
SOL: A Veri�able Synchronous Language for

Reactive Systems
In Proc. Synchronous Languages, Applications, and Programming (SLAP'02).

Electronic Notes in Theoretical Computer Science, Elsevier.

Ramesh Bharadwaj?

Center for High Assurance Computing Systems
Naval Research Laboratory

Washington DC 20375-5320, USA
ramesh@itd.nrl.navy.mil

Abstract. SOL (Secure Operations Language) is a synchronous pro-
gramming language for implementing reactive systems. The utility of
SOL hinges upon the fact that it is a secure language, i.e., most pro-
grams in SOL are amenable to fully automated static analysis techniques,
such as automatic theorem proving using decision procedures or model
checking. Among the unique features of SOL is the ability to express a
wide class of enforceable safety and security policies (including the tem-
poral aspects of software component interfaces) in the language itself,
thereby opening up the possibility of eliminating runaway computations
and malicious code, such as worms and viruses.

1 Introduction

SOL is a synchronous programming language which supports a process for the
speci�cation, design, automatic analysis, and implementation of systems, more
speci�cally software-intensive distributed reactive computer systems as typi�ed
by safety- and security-critical applications in the aerospace, automotive, avion-
ics, biomedical, military, nuclear, railway, and telecommunications industries.
The process underlying SOL [4, 13] helps users construct precise and unambigu-
ous system descriptions that are easy to understand and change, and that satisfy
a number of application speci�c as well as application independent properties
such as consistency and completeness, safety, and security. Support in SOL for
programming-in-the-large includes modules, interfaces, and automated analysis
using assumption-guarantee style of reasoning. It is our belief that SOL provides
a cost-e�ective solution to industrial-strength problems.

2 Background

The design of SOL was motivated by the concern of building high assurance
systems. High assurance entails the presentation of compelling evidence that a

? This project was funded by the O�ce of Naval Research.

green
Text Box
NRL Release Number 02-1221.1-0236

system satis�es critical properties including functional properties (i.e., properties
of services that the system delivers), and other critical properties such as secu-
rity, safety, timeliness (real-time), survivability, and fault-tolerance. Since SOL
is a synchronous data-
ow language, programs in SOL are readily amenable to
automatic static analysis techniques such as automatic theorem proving using
decision procedures [6] or model checking [5, 7]. Admittedly, such a style im-
poses some limitations on expressiveness, which may pose a problem in certain
circumstances1. One should keep in mind that it is precisely these limitations
that make many interesting theorems about SOL programs decidable, thereby
opening up the possibility of fully automated analysis for SOL programs.

Many researchers have been working on processes and tools for the speci�ca-
tion, design, analysis, and implementation of safety- and mission-critical systems
[4, 12, 20, 21]. One such approach, known as SCR (Software Cost Reduction), was
developed at the Naval Research Laboratory (NRL) to document the require-
ments of the US Navy's A-7 aircraft [2, 17]. One of the goals of SOL is to be able
to directly implement speci�cations of high-quality, such as the ones produced
in SCR, in a safe and e�cient manner. For illustrative SCR examples, see [5, 13,
14].

Researchers at NRL have provided a formal model for the SCR notation [5,
16], based upon which a number of tools have been developed [6, 15]. For verifying
programs in SOL, our intention is to build upon one of these tools, Salsa, which is
an invariant checker for state machine descriptions. Salsa establishes a formula
as an invariant (properties that are true in all reachable states) by carrying
out an induction proof that uses a tightly integrated set of decision procedures
(currently a combination of BDD algorithms and a constraint solver for integer
linear arithmetic) for discharging the veri�cation conditions. The use of induction
and a set of optimized heuristics enable Salsa to combat the state explosion
problem that plagues current model checkers.

More recently, we have been investigating the problem of building secure dis-
tributed applications over the infrastructure of the Internet and the World Wide
Web [3]. It is widely acknowledged that intelligent software agents are central to
the development of the capabilities required to build robust, re-con�gurable, and
survivable distributed applications. However, agents technology carries with it
the risk of security vulnerabilities such as denial of service, malicious code, and
information leaks. The design philosophy of SOL is to give developers the ability
to address the security problems outlined above using an easy-to-use graphi-
cal interface supported by powerful analysis and synthesis tools. Since agents
in SOL are veri�able, composable, and modular, SOL addresses the problem of
statically determining emergent behavior [8] that eludes current agent design and
implementation approaches.

1 A mitigating factor is the ability within SOL to invoke arbitrary methods (i.e.,
functions) written in traditional programming languages.

3 Related Work

The design of SOL was directly in
uenced by the design of SAL (the SCR Ab-
stract Language), a speci�cation language based on the SCR Formal Model [16].
SAL was designed to serve as an abstract interface for analysis tools such as
theorem provers, model checkers, test case generators, and consistency check-
ers. SOL includes certain key features of SAL including the notion of events

and modularity. The tool Salsa [6] uses SAL as the input language, and can
perform automated analysis such as checking a SAL speci�cation for unwanted
nondeterminism and missing cases, in addition to the veri�cation of invariants.
Although a theorem prover, Salsa a�ords \push-button" automation, ease of use,
and counterexample generation that typify model checkers [5].

Another language that in
uenced the design of SOL was LUSTRE [11], a
language developed at the IMAG Institute in Grenoble. SOL resembles LUS-
TRE in being a textual data-
ow language, and in its ability to include program
fragments (i.e., methods calls) from traditional programming languages in which
it is embedded. However, SOL does away with the (sometimes confusing) no-
tion of clocks of LUSTRE without sacri�cing expressiveness { SCR events are
in essence \self-timed" which obviates the need for an explicit clock. The type
system of SOL is richer than that of LUSTRE, and includes enumerated types,
real, and string types, in addition to opaque types which may denote arbitrary
ADTs (abstract data types) of the embedding language. It is important to note
that the analysis tools of SOL will provide support for reasoning in this richer
type system. Also, SOL borrows from POLLUX [22], an extension of LUSTRE,
the notions of tuples and arrays. Features of SOL not in LUSTRE include mech-
anisms for programming-in-the-large including modules, interfaces, and mecha-
nisms for assumption-guarantee style proofs. Other features include the ability
to directly specify a wide class of enforceable safety and security policies (includ-
ing the temporal aspects of software component interfaces) using the theory of
security automata in [1, 23].

4 Secure Operations Language (SOL)

4.1 Events

SOL borrows from SCR the notion of events [16]. Informally, an SCR event
denotes a change of state, i.e., an event is said to occur when a state variable
changes value. SCR systems are event-driven and the SCR model includes a
special notation for denoting them. The notation @T(c) denotes the event \con-
dition c became true", @F(c) denotes \condition c became false" and @C(x)

the event \the value of expression x has changed". These constructs are de�ned
formally below. In the sequel, PREV(x) denotes the value of expression x in the

previous state.

@T(c)
def
= :PREV(c) ^ c

@F(c)
def
= PREV(c) ^ :c

@C(c)
def
= PREV(c) 6= c

Events may be triggered predicated upon a condition by including a \when"
clause. Informally, the expression following the keyword when is \aged" (i.e.,
evaluated in the previous state) and the event occurs only when this expression
has evaluated to true. Formally, a conditioned event, de�ned as

@T(c) when d
def
= :PREV(c) ^ c ^ PREV(d);

denotes the event \condition c became true when condition d was true in the
previous state". Conditioned events involving the two other event constructs are
de�ned along similar lines.

In SOL we extend the SCR event construct to include events that are trig-
gered by the invocation of a method (i.e., a procedure or function call) of the
embedding language. For example, the event associated with the invocation of
method push(x) of a stack is denoted as @push. This provides users the ability
to implement security automata, a special class of B�uchi automata that accept
safety properties [1, 23].

4.2 SOL Overview

In this section we give an informal overview of SOL using the stopwatch of [11] as
a running example. We have chosen this example to illustrate the expressiveness,
readability, usability, and formal veri�cation capabilities of the SOL approach.
Interested readers may refer to [11] to compare this approach with other syn-
chronous languages such as Esterel, Argos, LUSTRE, and SIGNAL. Informally,
the stopwatch includes a display of elapsed time and a button start stop that
alternately puts the stopwatch in \running" and \stopped" states. Initially the
stopwatch is stopped. It also receives a signal HS every 1=100 second, which is
used to compute the time spent in the \running" state. The stopwatch includes
a second button { button 2 { whose interpretation depends on the mode (i.e.,
externally visible state) of the stopwatch. When the stopwatch is stopped and
the displayed time is running, the button is interpreted as a RESET command;
otherwise it corresponds to a LAP command, which freezes the display while the
stopwatch is still running.

In SOL, a system's behavior is described in terms of modules. A module
declaration may include one or more attributes. The attribute deterministic

declares the module as being free of nondeterminism (which will be checked by
the SOL compiler). Attribute reactive declares that the module will not cause a
state change or invoke a method unless its (visible) environment initiates an event
by changing state or invoking a method; moreover, the module's response to an
environmental event will be immediate; i.e., in the next immediate step. Each
module may contain state variables, each one falling into one of three categories:

HS elapsed_time

button_2 Display_Status

start_stop Timer_Status

display

Fig. 1. The dependency graph of module stopwatch.

monitored variables which denote environmental variables observable to the
module; controlled variables which denote environment-visible variables the
module controls; and internal variables which are updated by the module
but not visible to the environment.

For the stopwatch, we implement the system as a deterministic and reactive
module. We identify three monitored variables { start stop, HS, and button 2

and a controlled variable display. The variable start stop, of type boolean, in-
dicates the status (pressed or otherwise) of the button start stop. Similarly, vari-
able button 2, also of type boolean indicates the status of button 2. The boolean
variable HS indicates the presence (or absence) of signal HS. We also identify
a controlled variable display of type Time (i.e., integer in the range 0 : : :1)
corresponding to the stopwatch display. Finally, module stopwatch includes
three internal variables: elapsed time, also of type Time; Display Statuswhich
can take on values from the set ffrozen; activeg; and Timer Status of type
fstopped; runningg.

Each controlled and internal variable of a module has one and only one de�-

nition which determines when and how the variable gets updated. All de�nitions
of a module m implicitly specify a dependency relation Dm such that a variable a
depends on variable b (i.e., (a; b) 2 Dm) if and only if b appears in the de�nition
of a. Note that variable a may depend on the previous values of other variables
(including itself) which has no e�ect on the dependency relation. A dependency

graph may be inferred from the dependency relation by taking each variable in
the module to be a node and including an edge from a to b if a depends on b2.
The dependency graph of stopwatch is shown in Figure 1. Note that monitored
variables of the module appear to the left and controlled variables to the right.
It is required that the dependency graph of each module is acyclic.

Intuitively, the execution of a SOL program proceeds as a sequence of steps,
each initiated by an event (known as the triggering event). Each step of a SOL
module comprises a set of variable updates and method calls that are consistent
with the dependency relation Dm of that module. Computation of each step of a
module proceeds as follows: the module or its environment nondeterministically
initiates a triggering event; each module in the system responds to this event

2 The notion of a dependency relation is easily extended to the entire system.

deterministic reactive module stopwatch {

type definitions

DS_type = {frozen, active};

TS_type = {stopped, running};

Time = integer in [0:infinity];

monitored variables

boolean HS, start_stop, button_2;

controlled variables

Time display;

internal variables

Time elapsed_time;

TS_type Timer_Status;

DS_type Display_Status;

assumptions

...

guarantees

...

definitions /* Definitions of all internal and controlled variables */

...

} // end module stopwatch

Fig. 2. The skeleton of the SOL module for stopwatch.

by updating all its dependent (i.e., internal and controlled) variables and/or
invoking methods. All updates and method calls of the system are assumed to be
synchronous (similar to the Synchrony Hypothesis of languages such as Esterel,
LUSTRE, etc. [11]) { it is assumed that the response to a triggering event is
completed in one step, i.e, all updates to dependent variables and all method
calls are performed by the modules of the system before the next triggering
event. Moreover, all updates are performed in an order that is consistent with
the partial order imposed by the dependency graph. For the stopwatch example,
module stopwatch responds to a triggering event3 by updating its dependent
variables in compliance with the dependency order (see Figure 1). One possible
order is Timer Status ! elapsed time ! display ! Display Status.

The skeleton of the SOL module for stopwatch is shown in Figure 2. Note
that C-style comments are supported { all text between an opening \/*" and
closing */" is ignored. Alternately, comments may begin with \//" and termi-
nate by the end of the line. Comments may be nested. The module de�nition

3 Since stopwatch is reactive, all triggering events are external to the module.

defn : lvalue "=" expr j lvalue "=" "initially" expr "then" expr ";"

lvalue : ID j ID "[" index "]" j "[" lvalue ["," lvalue]� "]"

expr : value j "!" expr j expr bool binop expr j if expr j case expr j basic event j
cond event j "PREV" "(" expr ")" j expr rel binop expr j "+" expr j "-" expr j
expr arith binop expr j ID "[" index "]" j ID "(" [expr l]? ")" j "[" expr l "]" j
"(" expr ")"

if expr : "if" "{" ["[]" expr "->" expr]+ ["otherwise" "->" expr]? "}"

case expr : "case" expr "{" ["[]" value ["," value]� "->" expr]+
["otherwise" "->" expr]? "}"

cond event : basic event "when" expr

basic event : "@ID " ["(" expr l ")"]? j "@T" "(" expr ")" j "@F" "(" expr ")" j "@C" "(" expr ")"

expr l : expr ["," expr]�

value : index j REAL j STRING j "true" j "false" j "infinity"

index : scalar value j scalar value ":" scalar value

scalar value : ID j INT

bool binop : "&" j "&&" j "|" j "||" j "=>" j "<=>"

rel binop : "<" j "<=" j "==" j "!=" j ">" j ">="

arith binop : "+" j "-" j "*" j "/"

Legend:
j Choice
[]? Optional
[]� Zero or more
[]+ One or more

Fig. 3. The syntax of SOL de�nitions.

comprises a sequence of sections, all of them optional, each beginning with one
or more keywords. User-de�ned types are de�ned in the type definitions sec-
tion. Each entry in this section consists of an identi�er for the type, followed by
its de�nition, which may be in terms of the built-in types, their subranges, or
enumerated types.

4.3 SOL De�nitions

The definitions section is at the heart of a SOL module. The syntax of SOL
de�nitions is shown in Figure 3. This section determines how each internal and
controlled variable of the module is updated in response to events (i.e., method
calls or state changes) generated either internally or by the module's environ-
ment. Figure 4 includes all de�nitions of the module stopwatch.

assumptions

NAT = initially (!HS & !button_2 & !start_stop) then

(!HS & !button_2) | (!HS & !start_stop) | (!button_2 & !start_stop);

guarantees

Button2_to_frozen = initially true then

@T(button_2) when (Timer_Status == running and Display_Status == active)

=> Display_Status == frozen;

Button2_to_not_frozen = initially true then

@T(button_2) when Display_Status == frozen => Display_Status == active;

definitions

Display_Status = initially active then

if {

[] @T(button_2) when (Display_Status == frozen) -> active

[] @T(button_2) when (Display_Status == active &

Timer_Status == running) -> frozen

otherwise -> PREV(Display_Status)

};

Timer_Status = initially stopped then

if {

[] @T(start_stop) when (Timer_Status == stopped) -> running

[] @T(start_stop) when (Timer_Status == running) -> stopped

otherwise -> PREV(Timer_Status)

};

display = initially 0 then

if {

[]@C(elapsed_time) when (Display_Status == active) -> elapsed_time

otherwise -> PREV(display)

};

elapsed_time = initially 0 then

if {

[]@T(button_2) when (Timer_Status == stopped &

Display_Status == active) -> 0

[]@T(HS) when (Timer_Status == running) -> PREV(elapsed_time) + 1

otherwise -> PREV(elapsed_time)

};

Fig. 4. Sections assumptions, guarantees, and de�nitions of stopwatch.

A variable de�nition is either a one-state or a two-state de�nition. A one-
state de�nition, of the form x = expr (where expr is an expression), de�nes
the value of variable x in terms of the values of other variables in the same

state. A two-state variable de�nition, of the form x = initially init then expr
(where expr is a two-state expression), requires the initial value of x to equal
expression init; the value of x in each subsequent state is determined in terms
of the values of variables in that state as well as the previous state (speci�ed
using operator PREV or by a when clause). A conditional expression, consisting of
a sequence of branches \[] guard ! expression", is introduced by the keyword
\if" and enclosed in braces ("{" and "}"). A guard is a boolean expression. The
semantics of the conditional expression if f []g1 ! expr1 []g2 ! expr2 : : : g is
de�ned along the lines of Dijkstra's guarded commands [9] { in a given state,
its value is equivalent to expression expri whose associated guard gi is true. If
more than one guard is true, the expression is nondeterministic. It is an error if
none of the guards evaluates to true, and execution aborts. The case expression

case expr f []v1 ! expr1 []v2 ! expr2 : : : g is equivalent to the conditional
expression if f [](expr == v1)! expr1 [](expr == v2)! expr2 : : : g. The con-
ditional expression and the case expression may optionally have an otherwise

clause with the obvious meaning. In this paper, we shall not elaborate on the
tuple and array constructs of SOL (see [22] for details).

The de�nitions of module stopwatch, shown in Figure 4, have a direct corre-
spondence to phrases in the prose speci�cation. For example, statements

[] @T(start stop) when (Timer Status == stopped) -> running

[] @T(start stop) when (Timer Status == running) -> stopped

correspond to the phrase \: : : [the] button start stop alternately puts the stop-
watch in `running' and `stopped' states".

4.4 Assumptions and Guarantees

The assumptions of a module, which are typically assumptions about the en-
vironment of the subsystem being de�ned, are included in the assumptions

section. It is up to the user to make sure that the set of assumptions is not
inconsistent, i.e., a logical contradiction. Users specify the module invariants in
the guarantees section, which is automatically veri�ed by a tool such as Salsa.
The syntax for specifying module assumptions and guarantees is identical to
that of module de�nitions, in other words, we have the expressiveness of the
full language in these clauses. This does not have a detrimental e�ect on the
proof tools, since most commonly encountered theorems about SOL programs
are decidable.

The assumptions and guarantees for the stopwatch example are shown in
Figure 4. The assumption NAT speci�es that all the monitored variables of the
module are false in the initial state and that in all subsequent states at most
one of the monitored variables is true. The guarantees are a formalization of
the sentence \If button 2 is pressed when the stopwatch is running and active,

it becomes frozen; when it is pressed when the stopwatch is frozen, it becomes
active." from [11].

5 Formal Veri�cation

Salsa is a tool for the veri�cation of synchronous reactive systems. The veri�ca-
tion performed by Salsa is invariant checking in addition to consistency checking
[16] which
ags undesirable instances of nondeterminism and missing cases in a
module. Consider the following code fragment of stopwatch:

elapsed_time = initially 0 then

if {

[]@T(button_2) when (Timer_Status == stopped &

Display_Status == active) -> 0

[]@T(HS) when (Timer_Status == running) -> PREV(elapsed_time) + 1

otherwise -> PREV(elapsed_time)

};

Checking for disjointness is to determine whether events

e1 = @T(button 2) when (Timer Status == stopped &

Display Status == active)
e2 = @T(HS) when (Timer Status == running)

of the two guards can both occur in any reachable system state. If so, the
module is said to have a disjointness error (since the module is declared as
deterministic).

The above problem may be reduced to checking whether the expression
\initially true then :(e1 ^ e2)" is an invariant of stopwatch. All the disjoint-
ness veri�cation conditions of stopwatch were veri�ed automatically by Salsa in
about a tenth of a second. Along similar lines, one can prove that the properties
in the guarantees section are invariants. These too were veri�ed automatically
by Salsa in under a second. If an invariant is not provable, Salsa returns a coun-
terexample. However, one should keep in mind that due to the incompleteness
of induction, users must validate that the returned counterexample is reachable.
By examining the counterexamples, users will be able to either determine that
there is a problem or will have to prove additional invariants as lemmas in order
to prove the original invariant.

6 Enforcement Automata

In this section, we shall examine how enforceable safety and security policies [23]
are expressed in SOL as enforcement automata (also known as security agents

[3]). The enforcement mechanism of SOL works by terminating all executions of
a program for which the policy being enforced no longer holds. For reasons of
readability and maintainability, we prefer to use explicit automata for enforcing

deterministic reactive module safestack(integer max_depth) {

interfaces

void push(integer x);

void pop();

integer top();

internal variables

{empty, nonempty} status;

integer in [0:max_depth] depth;

guarantees

INV1 = (status == empty) <=> (depth == 0);

definitions

[status, depth] = initially [empty, 0] then

case PREV(status) {

[] empty ->

if {

[] @push -> [nonempty, PREV(depth) + 1]

// other operations illegal!

}

[] nonempty ->

if {

[] @top -> [PREV(status), PREV(depth)]

// @pop when (depth == 0) impossible! (by INV1)

[] @pop when (depth > 1) -> [nonempty, PREV(depth) - 1]

[] @pop when (depth == 1) -> [empty, 0]

[] @push when (depth < max_depth) -> [nonempty, PREV(depth) + 1]

// @push when (depth == max_depth) illegal!

}

}; // end case

} // end module safestack

Fig. 5. A SOL module providing a safe interface to stack.

safety properties and security policies, although any language that allows ref-
erences to previous values of variables may su�ce. Unlike assertions, where no
additional state is maintained, SOL enforcement automata may include addi-
tional variables that are updated during the transitions of the automata.

6.1 Safety Automata

We examine how SOL automata are used to enforce safety policies. The example
we shall use is a stack, which has the associated methods push, pop, and top.
Informally, push(x) pushes the value of integer variable x on the stack and pop()
pops the topmost value o� the stack. The method top() returns the current value
at the top of the stack. The stack can accommodate at most max depth items.
The safety policies we wish to enforce are: (i) No more than max depth items
are pushed on the stack. (ii) Invocations of methods top and pop are disallowed
on an empty stack.

nonempty

@push / depth = depth + 1 @push when (depth < max_depth) /

@pop when (depth == 1) / depth = 0

@pop when (depth > 1) /
depth = depth - 1

depth = depth + 1

/ depth = 0

empty

(depth == 0) (depth > 0)

Fig. 6. Visual representation of safestack.

The classical way of specifying the correct use of a stack would be to write
a so-called class invariant, often speci�ed as predicates on the \old" and \new"
values of program variables. Languages such as Ei�el [19] with explicit support
for Design by Contract [18] include constructs for specifying and checking such
invariants. However, presently popular object-oriented programming languages
lack such mechanisms, and therefore treat class invariants mostly as comments,
and provide no tool support to analyze them. A unique feature of SOL is the
ability to perform such checks on existing implementations in a language-neutral
manner. Figure 5 shows a SOL module safestack which enforces these safety
policies on all SOL modules which use the stack object (implemented in the
embedding language). Figure 6 is the module safestack rendered in the visual
syntax of SOL. Note that by deliberately omitting the otherwise clauses in the
if statements, we abort the execution of the program when none of the guards
is true. If this is too drastic, corrective action may be speci�ed in an otherwise

clause; for example, to ignore all push actions when the stack is full.

6.2 Security Automata

We use the example from [23] to illustrate how we may implement a security
policy that allows a software agent to send data to remote hosts (using method
send) as well as read local �les (using method file read). However, invocations
of send subsequent to file read are disallowed. It is di�cult, if not impossible,
to con�gure current systems to implement such a policy. For example, it cannot
be implemented in the \sandbox" model of Java [10] in which one may either
always or never allow access to a system resource. As shown in Figure 7, this
policy is easily implemented in SOL.

7 Future Work

We plan to continue the development of design and analysis tools for SOL pro-
grams, which will include a graphical user interface for a visual (Statecharts-
like) representation for SOL, and veri�cation tools such as automatic invariant
generators and checkers, theorem provers, and model checkers. A JavaTM in-
terpreter for SOL, SOLi, is currently under development. We plan to support
other language embeddings such as C# and C++. Planned extensions to the

deterministic reactive module SecureRead {

interfaces

string file_read(string filename, int position, int size);

void send(string address, string data);

internal variables

{no_reads, read_performed} status;

definitions

status = initially no_reads then

case PREV(status) {

[] no_reads ->

if {

[] @send -> PREV(status)

[] @file_read -> read_performed

}

[] read_performed ->

if {

[] @file_read -> read_performed

// @send illegal!

}

}; // end case

} // end module SecureRead

Fig. 7. A SOL module that implements safe access to local �les.

interpreter includes support for security (such as authentication, authorization,
non-repudiation, and con�dentiality) and decentralized distributed execution, for
which we need to address associated problems such as fault-tolerance, load bal-
ancing, self-stabilization, and survivability. Another area of research is to provide
support for implementing hard real-time systems.

8 Acknowledgements

This project is funded by the O�ce of Naval Research. The author thanks Ralph
Je�ords, Amit Khashnobish, and James Tracy for many helpful discussions and
comments. Ralph suggested several improvements to SOL and to previous drafts
of this paper. Amit implemented the SOL compiler. The author also thanks the
anonymous referees for their insightful comments.

References

1. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2:117{126, 1987.

2. T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Parnas, and J. E.
Shore. Software requirements for the A-7E aircraft. Technical Report NRL-9194,
Naval Research Lab., Wash., DC, 1992.

3. R. Bharadwaj. An infrastructure for secure interoperability of agents. Technical
report, Naval Research Laboratory, Washington, DC, To appear.

4. R. Bharadwaj and C. Heitmeyer. Hardware/software co-design and co-validation
using the SCR method. In Proceedings of the IEEE International High Level Design
Validation and Test Workshop (HLDVT'99), San Diego, CA, November 1999.

5. R. Bharadwaj and C. Heitmeyer. Model checking complete requirements speci�-
cations using abstraction. Automated Software Engineering, 6(1), January 1999.

6. R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for
automatic invariant checking. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS '2000), Berlin, March 2000.

7. E. M. Clarke, E. Emerson, and A. Sistla. Automatic veri�cation of �nite state
concurrent systems using temporal logic speci�cations. ACM Trans. on Prog. Lang.
and Systems, 8(2):244{263, April 1986.

8. A. Cottrel. Emergent properties of complex systems. In The Encyclopedia of
Ignorance, pages 129{135, Premagon Press, 1977.

9. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
10. L. Gong. Java Security: Present and near future. IEEE Micro, 15(3):14{19, 1997.
11. Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-

demic Publishers, 1993.
12. Mats P. E. Heimdahl and Nancy Leveson. Completeness and consistency analysis

of state-based requirements. In Proc. of 17th Int'l Conf. on Softw. Eng. (ICSE
'95), pages 3{14, Seattle, WA, April 1995. ACM.

13. C. Heitmeyer and R. Bharadwaj. Applying the SCR requirements method to the
Light Control Case Study. Journal of Universal Computer Science, 6(7), 2000.

14. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction
and model checking to detect safety violations in requirements speci�cations. IEEE
Trans. on Softw. Eng., 24(11), November 1998.

15. C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj. SCR*: A toolset for
specifying and analyzing software requirements. In Proc. Computer-Aided Veri�-
cation, 10th Annual Conf. (CAV'98), Vancouver, Canada, 1998.

16. C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency checking
of requirements speci�cations. ACM Transactions on Software Engineering and
Methodology, 5(3):231{261, April{June 1996.

17. K. L. Heninger. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE TSE, SE-6(1):2{13, January 1980.

18. Bertrand Meyer. Applying Design by Contract. IEEE Computer, 25(10):40{51,
1992.

19. Bertrand Meyer. Ei�el: The Language. Prentice-Hall, Englewood Cli�s, NJ, 1992.
20. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal

veri�cation for fault-tolerant architectures: Prolegomena to the design of pvs. IEEE
Transactions on Software Engineering, 21(2):107{125, February 1995.

21. D. L. Parnas and J. Madey. Functional documentation for computer systems.
Science of Computer Programming, 25(1):41{61, October 1995.

22. Frederic Rocheteau and Nicolas Halbwachs. POLLUX: A Lusture based hard-
ware design environment. In P. Quinton and Y. Robert, editors, Proc. Conf. on
Algorithms and Parallel VLSI Arch. II, Chateau de Bonas, June 1991.

23. Fred B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security, 3(1):30{50, 2000.

