𝑆𝑗𝑖 = 𝑆 + ln (1/𝑓𝑎𝑛𝑗 )  (7) 
𝐴𝑖 = 𝐵𝑖 + ∑ 𝑊𝑗𝑆𝑗𝑖𝑗     (8) 
𝑇 = 𝐼 + 𝐹𝑒−𝐴𝑖    (9) 
 

                                                           
1 This 1 s ITI was not listed in the Anderson & Reder (1999) 

paper, however it was reported in subsequent research.  

Equation 7 describes the spread of activation (Sji) from 
element j to i as a function of associative strength intercept S 
attenuated by the fan of j, which is the number of concepts to 
which j is associated. In Equation 7, 1/𝑓𝑎𝑛𝑗 is a 
simplification of 𝑃(𝑖/𝑗) assuming equal frequencies of i and 
j. In Anderson and Reder, frequencies were not equal, and 
were instead set ahead of time according to the objective 
probabilities in the model. Equation 8 relates an activation 
function Ai to the base-level activation from Equation 1, and 
the sum of spreading activation from Equation 7 multiplied 
by an attentional weigh Wj. Prior efforts set Bi to 0 on the 
assumption that the drop-out testing would balance out base-
level activation between stimuli. 

Finally, Equation 9 computes retrieval time T based on an 
intercept I, time scale offset F, and the activation function Ai 
from Equation 3. The estimates for each parameter were as 
follows: I was 1197 ms, F was 773 ms, S was 2.5 ms, and W 
was .33 (reflecting an even weighting of ‘person’ ‘in’ 
‘place’). Using these parameters, Anderson & Reder report a 
strong correlation with response times, r = .956. This model 
did not attempt to fit error patterns. 

This model, while successful, does not focus on modeling 
both latency and error rates, which we believe is an important 
part of understanding priming and interference in associative 
learning. While describing nicely the final average 
performance of participants, they provide little intuition for 
how participants learn the associations via experiencing the 
task. For instance, Equation 7 uses a fixed value for each 
condition that does vary.  

In contrast, our approach grounds our account of 
associative learning within the larger ACT-R/E architecture 
along with the constraints it places on cognition (Trafton et 
al., 2013) by using a production system simulating the time-
course of perception, encoding, retrieval, and response. Once 
base-level activation is included as a factor, then the time-
course of stimulus presentation and training becomes 
important in determining overall accuracy and response time. 
This added fidelity (and complexity) may test assumptions 
made in prior modeling efforts, and also may provide new 
insights or hypotheses about how participants learn the task. 

To that end, our model performs the experiment analogously 
to participants, and learns associations over time. This 
supports our theory of associative memory explaining how 
associations are learned and adapt over time. 

Learning the Fan Effect 
The model starts with only background knowledge of the 
words used in the experiment and is equipped with the 
procedural knowledge necessary to perform the experiment. 
It has no underlying knowledge of the concepts of person and 
place, and thus has no knowledge of targets or foils. As we 
have said, the model is presented with the same experimental 
paradigm as the human participants.  

The model uses the same procedural knowledge at the start 
of each phase to perceive the person and place concepts: 
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when it sees two concepts on the screen together, then they 
are linked into a common concept-pair, with each constituent 
person and place priming the concept-pair. This concept-pair 
is represented in memory as a single chunk of information 
containing three features: person, place, and was-target. 
Was-target is a binary true/false decision, where true 
indicates that the stimulus was a target and false indicates 
that the stimulus was a foil. 

The external environment is a simulated computer screen. 
When perceiving stimuli, the model randomly encodes one 
symbol first and then the other. The model categorizes these 
symbols according to two features: person-symbols and 
place-symbols. These representations are functionally 
identical and are distinguished only for lexical purposes to 
simply categorize incoming words. Since stimuli are of the 
form ‘the person is in the place’ we present person-symbols 
on the left of the display and place-symbols on the right of 
the display.  

When a concept-pair is learned or updated, then the 
associative strengths between the person/place concepts and 
the pair is strengthened while the strengths between the 
concepts and their other related concept-pairs are weakened. 
Since concepts are related to more concept-pairs on high-fan 
trials than on low-fan trials, high-fan concepts tend to have 
lower associative strengths to their related concept-pairs than 
low-fan concepts. This lower associative strength predicts 
that concept-pairs involving high-fan concepts will have 
slower response latencies and increased error rates.  Also, 
since high-frequency stimuli have been seen more often, their 
strengths will be stronger than low-frequency stimuli, 
however maturation controls the degree to which these 
stimuli increase in strength (e.g., a link seen 4 times as often 
is not 4 times as strong). 

In the study phase, the model automatically encodes all 
concept-pairs as targets. After encoding the stimuli and 
generating a concept-pair representation, the model then 
repeats this encoding until the stimuli are no longer presented 
on the display, averaging 2-3 rehearsals over the 5 second 
presentation time. 

In the drop-out training phase, the model perceives either a 
person or place and attempts to retrieve all places where that 
person is (or all persons in that place). If the model correctly 
perceives all required elements then the model moves onto 
the next stimulus, otherwise it studies those stimuli again and 
returns to the drop-out training. Once the model has 
successfully retrieved all elements in both run-throughs of the 
query phase, the test phase begins. 

The test phase is the critical phase where all response times 
and error rates were recorded. Similar to the study phase, the 
model begins to encode the concept-pair for person and place 
as an analogue to perceiving: was person in the place? The 
model then attempts to retrieve any decision containing said 
person and/or place. This decision is a prior concept-pair 
stored in memory including person, place, and the critical 
was-target decision. A response is then generated according 
to the following criteria: 1) if the model is unable to retrieve 
any concept-pair due to all pairs being below threshold, then 

it responds foil; 2) if the model correctly retrieves the 
matching person, place, and was-target decision then it 
responds with the respective decision: target for true and foil 
for false; or 3) if the model retrieves a mismatching concept-
pair containing one person or place but not both, then it 
assumes that the response is a target. After the model 
responds it receives feedback, which it uses to encode the 
correct concept-pair. This includes encoding foils, which 
allows the model to be capable of correctly retrieving that an 
item was a foil seen in an earlier testing phase. This is a 
unique behavior of our model and reflects the fact that 
participants cannot ‘ignore’ decisions they’ve made and must 
encode feedback that they’ve seen.  

Finally, if the model was incorrect or had retrieved a 
mismatched element, then for the feedback period it rehearses 
the correct response. This process is repeated across all trials 
through three test phases.  

In the testing phase, response times are recorded from the 
stimulus onset time until the model has responded with the 
appropriate decision (target or foil). It is important to note 
that as a fully-implemented production system model, the 
complete time to respond include two relatively fixed 
durations: approximately 600 ms to encode the stimuli from 
the display, and approximately 350 ms to prime the motor 
command and press the response key. This is in a similar 
range to the structural offset I of 1197 ms that Anderson and 
Reder (1999) used in Equation 9. This means that fan effects 
in latencies occur mainly in the approximately 200 ms – 800 
ms timeframe where the concept-pairs are retrieved. It is the 
retrieval of the concept-pair that determines fan effects in 
both latencies and accuracy. 

One final difference between the present model and prior 
efforts is that our model incorporates base-level activation Bi 
(see Equation 8), but replaces the Sji from Equation 7 with our 
learned Sji from Equation 5. As previously mentioned, base-
level activation reflects the recency and frequency of use of 
elements, and it is not a given that base-level would be 
equivalent for items across the different target and foil 
conditions, especially for the high-frequency vs. low-
frequency elements where frequency is necessarily varied. 

Results 
The present model was run for 200 iterations with the 
parameters described in Table 1 below. As is apparent from 
Figures 1 and 2, the model qualitatively captured fan effects 
in both accuracy and latency, respectively, reflected by 
slower response times and higher error rates for high-fan 
concepts compared to low-fan concepts. We also predicted 
relatively higher accuracy for high-frequency conditions 
(facilitation for targets and high-frequency for foils) to the 
rest of the conditions; lower accuracy in the interference 
condition relative to the control and suppression conditions, 
and no difference between suppression and control target 
conditions. One difference is that we predict a smaller 
average fan (.03 s instead of .09 s) than did Anderson and 
Reder (1999).  
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Table 1. Parameters used in Fan Effect Experiment 
PARAMETER VALUE 
Base-Level Learning (Bi) .4 
Learning Rate (lr) 1.1 
Maturation Rate (M) .5 
Maximum Associative Strength (mas) 7.25 
Mismatch Penalty 4 

 

The model fits target accuracy with an r = .83. Interestingly, 
the source of errors is different between targets and foils. 
Target errors are due to failures in retrieving any concept-
pairs, whereas foil errors are due to confusing foils with 
previously seen similar stimuli.  
 
Table 2. List of Average Base-Level Activation (Bi) and 
Average Associative Strength per Link (Si) per Condition 
across Drop-Out Training and Testing.  

 Drop Test 1 Test 2 Test 3 
 Bi Si Bi Si Bi Si Bi Si 
F2 .44 1.33 .54 .97 .73 .91 .86 .82 
F4 .91 .69 .87 .55 .83 .48 .97 .44 
I2 .40 1.34 .25 .99 .59 .94 .59 .86 
I4 .70 .70 .11 .58 .40 .60 .60 .47 
S2 .32 1.35 .11 1.03 .67 1.00 .34 .95 
S4 .41 .72 .26 .61 .53 .60 .40 .49 
C2 .47 1.40 .08 1.17 .25 1.05 .35 .98 
C4 .44 .71 .37 .59 .60 .52 .60 .52 
L2 N/A N/A .13 1.06 .57 1.00 .40 .92 
L4 N/A N/A -.65 .57 .29 .60 .47 .48 
M2 N/A N/A -.57 1.08 .42 1.01 .44 .92 
M4 N/A N/A -.15 .61 .38 .52 .25 .51 
H2 N/A N/A .63 3.21 .75 3.22 .78 3.20 
H4 N/A N/A .47 2.65 .55 2.69 .55 2.71 

Discussion 
The present model describes the emergence of fan effects in 
both accuracy and latency using a theory of associative 
memory including an account of interference by discounting 
link strengths. As more stimuli (persons or places) are 
presented together (or within a short temporal window) they 

interfere with each other’s associative strength, reducing 
overall activation. This has the effect of lowering overall 
accuracy and increasing response times. While prior 
explanations (Anderson & Reder, 1999; Schneider & 
Anderson, 2012) have presented good fits to static human 
performance, the present model learns both base-level 
activation (reflected recency and frequency of use) and 
associative weights throughout the entire experiment 
(including the testing phase) and predicts the presence of fan 
effects in both latency and accuracy across all target and foil 
conditions.  

An advantage of modeling the fan effect experiment at this 
higher level of fidelity is that we are able to assess some if 
the assumptions made in prior modeling efforts. Most 
interesting is that, while the assumption that base-level would 
be similar between high-fan and low-fan stimuli, while this 
was valid (see Table 2) in aggregate, base-levels were highly 
variable between conditions and throughout the task. The 
present model was able to qualitatively match to human 
performance with associative activation strong enough to 
compensate for the differences. 

While not obvious when examining end-state models, the 
average activation of concept-pairs between conditions (see 
Table 2) changes throughout the testing phase. Many models 
assume a fairly plastic study/learning phase and a fixed 
testing phase; however, our model learns throughout the 
experiment. For instance, the added interference from 
learning novel foils reduces the activation of targets, 
especially in the interference condition.  

A potential concern that our model addresses that was foils 
were not encoded in Anderson and Reder (1999) when they 
were perceived. It seems odd that stimuli seen in training 
were encoded while stimuli seen in testing were not. For 
instance, when a novel foil is perceived it does not increment 
the fan of targets. For instance, if a studied fan-4 target ‘the 
biker is in the factory’ was tested after perceiving the novel 
foil ‘the hippie is in the factory’ then that fan-4 place term 
‘factory’ should in fact be incremented to be a fan-5 place 
term. In our model, the notion of fan-4 or fan-5 is solely for 
classification purposes of the various conditions. Link 

Figure 1. Latencies across target and foil conditions. Target 
conditions are Facilitation, Interference, Suppression, 
Control. Foil conditions are Low, Mixed, and High Foils. 
 

Figure 2. Error rates across target and foil conditions. Target 
conditions are Facilitation, Interference, Suppression, 
Control. Foil conditions are Low, Mixed, and High Foils. 
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strengths vary based on their use in the experiment. What is 
important is not whether an item is a fan-2 or fan-4 stimulus, 
but to what degree biker and factory prime the sentence (c.f., 
concept-pair) ‘the biker in the factory.’ 

While the present model was able to predict fan effects in 
all conditions, it predicted a much faster response time for 
high-frequency targets and foils than humans exhibited. This 
was because the added frequency increased base-level 
activation too quickly. As seen in Table 2, associative 
strength was comparable between the high-frequency 
facilitation condition and the low-frequency interference/ 
suppression/control conditions. The difference was the 
higher base-level activation. The traditional activation 
equation (Equation 8) sums both base-level activation and 
associative strength, but it may be the case that the relative 
weighting of these factors changes over time based on some 
features of stimuli (such as relative strength, familiarity, or 
some other metacognitive feature). While the existing 
equation is well-justified in the literature, the inclusion of an 
adaptive frequency-based associative learning component 
replacing the fixed Sji (Equation 7) may change the 
underlying balance between base-level and associative 
strength.  

Another difference between the current model and human 
performance is that our model did not model speed-accuracy 
trade-offs reflecting the time-pressure based reward system 
of the original experiment. ACT-R does not have a 
mechanism to distinguish recognition from recall, and recall 
is an all-or-nothing event, thus it was not possible to have a 
meta-awareness of stimulus familiarity build-up throughout 
the retrieval process, something which could be leveraged to 
induce speed-accuracy tradeoffs. This speed-accuracy trade-
off may result in relatively faster performance in the low-
frequency conditions as participants’ threshold to respond 
may be lower than the model’s.  

It is fair to argue that our model is substantially more 
complex than prior efforts, but we argue that this complexity 
is necessary to understand how fan effects arise from 
learning. By having our model perform the study equivalently 
to human participants and by having participants learn 
associative weights throughout the experiment, we present a 
model that supports our theory of associative memory and 
explains how associations are learned and adapt over time. 
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