
Formal Analysis of Domain Models
In Proc. International Workshop on Requirements for High Assurance Systems (RHAS'02). Essen, Germany,

September 9, 2002.

Ramesh Bharadwaj

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington DC 20375-5320, USA

+1-202-767-7210

ramesh@itd.nrl.navy.mil

ABSTRACT

Recently, there has been a great deal of interest in
the application of formal methods, in particular pre-
cise formal notations and automatic analysis tools,
for the creation and analysis of artifacts of require-
ments engineering. In this paper we discuss the role
of formal methods in requirements engineering (RE),
emphasizing that in contrast to their more conven-
tional application in RE for the creation and analysis
of requirements speci�cations, formal methods may
be applied in a cost-e�ective way to answer speci�c
questions about the domain by the construction and
automated analysis of \domain models".

Keywords

Formal Methods, Formal Models, Requirements En-
gineering, Formal Analysis, CASE Tools, Model
Checking, Theorem Proving

1 INTRODUCTION

Formal methods, in particular automated techniques
for �nite-state veri�cation such as model checking,
are increasingly being used in industry for the anal-
ysis of descriptions of hardware and protocols. How-
ever, most practical system descriptions, notably
those of software, are not amenable to �nite-state ver-
i�cation methods since they have very large or in�nite
state spaces. To compound the problem, software de-
velopers have serious doubts about the scalability and
cost-e�ectiveness of these methods.

Recently, there has been a great deal of interest in
the application of formal methods, in particular pre-
cise formal notations and automatic analysis tools,
for the creation and analysis of requirements speci-
�cations, i.e., mathematically precise descriptions of
the required black-box behavior of a system. Creat-
ing a requirements speci�cation, especially in a no-
tation with an e�cient operational semantics, o�ers

a number of advantages: (a) It creates a domain of
discourse through which the stakeholders can agree
upon the system's required behavior. There are sev-
eral validation tools that can help in this process,
such as simulators, browsers, formatters, and auto-
matic invariant generators. (b) Since a requirements
speci�cation is created at a high level of abstraction,
and does not include irrelevant details of the imple-
mentation, it is more amenable to automated analysis
such as model checking and automatic theorem prov-
ing using decision procedures. (c) A speci�cation is
a \build-to" document. A precise speci�cation of the
required behavior of a system not only helps develop-
ers when implementing the system, but also serves as
the primary reference document for carrying out sys-
tem integration, system acceptance tests, and system
maintenance.
A major barrier to the construction of a precise

formal speci�cation of system behavior has so far
been that developers �nd formal methods di�cult
to understand and apply. One exception is a formal
method called SCR which, due to its relatively easy-
to-use tabular notation and demonstrated scalability,
has achieved a degree of success in industrial appli-
cations. Numerous pilot projects have demonstrated
the ease-of-use and cost-e�ectiveness of the SCR ap-
proach for requirements speci�cation and analysis.
In this paper we investigate another area where

formal methods may be used in requirements engi-
neering, that is, to answer speci�c questions about
the domain. In contrast to the more conventional
approach of constructing requirements speci�cations,
we advocate here the creation and analysis of \do-
main models" just for the purpose of answering spe-
ci�c questions. The e�ort involved in creating such
models is minimal and is comparable to the e�ort re-
quired to peruse a prose speci�cation directly to �nd
answers to those questions (which may often turn out
to be incorrect [6]). With our approach, not only

1

green
Text Box
NRL Release Number 02-1221.1-1816



is there the advantage of arriving at the right an-
swer with mathematical certainty, but as an added
bonus, the process uncovers anomalies and raises is-
sues about the requirements that the conventional
approach does not.

To demonstrate the advantages of this approach,
we recently used the SCR method and toolset for
the formal modeling and analysis of the \Climb
FMS Speed Mode" of a simple Speed Mode indica-
tor (SMI), which operates as part of a 
ight man-
agement system (FMS). We based our model on the
description1 provided in a paper by Zimmerman et
al. [6]. In this paper, the authors present an experi-
mental study intended to evaluate the readability of
four di�erent notations { textual, graphical, logical,
and tabular2 { commonly used in formal requirements
speci�cations to express the conditions that trigger
state transitions in the description. They do this by
posing questions to a number of subjects, to assess
their ability to read and understand descriptions of
state transitions in the four notations. In the exper-
iment we carried out, we used the SCR Toolset [4]
to create a formal model of the domain based on the
description provided in [6], and the Toolset's auto-
mated analysis tools [1, 2] to arrive at answers to
some of the questions in the original study. Other
questions were answered by examining the SCR ta-
bles. The development of the domain model and its
analysis was carried out in less than one afternoon
(about three hours), which is comparable to the time
taken by most of the subjects in the original study
to directly answer the same questions after studying
the four descriptions. During this process, we uncov-
ered a number of issues with the descriptions in [6],
a paper presented at a premier conference which has
presumably been well scrutinized by referees during
its review. It is interesting to note that of the four
di�erent notations in the paper, we found the tex-
tual description (a structured presentation of infor-
mal prose which is reproduced in Appendix A) to be
most useful in constructing the SCR domain model.

A note on naming: Although the SCR method
has explicit naming conventions [5] we chose not to
adhere to them in order to maintain compatibility
with the naming conventions of [6]. The only devi-
ation was that each embedded blank or whitespace
in the names was replaced by the underscore (\ ")

1Although the authors call it a \requirements speci�cation"
we desist from using their terminology because the description
is not of the required black box behavior of the 
ight manage-
ment system.

2Di�erent from the SCR tabular notation.

character. However, we did discover several anoma-
lies with the naming in [6], which we shall discuss in
the sequel.

2 THE SCR MODEL OF SMI

The SCR method is used to document the required
system behavior, i.e., the relation between environ-
mental quantities that the system monitors (called
the monitored quantities) and environmental quan-
tities that the system controls (called the controlled
quantities). Associated with each SCR variable is a
type. We began by determining (guessing) the types
of all variables whose names appeared in the textual
description of SMI, and classi�ed and documented
them in the type dictionary (see Figure 1). To deter-
mine the type of a variable, we took the union of all
values that the variable was either compared with or
assigned to, and, in certain cases (where we believed
that the variable could take on other values), included
an additional value \other". In certain cases, if one
value set (type) turned out to be a proper subset of
another, we discarded the subset and associated the
superset with the variable's type.
Since the SCR model of the simple Speed Mode

indicator only describes the behavior of Climb FMS
Speed Mode, it has no controlled variables. Figure 2
lists the monitored variables of SMI and their associ-
ated types.
The SCR notation includes four constructs {

mode classes, terms, conditions, and events. A
mode class captures historical information that helps
make the speci�cations concise. A mode class may
be viewed as a state machine, whose states are
called modes and whose transitions are triggered
by events. The SCR model of SMI has a sin-
gle mode class { Climb FMS Speed Mode { of type
fDefault; Max Climb; Economy; Editg.

Issues raised when creating the type dictio-

nary: Our major concern during this phase was
that the types of variables had to be inferred by care-
fully examining the entire description since this in-
formation is not available in one place. During this
process we detected several anomalies:

� The word \Edit" (by itself) and the word \Edit"
followed by the word \Mode" appear in the tex-
tual description. We inferred that the word
\Mode" was (erroneously) appended to the iden-
ti�er \Edit" in the \formal" notations, whereas
the word \Mode" is presumably a part of the oc-
curring phrase in the textual description. For ex-
ample, the phrase Climb FMS Speed Mode previ-
ously in Edit Mode is to be interpreted as \Climb

2



Type Identi�er Basetype

Climb Speed Mode Requests f Economy, Edit, Max Climb, other g

Engine Out Type f Not Engaged, Engaged g

FCC Engaged Modes f Altitude Hold Speed,
Altitude Hold Idle Thrust,
Altitude Hold Maximum Thrust, other g

FCC Speed Mode Requests f Economy, AFS Speed, Edit CAS, Edit Mach, other g

FMS Modes f Lateral Only, Lateral-Vertical, other g

FMS Speed Modes f Max Climb, Edit, other g

Flight Phase Type f Preflight, Takeoff, Climb, Cruise, Descent,
Approach, Done g

Figure 1: Type Dictionary of SMI

Name Type

Cruise FMS Speed Mode FMS Speed Modes

Descend FMS Speed Mode FMS Speed Modes

Engine Out Engine Out Type

FCC Engaged Mode FCC Engaged Modes

FMS Mode FMS Modes

Flight Phase Flight Phase Type

Requested Climb Speed Mode Climb Speed Mode Requests

Requested FCC Speed Mode FCC Speed Mode Requests

Figure 2: Variable Dictionary of SMI

FMS Speed Mode" previously in \Edit" Mode
and not as \Climb FMS Speed Mode" previously
in \Edit Mode". We assumed this is also the case
with \Economy Mode".

� We have similar doubts about the inclusion of
the word \Mode" in the names of variables
and in the mode class (which is clearly not a
\Mode"). That is, we were unable to determine
whether the name \Climb FMS Speed Mode"
should or should not include the word \Mode"
after \Climb FMS Speed".

� Another minor anomaly was the use of redun-
dant symbols in both the graphical and logi-
cal descriptions. For example, \Flight Phase
is Takeo�" and \Flight Phase = Takeo�" are
both used. Having two alternate denotations for
equality makes a gratuitous distinction, which
clearly detracts from readability. A syntax
checker would have immediately uncovered such
anomalies.

Issues raised when creating the variable dic-

tionary:

� A major concern was that there were no descrip-
tions provided of variable names and their mean-
ings. Sometimes called designations, these de-
scriptions establish a connection between each

entity in the document and the real world. For-
tunately, we drew upon our prior experience with
aircraft 
ight management systems [3] to make
sense of the variable names and acronyms such
as CAS, FCC, etc.

� We detected an obvious inconsistency (in one
of the tables of their tabular description) in
the name of variable \Requested Climb Speed
Mode" which in one instance is written instead
as \Requested Climb FMS Speed Mode". (This
alternate name also appears in question 1.) Also,
we are unsure whether the word \Requested" is
to be included in the variable name since the
textual description reads \Edit is requested for
Climb Speed Mode".

A note on the SCR event notation: The
SCR notation \@T(c) WHEN d" denotes a conditioned
event, de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditions c and d are evaluated
in the \old" state, and the primed condition c0 is eval-
uated in the \new" state. Informally, this expression
denotes the event \predicate c becomes true in the
new state when predicate d holds in the old state".
The notation \@F(c)" denotes the event @T(NOT c)

and \@C(x)" denotes the event \term x has changed
value".

3



Mode Class = Climb FMS Speed Mode

Old Mode Events New Mode

Edit, @T(Flight Phase = Done) Default
Max Climb, @T(Flight Phase = Descent) when (Flight Phase = Takeoff)

Economy @T(Flight Phase = Cruise) when (Flight Phase = Climb)

@T(Flight Phase = Descent) when (Flight Phase = Climb)

@T(Engine Out = Engaged)

@T(FMS Mode = Lateral Only)

Max Climb @T(FCC Engaged Mode = Altitude Hold Speed) Default
@T(FCC Engaged Mode = Altitude Hold Idle Thrust)

@T(FCC Engaged Mode = Altitude Hold Maximum Thrust)

Edit, @T(Requested FCC Speed Mode = Economy) when Economy
Max Climb, (Flight Phase in fPreflight; Takeoff; Climbg)
Default @T(Requested FCC Speed Mode = AFS Speed) when

(Flight Phase in fPreflight; Takeoff; Climbg)
@T(Requested Climb Speed Mode = Economy) when

(Flight Phase in fTakeoff; Climbg)

Edit, @T(Requested Climb Speed Mode = Max Climb) Max Climb
Default,

Economy

Max Climb, @T(Requested FCC Speed Mode = Edit CAS) when Edit
Default, (Flight Phase in fPreflight; Takeoff; Climbg)
Economy @T(Requested FCC Speed Mode = Edit Mach) when

(Flight Phase in fPreflight; Takeoff; Climbg)
@T(Requested Climb Speed Mode = Edit)

Economy @T(Flight Phase = Climb) when Edit
(Flight Phase = Cruise and Cruise FMS Speed Mode = Edit)

@T(Flight Phase = Takeoff) when

(Flight Phase = Descent and Descent FMS Speed Mode = Edit)

@T(Flight Phase = Climb) when

(Flight Phase = Descent and Descent FMS Speed Mode = Edit)

@T(Flight Phase = Takeoff) when

(Flight Phase = Approach and Descent FMS Speed Mode = Edit)

@T(Flight Phase = Climb) when

(Flight Phase = Approach and Descent FMS Speed Mode = Edit)

Figure 3: Mode Transition Table of SMI

Mode Transition Table The mode transition ta-
ble of Figure 3 de�nes the behavior of the mode
class; i.e., the table de�nes all events that change
the value of the mode class Climb FMS Speed Mode.
For example, the �rst row of the table states:
\If Climb FMS Speed Mode is Edit, Max Climb, or
Economy, and Flight Phase transitions to Done, then
Climb FMS Speed Mode changes to Default." An
assumption is that events omitted from the table
do not change the value of the mode class. For
example, when Climb FMS Speed Mode is Economy,
the occurrence of the input event @T(Engine Out

= Not Engaged) does not change the value of
Climb FMS Speed Mode.

Issues raised when creating the mode transi-

tion table: We found a type error in the tabular de-
scription of [6] where \Requested Climb Speed Mode
= Economy" is wrongly entered as \Requested Climb
Speed Mode" (which can never by itself be \true").
Also, their description provides no initial values for
any variable, including the mode class. However, it
is evident from the questions that there is an implied
initial mode. For example, question 1: \Describe two
scenarios that would cause the Climb FMS Speed
Mode to be Edit" suggests that the initial mode is
not \Edit". For the purpose of our analysis, we as-
sumed that the initial mode is \Default". Also, for
applying the model checker and simulator we had to
assign initial values to all monitored variables.

4



Question2 = @T(Flight_Phase = Climb) when (Engine_Out = Engaged and

Requested_Climb_Speed_Mode = Economy and

Flight_Phase = Takeoff) => Climb_FMS_Speed_Mode' != Max_Climb;

Variable Old Value New Value

======== ========= =========

Cruise_FMS_Speed_Mode Max_Climb Max_Climb

Descent_FMS_Speed_Mode Max_Climb Max_Climb

Engine_Out Engaged Engaged

FCC_Engaged_Mode Altitude_Hold_Speed Altitude_Hold_Speed

FMS_Mode Lateral_Only Lateral_Only

Flight_Phase Takeoff Climb

Requested_Climb_Speed_Mode Economy Economy

Requested_FCC_Speed_Mode Economy Economy

Climb_FMS_Speed_Mode Max_Climb Max_Climb

Figure 4: Property and Scenario Returned by Salsa

3 APPLYING THE SCR TOOLSET

After creating the domain model, we used the auto-
mated consistency checker [4] to check for proper syn-
tax, type correctness, missing cases, nondeterminism,
and other application-independent properties. Appli-
cation of this tool uncovered a missing de�nition for
variable Cruise FMS Speed Mode in our model. We
noticed that the only value assigned to this variable
is Edit. However, rather than creating a new type,
we decided to assign to this variable the type as-
signed to variable Descend FMS Speed Mode (which
additionally contains the value Max Climb).

At this point we were quite con�dent about the
�delity of our model relative to the descriptions in
[6], and therefore proceeded to answer the questions
in [6], some of which are reproduced in Appendix B.
In the original study, subjects were asked to use a
description in any notation to answer the �rst two
questions. Each subsequent set of four questions was
designated for a notation of one kind. In our study,
answers to all the questions were derived from the
mode transition table. To answer some of the ques-
tions, we used the automatic invariant checker Salsa
[2]. The method used was to propose the negation of
each question as an invariant and to use Salsa to �nd
a scenario that falsi�es the invariant, thereby answer-
ing the question in the a�rmative. For example, we
reproduce in Figure 4 the predicate corresponding to
the negation of question 2: \Could the Climb FMS
Speed Mode be Max Climb under the following con-
ditions? (a) Engine Out is Engaged (b) Requested
Climb FMS Speed Mode [sic] is Economy and (c)
Flight Phase transitions from Takeo� to Climb" and
a scenario returned by Salsa (in just over a second)

that falsi�es this predicate.
The scenario in Figure 4 shows a state transi-
tion where the mode class Climb FMS Speed Mode

remains Max Climb when Flight Phase transitions
from Takeoff to Climb and the other conditions are
met in the pre-state. One thing to keep in mind is
that the scenario returned by Salsa may not be a true
counterexample since the pre-state (corresponding to
\Old Value" of variables) may be unreachable. To
establish this as a true counterexample requires vali-
dation by domain experts, who are usually able to de-
termine, using their expertise, whether the pre-state
is reachable 3. In the absence of access to domain
experts, we decided to run the model checker Spin
after an automatic translation of the SCR model to
the language of Spin using the method outlined in [1].
Running Spin immediately yielded a counterexample
(a sequence of monitored variable changes starting
from the initial state and leading to the transition
that falsi�es the predicate) of 16 steps. A scenario
under which question 2 could be answered in the af-
�rmative was demonstrated by running the simulator
of the SCR Toolset on the counterexample returned
by Spin. (The pre-state and transition of Spin's coun-
terexample correspond almost exactly to Salsa's sce-
nario.)
In addition to question 2, we answered questions

1, 5, 9a, and 9b (see appendix B) along the same
lines. We leave it as an exercise to the reader
to discover that the answers to the other questions
are trivially derived from the mode transition table.

3If the pre-state is unreachable, the wording of a (counter-)
argument is something like: \But, isn't it the case that foo can
never be true unless bar is true also?"

5



Also, when answering question 9 we discovered that
variable FMS Mode can take on an additional value
Lateral-Vertical.

4 CONCLUSIONS

In this paper, we outlined a process for creating a
domain model in SCR of a simple Speed Mode indi-
cator (described in [6]), speci�cally to answer a set of
questions. The modeling and analysis took less than
one afternoon. The process of constructing the model
had the bene�t of additionally raising a number of is-
sues in the description provided in the paper, which
has been published in a peer reviewed conference. It
should be noted that, as opposed to previous reports
on using formal methods that have detected problems
in informal descriptions of software requirements or
domain properties, the basis of our study was an in-
formal and three formal descriptions of a system. This
demonstrates the utility of formal methods (and the
power of using the right notation) in requirements
elicitation, especially for high assurance systems.

In their paper, Zimmerman et al. [6] hypothesize
that the readability of formal requirements speci�ca-
tions is the limiting factor in the acceptance of formal
methods by the industrial community. Another im-
portant factor is whether a formal description is or-
ganized to �nd answers easily to commonly encoun-
tered questions. In our opinion, the organization of
the mode transition table of SCR facilitates �nding
precise answers to the questions in [6]. Whereas we do
not wish to downplay the importance of readability,
we wish to emphasize the importance of automated
tool support. For example, all the residual problems
in the published descriptions in [6] could have been
easily caught by a simple syntax and type checker.
Also, in our experience, tools that support a speci�c
conceptual model and method such as SCR are more
cost-e�ective than general-purpose tools. If a formal
model lacks a strong underlying method, the bene-
�ts of automation are likely to be minimal. Since the
SCR method focuses on a class of systems (embedded
systems) and standardizes the conceptual model, the
notation, and the process, signi�cant automated tool
support is possible.

We believe that a promising approach to apply-
ing formal methods in requirements engineering is to
provide a framework for using the logic-based nota-
tion associated with most formal methods by adopt-
ing a notation, such as a graphical or tabular nota-
tion, that is intuitive and easy to use. Speci�cations
in such \user-friendly" notations are automatically
translated to other notations that are more amenable
to formal analysis. In addition, with powerful, easy-

to-use tool support it is feasible to answer questions
about the domain and to �nd errors automatically,
with the tools providing feedback useful in under-
standing the domain.

ACKNOWLEDGMENTS I thank Connie Heit-
meyer for bringing to my attention the paper by Zim-
merman et al., and also for insisting that I read it!
Discussions with Jim Kirby helped �rm up the idea of
a domain model. I thank Eric Tressler and Jim Kirby
for providing useful feedback on a previous draft of
this paper. Finally, I thank the anonymous referees
for their many thought provoking comments.

REFERENCES

1. R. Bharadwaj and C. L. Heitmeyer. Model
checking complete requirements speci�cations
using abstraction. Automated Software Engi-
neering, 6(1), January 1999.

2. R. Bharadwaj and S. Sims. Salsa: Combining
constraint solvers with BDDs for automatic in-
variant checking. In Proc. Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS '2000), Berlin, March 2000.

3. R. Bharadwaj and C. L. Heitmeyer. Applying
the SCR requirements method to a simple au-
topilot. In Proc. Fourth NASA Langley For-
mal Methods Workshop (LFM97), NASA Lan-
gley Research Center, September 1997.

4. C. L. Heitmeyer, J. Kirby, B. G. Labaw, and
R. Bharadwaj. SCR*: A toolset for specifying
and analyzing software requirements. In Proc.
10th Computer-Aided Veri�cation, Vancouver,
Canada, 1998.

5. C. L. Heitmeyer, R. D. Je�ords, and B. G.
Labaw. Automated consistency checking of re-
quirements speci�cations. ACM Trans. on Soft-
ware Engineering and Methodology, 5(3):231{
261, April{June 1996.

6. M. K. Zimmerman, K. Lundqvist, and N. Leve-
son. Investigating the readability of state-
based formal requirements speci�cation lan-
guages. In Proc. International Conference
on Software Engineering (ICSE 2002), Or-
lando, Florida, USA, May 2002. Paper URL:
sunnyday.mit.edu/papers/icse-marc-�nal2.pdf

6



APPENDIX A: DESCRIPTION OF THE
CLIMB FMS SPEED MODE

� The Climb FMS Speed Mode shall be the De-
fault if any of the following scenarios are true:

1. The Flight Phase transitions to Done

2. The Flight Phase transitions from Takeo�
to Descent

3. The Flight Phase transitions from Climb to
Cruise

4. The Flight Phase transitions from Climb to
Descent

5. The Climb FMS Speed Mode is Max Climb
AND at least one of the following is true:

a FCC Engaged Mode is Altitude Hold
Speed

b FCC Engaged Mode is Altitude Hold
Idle Thrust

c FCC Engaged Mode is Altitude Hold
Maximum

6. Engine Out transitions from Not Engaged
to Engaged

7. FMS Mode is Lateral Only

� The Climb FMS Speed Mode shall be Economy
if any of the following scenarios are true:

1. Economy is requested for the FCC Speed
Mode AND one of the following is true:

a Flight Phase is Pre
ight

b Flight Phase is Takeo�

c Flight Phase is Climb

2. AFS Speed is requested for the FCC Speed
Mode AND one of the following is true:

a Flight Phase is Pre
ight

b Flight Phase is Takeo�

c Flight Phase is Climb

3. Economy is requested for the Climb Speed
Mode AND one of the following is true:

a Flight Phase is Takeo�

b Flight Phase is Climb

� The Climb FMS Speed Mode shall be Max

Climb if any of the following scenarios is true:

1. Max Climb is requested for the Climb FMS
Speed Mode

� The Climb FMS Speed Mode shall be Edit if
any of the following scenarios is true:

1. Edit CAS is requested for the FCC Speed
Mode AND one of the following is true:

a Flight Phase is Pre
ight

b Flight Phase is Takeo�

c Flight Phase is Climb

2. Edit Mach is requested for the FCC Speed
Mode AND one of the following is true:

a Flight Phase is Pre
ight

b Flight Phase is Takeo�

c Flight Phase is Climb

3. Edit is requested for Climb Speed Mode

4. Flight Phase transitions from Cruise to
Climb
AND
Climb FMS Speed Mode previously in
Economy Mode AND
Cruise FMS Speed Mode previously in Edit
Mode

5. Climb FMS Speed Mode previously in
Economy Mode
AND
Descent FMS Speed Mode previously in
Edit Mode AND one of the following is true:

a Flight Phase transitions from Descend
to Takeo�

b Flight Phase transitions from Descend
to Climb

c Flight Phase transitions from Ap-
proach to Takeo�

d Flight Phase transitions from Ap-
proach to Climb

7



APPENDIX B: LIST OF QUESTIONS

1. Describe two scenarios that would cause the
Climb FMS Speed Mode to be Edit.

2. Could the Climb FMS Speed Mode be Max
Climb under the following conditions?

Engine Out is Engaged

Requested Climb FMS Speed Mode is
Economy

Flight Phase transitions from Takeo� to
Climb

3. Which part of the speci�cation speci�es that
the Climb FMS Speed Mode will be the Default
when the 
ight phase transitions from Climb to
Descent?

4. If the FCC Engaged Mode is Altitude Hold
Speed, what additional conditions are necessary
in order for the Climb FMS Speed Mode to be
Default?

5. Could the Climb FMS Speed Mode be Default
under the following conditions?

FMS Mode is Lateral Only

Engine Out is Not Engaged

Flight Phase is Cruise

Economy is requested for the FCC Speed
Mode

6. Suppose that in order for the Climb FMS Speed
Mode to be Edit, the FMS Mode must be
Lateral-Vertical (this is in addition to the ex-
isting requirements). What changes should be
made to the speci�cation to re
ect this behav-
ior?

7. Which part of the speci�cation speci�es that
the Climb FMS Speed Mode will be Max Climb
when Max Climb is requested?

8. If the 
ight phase is Pre
ight, under what condi-
tions will the Climb FMS Speed Mode be Econ-
omy?

9. Under the following conditions:

FMS Mode is Lateral-Vertical

Engine Out transitions from Not Engaged
to Engaged

Flight Phase is Cruise

Economy is requested for the Climb FMS
Speed Mode

could the Climb FMS Speed Mode be (a) De-
fault? (b) Economy?

10. Suppose we want to add a new mode for the
Climb FMS Speed Mode, called Flex. The Climb
FMS Speed Mode will be Flex if the FMS Mode
is Lateral-Vertical, and the 
ight phase is ei-
ther Takeo�, Climb, or Cruise. What additions
should be made to the speci�cation to re
ect this
behavior?

8




