To appear in the DISCEX III Research Summaries

NRL Release Number 03-1221.1-0188

Modeling Security-Enhanced Linux Policy Specifications for Analysis*

Myla Archer

Elizabeth Leonard

Code 5546, Naval Research Laboratory, Washington, DC 20375
{archer, leonard }@Qitd.nrl.navy.mil

Matteo Pradella
CNR IEITT-MI, Politecnico di Milano, Milano ITALY
pradella@elet.polimi.it

Abstract

Security-Enhanced (SE) Linuz is a modification of
Linuz initially released by NSA in January 2001 that
provides a language for specifying Linux security poli-
cies and, as in the Flask architecture, a security server
for enforcing policies defined in the language. To de-
termine whether user requests to the operating system
should be granted, the security server refers to an in-
ternal form of the policy compiled from the policy spec-
ification. Since the most convenient description of the
policy for user understanding is its “source” specifica-
tion in the policy language, it is natural for users to
expect to be able to analyze the properties of the policy
from this source specification. However, though speci-
fications in the SE Linux policy language avoid imple-
mentation details, the policy language is very low-level,
making the high level properties of a policy difficult to
deduce by inspection. For this reason, tools to help
users with the analysis are necessary. The goal of the
NRL project on analyzing SE Linux security policies
is to first use mechanized support to analyze the spec-
ification of an example policy, and then to customize
this support for use by practitioners in the open source
software community. This paper summarizes how we
have modeled an example security policy in the analysis
tool TAME, the kinds of analysis we can support, and
prototype mechanical support to enable others to model
example security policies in TAME. (For an extended
version of this paper, see [5].)

1 Introduction

Security-Enhanced (SE) Linux [12, 8] is a modifica-
tion of Linux initially released by NSA in January, 2001
that extends Linux with a flexible capability for secu-
rity. SE Linux provides a language for specifying Linux
security policies that cover all aspects of the system, in-
cluding process control, file management, and network
communications. The SE Linux release includes an ex-
ample policy specification. Policy enforcement uses the
method in the Flask architecture [13], where a security

*This work is funded by DARPA.

server makes policy decisions concerning whether to
grant user requests to the operating system. To make
decisions, the security server refers to an internal form
of the policy compiled from the policy specification.

Since the most convenient description of the policy
for user understanding is its “source” specification in
the policy language, it is natural for users to expect
to be able to analyze the properties of the policy from
this source specification. However, though specifica-
tions in the SE Linux policy language are independent
of implementation details, the language is very low-
level and detailed, making the high-level properties of a
policy difficult to check by inspection. Our experience
as well as that of others (e.g., [10]) is that mechanized
formal methods can uncover errors that humans miss
in inspecting even the most carefully crafted specifica-
tions. For a user to analyze a typically intricate policy
specification, mechanized tools are a practical neces-
sity. Tools such as Apol from Tresys Technology and
Tebrowse from the University of North Texas allow one
to observe simple properties of a policy essentially by
browsing the policy. For analyzing a policy for deep
properties, more powerful tools are needed.

To answer this need, we have taken some initial
steps to develop tool support for analyzing SE Linux
security policies using the tool TAME (Timed Au-
tomata Modeling Environment) [2, 3]. These steps in-
clude 1) creation of an abstract SE Linux model in
TAME with policy-independent and policy-dependent
parts, 2) design and implementation of algorithms for
extracting a) a subset of a specified security policy on
which to focus analysis and b) the policy-dependent
parts of the model from a policy specification, and 3)
use of the results to model an example policy based on
the policy in the SE Linux release. Accurately mod-
eling SE Linux plus a security policy requires both an
understanding of Linux and a clear definition of the
semantics of the policy language.

The ultimate goal of modeling SE Linux! in TAME
is to determine whether the security policy has desired

Here and below, a reference to modeling SE Linux implies
that some security policy is included in the model.


green
Text Box
NRL Release Number 03-1221.1-0188


properties. However, it is also of interest to check prop-
erties related to the well-formedness of the model and
the accuracy of the model’s representation of the secu-
rity policy. Thus, we will use theorem proving in stages
to check 1) a set of standard well-formedness conditions
for the model, 2) that the assertions checked by the SE
Linux policy compiler checkpolicy hold for our model
of the security policy, and 3) whether certain desirable
security properties hold for the model. Stage 3) is pred-
icated upon having a reasonable example for a security
policy and understanding what its intended properties
are. Unfortunately, finding a reasonable example pol-
icy is not as simple as using the example policy in the
release (or a subset of this policy). This is because
our initial analysis focuses on the system after initial-
ization. At least with our system configuration, when
SE Linux is run with the example policy enforced, no
effective user actions are permitted [6], and hence no
user actions can change the state in security-relevant
ways. For this reason, there are no interesting prop-
erties of system behavior involving user actions after
initialization to prove for the example policy. Thus,
one of our tasks is to find a reasonable extension of the
example policy to analyze.

The remainder of the paper is organized as follows.
Section 2 describes the policy language, discusses its
semantics, and explains why the nature of its seman-
tics leads us to represent the operating system itself in
our abstract model of an SE Linux policy. Section 3
describes how we constructed an example policy for
analysis. Section 4 gives a brief overview of TAME,
and then describes how we modeled an example pol-
icy in TAME and how we have organized the model
for reuse with other policies. Section 5 describes our
progress with implementing mechanized support for
reusing our model. Section 6 describes both simple
and deep properties which we hope to verify for our
model, and our approach to the verification. Finally,
Section 7 provides some suggestions as to how, with ap-
propriate enhancements, the SE Linux policy language
could better support policy analysis.

2 The SE Linux policy language

The SE Linux security policy language is described
in [8], part of the documentation accompanying the SE
Linux release. We note that this language has changed
over time. In this paper, we deal primarily with the
language and example policy from the initial release of
January 2001, since our initial efforts towards modeling
policies were based on this language.? However, our

2We make an exception for our recent experiments with SE
Linux, which have of necessity involved the version of the lan-
guage available in the June 2002 release. Because dealing with a
moving target is difficult, we have retained the original language
as the basis of our model rather than continuously adapting the
details of our approach to changes in the language.

policy analysis approach is valid for any version of the
language.

The language description in [8] is somewhat infor-
mal, and is mostly given by example. Some of the lan-
guage constructs are not fully defined in [8]; however,
most of the constructs used in the example policy ac-
companying the release have reasonably complete de-
scriptions. Although the language permits definition
of policies based on type enforcement (TE), role based
access control (RBAC), and multi-level security (MLS),
we have focused on analyzing policies that use only TE
and RBAC features. Below, we describe the syntax of
the TE and RBAC language constructs mentioned in
[8], and discuss how the semantics of these constructs
influences how we model policies in TAME.

Policy language syntax. The SE Linux policy lan-
guage has four kinds of statements: declarations, rules,
constraints, and assertions. Declarations include role
declarations and type declarations. Rules include ac-
cess vector rules, which govern decisions made by the
security server about access requests, and transition
rules, which govern possible role changes of an object
and type enforcement (TE) type assignments to newly
created objects. Constraints constrain the manner in
which various access permissions can be applied to var-
ious objects. Assertions are statements about whether
or not certain kinds of access permissions are ever al-
lowed by the policy. Once proved, the assertions can be
used as simple properties of the security policy that are
available as lemmas in the proof of deeper properties
closer to the high-level security goals of the policy.

Each language statement consists of a keyword (e.g.,
allow for most access vector rules) followed by ar-
guments using other language elements such as type
names, role names, object classes, attributes, and per-
missions. The particular sets of representatives of
these elements can depend on the particular policy be-
ing defined (and the particular Linux configuration for
which it is being defined—e.g., the particular kernel
modules present). The sets are typically large. In
the example policy with the SE Linux release, there
are 3 role names, 28 object classes, 22 attributes,
115 permissions, and 253 type names of which 21 are
parameterized—hence a potentially unbounded num-
ber of type names. Thus, policy specifications tend to
be lengthy, complex, and full of low-level detail.

The complexity of policy specifications is, in prac-
tice, somewhat reduced by the use of macros. Macros
can be either set macros that represent sets of permis-
sions, sets of object classes, etc., or rule macros that
represent sets of rules and associated declarations.

The policy language semantics and its impli-
cations. Individual constructs in the SE Linux pol-
icy language, unlike those in higher-level programming
languages and specification languages such as Z [14]



and the B language [1] do not have a fixed or uni-
form semantics. Although every object class has an
associated set of permissions with names suggestive of
their intended meanings, the actual semantics of any
SE Linux permission is determined by how that per-
mission is used to control system transitions. For ex-
ample, a successful write system call by a process can
affect the content of a file, but write permission to the
file is not equivalent to guaranteed success: the process
must also have setattr permission to a file descriptor
for the file. Similarly, the form of an allow rule:

allow <type_s> <type_t>:<obj_class> <perm>

(where <type_s> is the “source type” and <type_-t>
is the “target type”’) suggests a direct interpre-
tation for many of its instances, e.g., “a pro-
cess of type <type_s> can be granted permission
<perm> to an object of class <obj_class> and type
<type-t>". However, there are many exceptions in
which <type_s> is not the type of a process or the
type <type-t> is not associated with an object in class
<obj_class>. Hence, the significance of any instance
of an SE Linux policy rule varies with the nature of
the arguments to the rule. And ultimately, like per-
missions, allow rules are given their actual semantics
by their use in the permissions checks controlling sys-
tem transitions.

We note that because multiple permissions can be
needed for an actual flow of information and because
the semantics of allow rules depend upon how they
are used in the system, precisely analyzing the pol-
icy for information flows is more complex than simply
checking for the existence of a path between security
contexts by tracing through allow, type_transition,
and other rules in the policy. Because the meanings
of the policy rules are so intertwined with the oper-
ating system, one cannot reason precisely about the
effectiveness of a policy without modeling the system
to which it is to be applied. Therefore, to model an
SE Linux policy, we also must model the SE Linux
operating system on some level.

3 Choosing an example policy

The example policy that accompanies the SE Linux
release is not a good example to aid in developing our
analysis methods because 1) it does not contain suffi-
cient allow rules to make SE Linux usable when it is
enforced, and 2) it is too large and complex for an ini-
tial feasibility study. Thus, to obtain a good example
policy for analysis, we need first to extend that policy
“Judiciously” so that it allows nontrivial user behavior
after system initialization, and then to extract a subset
of the extended policy.

Extending the original policy. The manner in
which the original SE Linux example policy must be
extended to be usable is platform dependent. Because

it is so low-level, it must be customized to work for
the configuration (e.g., the installed packages and dae-
mons) of the machine on which it is installed. This
must be done carefully to ensure that only permissions
necessary for correct operation of the system are added.
We have obtained a policy usable with the newer ver-
sion of SE Linux on our system by adding around 30
allow rules. For verification purposes, we have used
these rules as guidance for extending the original pol-
icy into a reasonable policy allowing nontrivial user
behavior after system initialization.

Choosing a subset. Security policy specifications
in the SE Linux policy language are generally large
and complex, requiring a possibly prohibitive amount
of space and time for modeling and analysis. It is diffi-
cult to prove properties of the policy without modeling
the full policy. However, modeling and proving prop-
erties of a subset can help develop confidence that the
policy achieves its goals. Subsets are useful for policy
debugging: If the property does not hold for the sub-
set, it will not hold for the full policy either. When the
property does hold for the subset, evidence has been
accumulated about its validity for the full policy.

Our extraction algorithm, described in more detail
in Section 5, slices a security policy based on the se-
lection of sets of types and system calls. The extracted
policy slice uses only the selected types and the per-
missions associated with the selected system calls.

For our initial experimental analysis, we consider
the portion of the operating system necessary for file
management and process control. Subsets that in-
clude the types associated with hardware interfaces,
networking, or initialization of the system could be
modeled similarly. Another consideration in our choice
of an initial policy subset for analysis is the lack of
full documentation of some of the policy language con-
structs. Our chosen subset avoids those constructs.

4 Modeling SE Linux in TAME

A TAME overview. TAME is an interface to the
theorem prover PVS [11] that simplifies specifying,
and proving properties of, automata models. To sup-
port specifying automata, TAME provides templates
that allow the user to specify the standard parts of an
automaton—its state space, its start state(s), and its
transitions. To support reasoning about the specified
automata, TAME provides a set of standard support-
ing theories and a set of strategies that support proving
automaton properties either automatically (if possible)
or using proof steps resembling the natural steps used
in high-level hand proofs.

The TAME model for SE Linux that we have been
developing is based on the I/O automata model [9].
The TAME template organizes the specification of
an I/O automaton by using a standard set of con-
structs. The state space is represented by a record



type MMTstates, and the start states are specified by
a predicate start. The transitions are specified by a
datatype actions describing the set of actions that can
trigger transitions, a predicate enabled to describe the
preconditions on the actions, and a function trans to
describe the effect of each action a on a state s. The
transitions of the automaton are the prestate-poststate
pairs (s,trans(a,s)) with enabled(a,s) = true.

The proof support provided by TAME is mainly
aimed at proving invariant properties of automata,
such as state invariants (properties of all reachable
automaton states) and transition invariants (proper-
ties of all reachable transitions). As noted in [4], most
high-level security properties of an SE Linux policy
can be represented as either state or transition invari-
ants. The existing TAME proof support will be useful
in proving such properties; however, it can be antic-
ipated that advantage can be taken of the common
features of TAME models of SE Linux to add proof
steps especially geared to these models. This issue is
discussed further in Section 6.

A TAME model of SE Linux. To model SE Linux
abstractly in TAME, one must choose an appropriate
state space, set of initial states, and set of transitions.
In our TAME model®, the state space is determined
by a set of variables of which the principal variable is
objects, the set of objects (such as processes, files, di-
rectories, file descriptors, etc.) managed by the operat-
ing system, and there is a single initial state. We chose
to model the system from the point after the system
has been initialized, and the initial state in our model
reflects this. As in any TAME model, transitions are
the result of actions in the datatype actions; in our
model, actions correspond to system calls issued by
processes.

The values of the state variable objects are sets of
members of the datatype OBJECT. The constructors in
OBJECT provide a way to construct an object of every
class. The formal parameters of the constructors be-
have like fields in a record. For each object class, the
choice of which parameters to include is determined by
three factors: 1) the need to tag every object with its
security context (or security label)*, 2) represent (ab-
stractly) the effects of system calls on the object, and
3) in some cases, the need to be able to state system
properties of interest.

In addition to the variable objects, there are two
additional kinds of state variables: shadow wvariables

30ur TAME model can be found on the NRL SE Linux
project page at http://chacs.nrl.navy.mil/SoftwareEng.

4In SE Linux, every object has a security contezt that con-
tains such information as an associated user, TE type, RBAC
role, and possibly an MLS security level. The integer-valued
SID (security identifier) actually used as the security label in SE
Linux is a session-specific hash encoding of the security context.
This implementation detail is not necessary in our model.

and indezing variables. Shadow variables add no infor-
mation about the state to that provided by objects,
but are used to provide more direct access to informa-
tion difficult to express directly in terms of objects.
Indexing variables are used in the management of nu-
merical IDs (such as Pid) and version numbers.

The abstract model of SE Linux has two significant
aspects: a fixed aspect that depends only on the op-
erating system, and a variable aspect that depends on
the particular security policy imposed on the operat-
ing system and, to some extent, on the choice of pol-
icy subset to model. Based on this categorization of
parts of the model, we have developed and partially
implemented an approach that can greatly simplify the
modeling process for SE Linux with new policies. The
fixed parts of our model can be reused in new models.
As discussed in Section 5, construction of the variable
parts of the model, including the choice of a policy
subset to model, can be supported by a combination
of extraction algorithms and definitions libraries.

The fixed part of the model includes the state space.
It also includes much of the description of actions. In
particular, the definition of the datatype actions es-
sentially consists of declarations of the various system
calls and their arguments. Those parts of enabled
involving checks of arguments (e.g., if a process p is-
sues a write system call with file descriptor argument
fd, then fd must be one of p’s file descriptors) and
those parts of trans that do not involve type or role
transitions are also fixed. Besides checking arguments,
the predicate enabled determines whether Permis-
sionGranted holds for a given action in a given state.
The function trans handles type transitions by calling
whichever of the functions Newfiletype or Newproc-
type is appropriate.

The variable parts of the model include the defi-
nitions of the predicate PermissionGranted used by
enabled and the functions Newfiletype and New-
proctype used by trans. The predicate Permission-
Granted determines whether the required permissions
for system calls can be granted. It is defined in terms
of the predicate Allowed, which is directly derived
from the allow rules in the policy, and the predi-
cate PathAllowed, which applies Allowed recursively
over the ancestor directory names of a file name pn.
There are fairly straightforward algorithms for compil-
ing Newfiletype, Newproctype, and Allowed from a
policy specification. Because the policy specification
language does not yet support description of the re-
quired permissions associated with particular system
calls, we cannot yet compile the full definition of Per—
missionGranted automatically.

The choice of initial state is also variable. E.g., in
our initial example model of a policy subset, our choice
of initial state is affected by the elimination of that
part of the full policy controlling what happens during



system initialization. The choice of initial state can
be aided by a library of objects whose states reflect a
particular status of the operating system.

5 User support for modeling policies

Because of the size and complexity of policy specifi-
cations and SE Linux itself, developers using our anal-
ysis methods will need tool support for creating the
variable parts of a TAME model for SE Linux. We
plan to offer two types of support: automatic extrac-
tion tools and libraries. Algorithms for automatically
extracting a policy subset and for then creating the
policy-dependent portions of a TAME model for SE
Linux from the (possibly reduced) policy have been
implemented using Python [16, 15].° Libraries can
be developed to aid in the construction of the policy-
independent portions of the model.

Automatic extraction tools. Our policy slicing al-
gorithm allows a user to specify a policy subset by
specifying a set of TE types T, and a set of permissions
P(oc) for each object class oc. As noted in Section 3,
these sets are chosen based on the types and system
calls that are to be analyzed. In particular, the per-
missions in each P(oc) are those needed for the system
calls to be analyzed. The algorithm removes all per-
missions from any rule involving an object class oc that
arenot in P (oc), and then removes all declarations and
rules in TE files that either reference types not in T or
have no remaining permissions.

In addition to the slicing algorithm, we have devel-
oped an algorithm that extracts all allow rules from a
set of TE files and converts them into the form of the
Allowed predicate, and a similar algorithm that ex-
tracts all the type transition information and converts
it into the functions Newproctype and Newfiletype.

Library support. The actual choice of system calls
included in the model can be considered a variable part
of the model. However, the definitions of the precondi-
tions and effects of system calls are policy-independent,
and hence fixed, down to the level of Permission-
Granted, Newfiletype, and Newproctype. Thus, they
can be written just once for all policies. We have be-
gun to develop a TAME library of action declarations
and the fixed parts of action preconditions and effects
for SE Linux models. This library can eventually be
used to support the automatic construction of the top
level definitions of the actions in a model, once a user
selects the system calls to include.

The initial state is another part of the model that
the user may wish to vary. For this variable aspect
of the model, another library can be developed that
allows users to select the processes and other objects
to automatically include in their desired initial state.

5We have implemented the algorithms for both the January
2001 and June 2002 versions of the SE Linux policy language.

6 Checking properties of models

As noted in the introduction, we are checking SE
Linux properties in stages, starting with simple prop-
erties, and advancing to deeper properties.

Simple properties. There are two types of simple
properties: well-formedness properties and policy as-
sertion properties. The well-formedness properties are
policy-independent, while policy assertion properties
are policy-dependent.

Well-formedness of the TAME specification as a
PVS specification is checked simply by applying the
PVS type checker and proving any type correctness
conditions that the type checker generates. Addi-
tional well-formedness conditions include shadow vari-
able properties, which assert that the shadow variables
have the intended relation to the variable objects,
and object type properties, which show that the 0BJECT
components of “reachable” objects have the expected
object class. Such properties are not true in every state
s in the state space but are expected to hold in every
reachable state of the model. Therefore, they must be
proved as state invariants. A strategy for using ac-
tion preconditions in induction proofs can be designed
that omits expanding PermissionGranted in order to
simplify proving such policy-independent properties.

Policy assertion properties are derived directly from
the neverallow statements that comprise the asser-
tions of a policy. Such a property can be checked di-
rectly simply by expanding the Allowed predicate and
using the result to check that no case forbidden by the
associated neverallow statement is allowed. Check-
ing these assertions provides some assurance that the
definition of Allowed in the model is consistent with
the specification.

Deeper properties. The deeper properties of great-
est interest derive from the security goals that the pol-
icy designer wishes to achieve for a Linux system. A set
of eight general goals for the example policy in the SE
Linux release is given in [12]. These goals are stated at
a very high level, e.g., “protect the integrity of the ker-
nel”, and “protect the administrator role and domain
from being entered without user authentication”. De-
termining the precise properties SE Linux should have
to achieve the high-level goals is difficult without more
explicit input from the policy designer.
Here are two possible deeper properties of interest:

1. Only a process whose initial TE type is klogd_t,
or one of its descendents, ever gets permission to
execute a write system call to kernel log files.

2. Any process that has search permission in a di-
rectory has search permission in all ancestors of
the directory.



Property 1, which can be formulated as a transition
invariant, may be one of the properties desired for pro-
tecting kernel integrity. Property 2, which can be for-
mulated as a state invariant, is interesting for a dif-
ferent reason: if this property holds, then every use of
PathAllowed involving the search permission can be
changed to a simple (non-recursive) use of Allowed,
which is easier to reason about.

Other properties of interest may be the informa-
tion flow properties being checked by Herzog and
Guttman [7]. As noted in Section 2 precise checking
of such information flow properties cannot be done by
straightforward reasoning from the policy rules. These
information flow properties can likely be checked in the
TAME model, since this model contains more system
detail than is embodied in the policy rules alone. Cur-
rently, the feasibility of doing so is an open question.

Feedback from unfinished proof goals. Every
unfinished proof goal occurring in the course of the
proof of a state or transition invariant corresponds to a
state transition that, if it is reachable, is a counterex-
ample: a transition that either fails to preserve the
state invariant or fails to satisfy the transition invari-
ant. To handle an unfinished proof goal, one can often
introduce additional facts that show that the prestate
in the transition is not reachable. These facts may be
facts about the specification that have not yet been
used in the proof (e.g., the inductive hypothesis), or
they may come from separately proved invariant lem-
mas or lemmas about the data types used in the spec-
ification. However, sometimes the unfinished goal will
correspond to a real counterexample. In such cases,
it is useful to be able to simulate the system to dis-
cover whether the prestate is indeed reachable. Creat-
ing such a simulation capability is work for the future.

7 Discussion

Several minor modifications to the SE Linux policy
language would make it more friendly to the analysis of
policy specifications. For example, our algorithms are
unnecessarily complicated because information about
the significance of certain macros has to be computed.
This problem could be solved by replacing the macro
construct by a similar construct containing additional
information to (e.g.) 1) distinguish rule macros from
set macros, 2) distinguish macros for permissions sets
from macros for object class sets, and 3) identify the
object class or classes associated with a permissions set
macro.

Other aspects of the macro construct can make a
policy difficult to analyze by inspection. One example
is the use of parameterized types in a macro where
these types are not locally declared. This is safe only
if the macro is used only in an environment where these
types are defined. The need for a safety check would go

away if macros were replaced by functions not involving
global variables.

Modifying the language into something closer to a
strongly typed programming language would permit
the use of functions rather than macros, and facilitate
other consistency checks that one gets “for free” from
type checking in such a language.

Acknowledgements

We wish to thank Ross Godwin and James Pak for
explaining many details of the implementation of SE
Linux and its behavior in practice. We also thank Con-
stance Heitmeyer and Ralph Jeffords for helpful com-
ments on an earlier version of this paper.

References
[1] J.-R. Abrial. The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, 1996.

[2] M. Archer. TAME: Using PVS strategies for special-
purpose theorem proving. Annals of Math. and Artif. Intel.,
29(1-4):139-181, 2000. Published Feb., 2001.

[3] M. Archer, C. Heitmeyer, and E. Riccobene. Proving in-
variants of I/O automata with TAME. Automated Software
Engineering, 9(3):201-232, 2002.

[4] M. Archer, E. Leonard, and M. Pradella. Towards a
methodology and tool for the analysis of Security-Enhanced
Linux security policies. Technical Report NRL/MR/5540—
02-8629, NRL, Wash., DC, August 16 2002.

[5] M. Archer, E. Leonard, and M. Pradella. Analyzing
Security-Enhanced Linux policy specifications. Technical
Report NRL/MR/5540-03-8659, NRL, Wash., DC, 2003.

[6] R.Godwin, J. Pak, M. Archer, and E. Leonard. Document-
ing aspects of SE Linux. Draft report, 2002.

[7] A.L. Herzog and J. D. Guttman. Achieving security goals
with Security-Enhanced Linux. Extended abstract of a pre-
sentation at the IEEE Symp. on Security and Privacy, 2002.

[8] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. Technical
report, National Security Agency, Jan. 2, 2001.

[9] N.Lynch and M. Tuttle. An introduction to Input/Output
automata. CWI-Quarterly, 2(3):219-246, Sept. 1989. Cen-
trum voor Wiskunde en Informatica, Amsterdam, The
Netherlands.

[10] S. Miller. Specifying the mode logic of a flight guidance sys-
tem in CoRE and SCR. In Proc. 2nd Workshop on Formal
Methods in Software Practice (FMSP’98), 1998.

[11] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-
Calvert. The PVS prover guide. Technical report, Com-
puter Science Lab., SRI Intl., Menlo Park, CA, 1998.

[12] S. Smalley and T. Fraser. A security policy configuration
for Security-Enhanced Linux. Technical report, National
Security Agency, Jan. 2, 2001.

[13] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. An-
dersen, and J. Lepreau. The Flask security architecture:
System support for diverse security policies. In Proc. of the
Eighth USENIX Sec. Symp., pages 123-139, Aug. 1999.

[14] J. M. Spivey. The Z Notation: A Reference Manual. Pren-
tice Hall International, 1991.

[15] G. van Rossum. Python Library Reference, Release 2.2.1.
PythonLabs, April 2002.

[16] G. van Rossum. Python Tutorial, Release 2.2.1. Python-
Labs, April 2002.





