
A Framework for the Formal Analysis of

Multi-Agent Systems
In Proc. Formal Approaches to Multi-Agent Systems (FAMAS), a�liated with

ETAPS 2003, April 12, 2003. Warsaw, Poland.

Ramesh Bharadwaj

Center for High Assurance Computer Systems
Naval Research Laboratory
Washington DC 20375 USA

Abstract. In this paper we present an integrated formal framework for
the speci�cation and analysis of Multi-Agent Systems (MAS). Agents are
speci�ed in a synchronous programming language called Secure Opera-
tions Language (SOL) which supports the modular development of secure
agents. Multi-agent systems are constructed from individual agent mod-
ules by using the composition operator of SOL, the semantics of which
are guaranteed to preserve certain individual agent properties. The for-
mal semantics and the underlying framework of SOL also serve as the
basis for analysis and transformation techniques such as abstraction,
consistency checking, veri�cation by model checking or theorem proving,
and automatic synthesis of agent code. Based on this framework, we are
currently developing a suite of analysis and transformation tools for the
formal speci�cation, analysis, and synthesis of multi-agent systems.

1 Introduction

Building trusted applications is hard, especially in a distributed or mobile set-
ting. Existing methods and tools are inadequate to deal with the multitude of
challenges posed by distributed application development. The problem is exac-
erbated in a hostile environment such as the Internet where, in addition, ap-
plications are vulnerable to malicious attacks. It is widely acknowledged that
intelligent software agents provide the right paradigm for developing agile, re-
con�gurable, and e�cient distributed applications. Distributed processing in
general carries with it risks such as denial of service, Trojan horses, informa-
tion leaks, and malicious code. Agent technology, by introducing autonomy and
code mobility, may exacerbate some of these problems. In particular, a malicious
agent could do serious damage to an unprotected host, and malicious hosts could
damage agents or corrupt agent data.

Secure Infrastructure for Networked Systems (SINS) being developed at the
Naval Research Laboratory is a middleware for secure agents intended to provide
the required degree of trust for mobile agents, in addition to ensuring their
compliance with a set of enforceable security policies. An infrastructure such as
SINS is central to the successful deployment and transfer of distributed agent
technology to Industry because security is a necessary prerequisite for distributed
computing.

1

green
Text Box
NRL Release Number 03-1221.1-0517

2 SINS Architecture

Figure 1 shows the architecture of SINS. Agents are created in a special purpose
synchronous programming language called Secure Operations Language (SOL)
[5{7]. A SOL application comprises a set of agent modules, each of which runs
on an Agent Interpreter (AI). The AI executes the module on a given host in
compliance with a set of locally enforced security policies. A SOL multi-agent
system may run on one or more AIs, spanning multiple hosts across multiple ad-
ministrative domains. Agent Interpreters communicate among themselves using
an inter-agent protocol [18], similar to SOAP/XML [19].

3 A Brief Introduction to SOL

A module is the unit of speci�cation in SOL and comprises variable declarations,
assumptions and guarantees, and de�nitions. The assumptions section includes
assumptions about the environment of the agent. Execution aborts when any of
these assumptions are violated by the environment. The required safety prop-
erties of an agent are speci�ed in the guarantees section. The definitions

section speci�es updates to internal and controlled variables as functions (or
more generally as relations). A SOL module describes the required relation be-
tween monitored variables, variables in the environment that the agent monitors,
and controlled variables, variables in the environment that the agent controls.
Additional internal variables are often introduced to make the description of the
agent concise. In this paper, we only distinguish between monitored variables,
i.e., variables whose values are speci�ed by the environment, and dependent vari-
ables, i.e., variables whose values depend on the values of monitored variables.
Dependent variables include all the controlled variables and internal variables of
an agent module.

3.1 Events

SOL borrows from SCR the notion of events [13]. Informally, an SCR event
denotes a change of state, i.e., an event is said to occur when a state variable

Host

Host

Host

Agent

Interpreter

Agent

Agent

Interpreter

Interpreter

Agents

Agents

Agents

Encrypt

Encrypt

E
n
c
r
y
p
t

E
n
c
r
y
p
t

E
n
c
r
y
p
t

Fig. 1. Architecture of SINS.

2

changes value. SCR systems are event-driven and the SCR model includes a
special notation for denoting them. The notation @T(c) denotes the event \con-
dition c became true", @F(c) denotes \condition c became false" and @C(x)

the event \the value of expression x has changed". These constructs are de�ned
formally below. In the sequel, PREV(x) denotes the value of expression x in the
previous state.

@T(c)
def
= :PREV(c) ^ c

@F(c)
def
= PREV(c) ^ :c

@C(c)
def
= PREV(c) 6= c

Events may be triggered predicated upon a condition by including a \when"
clause. Informally, the expression following the keyword when is \aged" (i.e.,
evaluated in the previous state) and the event occurs only when this expression
has evaluated to true. Formally, a conditioned event, de�ned as

@T(c) when d
def
= :PREV(c) ^ c ^ PREV(d);

denotes the event \condition c became true when condition d was true in the
previous state". Conditioned events involving the two other event constructs are
de�ned along similar lines.

In SOL we extend the SCR event construct to include events that are trig-
gered by the invocation of a method (i.e., a procedure or function call) of the
embedding language. For example, the event associated with the invocation of
method push(x) of a stack is denoted as @push. This provides users the ability
to implement security automata, a special class of B�uchi automata that accept
safety properties [1, 17].

3.2 De�nitions

A variable de�nition is either a one-state or a two-state de�nition. A one-state
de�nition, of the form x = expr (where expr is an expression), de�nes the value
of variable x in terms of the values of other variables in the same state. A two-
state variable de�nition, of the form x = initially init then expr (where
expr is a two-state expression), requires the initial value of x to equal expres-
sion init; the value of x in each subsequent state is determined in terms of the
values of variables in that state as well as the previous state (speci�ed using
operator PREV or by a when clause). A conditional expression, consisting of a
sequence of branches \[] guard ! expression", is introduced by the keyword
\if" and enclosed in braces ("{" and "}"). A guard is a boolean expression. The
semantics of the conditional expression if f []g1 ! expr1 []g2 ! expr2 : : : g is
de�ned along the lines of Dijkstra's guarded commands [10] { in a given state,
its value is equivalent to expression expri whose associated guard gi is true. If
more than one guard is true, the expression is nondeterministic. It is an error if
none of the guards evaluates to true, and execution aborts. The case expression
case expr f []v1 ! expr1 []v2 ! expr2 : : : g is equivalent to the conditional

3

deterministic reactive enforcement module

safestack(integer max_depth) {

// assumption: max_depth > 0

interfaces

void push(integer x);

void pop();

integer top();

internal variables

{empty, nonempty} status;

integer in [0:max_depth] depth;

guarantees

INV1 =

(status == empty) <=> (depth == 0);

definitions

[status, depth] = initially [empty, 0] then

case PREV(status) {

[] empty ->

if {

[] @push -> [nonempty, PREV(depth) + 1]

// other operations illegal!

}

[] nonempty ->

if {

[] @top ->

[PREV(status), PREV(depth)]

[] @pop when (depth > 1) ->

[nonempty, PREV(depth) - 1]

[] @pop when (depth == 1) ->

[empty, 0]

[] @push when (depth<max_depth) ->

[nonempty, PREV(depth) + 1]

// @push when (depth == max_depth) illegal!

}

}; // end case

} // end module safestack

Fig. 2. Agent module for safestack.

expression if f [](expr == v1)! expr1 [](expr == v2)! expr2 : : : g. The con-
ditional expression and the case expression may optionally have an otherwise

clause with the obvious meaning.

3.3 An Example: Safety Policy Enforcement

We examine how SOL agents are used to enforce safety policies on a given
agent interpreter. The example we shall use is a stack, which has the associated
methods push, pop, and top. Informally, push(x) pushes the value of integer
variable x on the stack and pop() pops the topmost value o� the stack. The
method top() returns the current value at the top of the stack and leaves the
stack unchanged. The stack can accommodate at most max depth items. We

4

deterministic reactive enforcement module SecureRead {

interfaces

string file_read(string filename, integer position, integer size);

void send(string address, string data);

internal variables

{no_reads, read_performed} status;

definitions

status = initially no_reads then

case PREV(status) {

[] no_reads ->

if {

[] @send -> PREV(status)

[] @file_read -> read_performed

}

[] read_performed ->

if {

[] @file_read -> read_performed

// @send illegal!

}

}; // end case

} // end module SecureRead

Fig. 3. A SOL module that enforces safe access to local �les.

assume that other agents (not shown) access the stack by invoking its methods.
The safety policies we wish to enforce are: (i) No more than max depth items
are pushed on the stack. (ii) Invocations of methods top and pop are disallowed
on an empty stack. Figure 2 shows a SOL enforcement agent safestack which
enforces these safety policies on all other SOL agents which use the stack object
(implemented in the embedding language). Note that by deliberately omitting
the otherwise clauses in the if statements, we abort the execution of a SOL
agent when none of the guards is true during execution. If this is too drastic,
corrective action may be speci�ed in an otherwise clause; for example, to ignore
all push actions when the stack is full.

3.4 Security Automata

We use the example from [17] to illustrate how we may enforce a security policy
that allows a software agent to send data to remote hosts (using method send)
as well as read local �les (using method file read). However, invocations of
send subsequent to file read are disallowed. It is di�cult, if not impossible,
to con�gure current systems to enforce such a policy. For example, it cannot be
enforced in the \sandbox" model of Java [11] in which one may either always
or never allow access to a system resource. As shown in Figure 3, this policy is
easily implemented in SOL.

5

4 Formal Semantics

State Machines A SOL module describes a state machine [6]. A state machine

� is a quadruple (V; S;�; �), where V = fv1; v2; : : : ; vng is a �nite set of state
variables; S is a nonempty set of states where each state s 2 S maps each v 2 V

to its range of legal values; � : S ! boolean is a predicate characterizing the set
of initial states; � : S � S ! boolean is a predicate characterizing the transition
relation. We write � as a logical formula involving the names of variables in V .
Predicate � relates the values of the state variables in a previous state s 2 S to
their values in the current state s0 2 S. We write � as a logical formula involving
the values of state variables in the previous state (speci�ed using operator PREV
or by a when clause) and in the current state.

SOL Predicates Given a state machine � = (V; S;�; �) we classify a predicate
p : S ! boolean as a one-state predicate of � and a predicate q : S�S ! boolean

as a two-state predicate of �.
More generally, SOL predicate refers to either a one-state or two-state predi-

cate, and SOL expression refers to logical formulae or terms containing references
to current or previous values of state variables in V .

Reachability Given a state machine � = (V; S;�; �), a state s 2 S is reachable
(denoted Reachable�(s)) if

(i) �(s) or
(ii) 9s0 2 S : Reachable�(s

0) and �(s0; s)

Invariants A one-state predicate p is a state invariant of � if and only if

8s : Reachable�(s)) p(s)

A two-state predicate q is a transition invariant of � if and only if

8s; s0 : (Reachable�(s) ^ �(s; s0))) q(s; s0)

More generally, a SOL predicate x is an invariant of � if x is a state invariant
or transition invariant of �.

Veri�cation For a SOL module describing a state machine �, and a set of SOL
predicates X = fx1; x2; : : : xmg, veri�cation is the process of establishing that
each SOL predicate xi 2 X is an invariant of �.

5 SOL Module

A SOL module describes both an agent's environment, which is usually non-
deterministic, and the required agent behavior, which is usually determinis-
tic [8, 12]. Recall that for each agent we distinguish between its monitored

6

variables, i.e., variables in its environment, and dependent variables, i.e., vari-
ables whose values are determined by the agent. Dependent variables include
all the controlled variables and internal variables of an agent module. In the se-
quel, we assume that variables v1; v2; : : : ; vI are an agent's monitored variables,
and that variables vI+1; vI+2; : : : ; vn are the agent's dependent variables. The
notation NC(v1; v2; : : : ; vk) is used as an abbreviation for the SOL predicate
(v1 = PREV (v1)) ^ (v2 = PREV (v2)) ^ : : : ^ (vk = PREV (vk)).

Components of the state machine � = (V; S;�; �) are speci�ed in the section
definitions of a SOL module. The initial predicate � is speci�ed in terms of
the initial values for each variable in V , i.e., as predicates �v1 ; �v2 ; : : : ; �vn , so
that � = �v1 ^ �v2 ^ : : : ^ �vn . The transition relation � is speci�ed as a set
of assignments, one for each dependent variable of �, i.e., as SOL predicates
�vI+1 ; �vI+2 ; : : : ; �vn , each of which is of the form:

vi =

8>>><
>>>:

e1 if g1
e2 if g2
...
ek if gk

where I+1 � i � n, and e1; e2; : : : ; ek are SOL expressions, and g1; g2; : : : ; gk are
SOL predicates. To avoid circular de�nitions, we impose an additional restriction
on the occurrences of state variables in these expressions as below:

De�ne dependency relations Dnew, Dold, and D on V � V as follows:
For variables vi and vj , the pair (vi; vj) 2 Dnew i� vj occurs outside a
PREV () clause in the SOL expression de�ning vi; the pair (vi; vj) 2 Dold

i� PREV (vj) occurs in the SOL expression de�ning vi; and D = Dnew[
Dold. We require D+

new, the transitive closure of the Dnew relation, to
de�ne a partial order.

5.1 Composing SOL Modules

Consider two SOL modules describing the state machines �1 = (V1; S1; �1; �1)
and �2 = (V2; S2; �2; �2). We de�ne the composition of the two SOL agents
� = (V; S;�; �) as � = �1k�2 where

V = V1 [V2

� = �1 ^�2

� = �1 ^ �2

Each s 2 S maps each v 2 V to its range of legal values

provided that there is no circularity in the occurrences of variables in �. Also by
assumption, it is the case that �1 and �2 de�ne disjoint sets of state variables.

6 Veri�cation

In this section, we discuss how two well-known veri�cation approaches may be
used for establishing the invariance of predicates for a state machine �.

7

6.1 Theorem Proving

The �rst approach, which uses induction, is popularly known as theorem prov-

ing. Due to its use of logical weakening, this approach avoids the explicit con-
struction of the state space and the calculation of predicate Reachable.

Proof Rules

Rule SINV Let p be a one-state predicate of �. The following are su�cient
conditions to show that p is an invariant of �, i.e., 8s : Reachable�(s)) p(s):

S1: 8s : �(s)) p(s) and
S2: 8s; s0 : (p(s) ^ �(s; s0))) p(s0).

Rule TINV Let q be a two-state predicate of �. The following are su�cient
conditions to show that q is a transition invariant of �:

T1: 8s; s0 : (�(s) ^ �(s; s0))) q(s; s0)
T2: 8s; s0; s00 : (q(s; s0) ^ �(s0; s00))) q(s0; s00)

Proof: The soundness of the above rules follows by induction from the de�nition
of Reachable.

Proof Rules of SOLver We are constructing an automatic veri�cation tool
SOLver, based on theorem proving by induction, for the veri�cation of agent
properties. The proof rules we use for veri�cation are weaker forms of the proof
rules SINV and TINV. The tool SOLver is based upon our patented technology
developed in connection with the formal veri�cation tool Salsa [9].

Rule SINV-W Let p be a one-state predicate of �. The following are su�cient
conditions to show that p is an invariant of �:

S1-W: 8s : �(s)) p(s) and
S2-W: 8s; s0 : �(s; s0)) p(s0).

Proof: This is a weaker form of SINV.

8

Rule TINV-W Let q be a two-state predicate of �. The following is a su�cient
condition to show that q is a transition invariant of �:

T1-W: 8s; s0 : �(s; s0)) q(s; s0)

Proof: The result follows directly from the de�nition of transition invariant.

6.2 Model Checking

In general, the approach popularly known as model checking computes the set
characterized by the predicate Reachable either explicitly or implicitly. Explicit
state model checking computes the set by enumerating each state in the state
space. Symbolic model checking computes predicateReachable by symbolic execu-
tion, using a canonical representation (such as BDDs) for logical formulae charac-
terizing sets of states. One important advantage of model checking over theorem
proving is its ability to provide a counterexample by which we mean a sequence
of states s0; s1; : : : ; sn�1; sn such that �(s0) and 8(1 � i � n) : �(si�1; si), and
either :x(sn) (for a one-state predicate x) or :x(sn�1; sn) (for a two-state pred-
icate x) where x is a presumed invariant of state machine �1. In addition to
its limited applicability to �nite state systems, a major disadvantage of model
checking is state explosion which refers to the intractable complexity of the al-
gorithms for computing predicate Reachable.

7 Abstraction

The general idea behind abstraction is that in order to verify the invariance
of a SOL predicate x for a state machine � = (V; S;�; �), one veri�es instead
that x is an invariant of a di�erent state machine �A = (VA; SA; �A; �A). We
say that �A is a sound abstraction of � relative to the invariance of x if x is an
invariant of �A implies that x is an invariant of �. We say that �A is a complete

abstraction of � relative to the invariance of x if x is an invariant of � implies
that x is an invariant of �A. If �A is a sound and complete abstraction of �
relative to the invariance of x, it is also called an exact abstraction. In general,
the quotient system �A, generated by an equivalence relation on S that is a
bisimulation on �, will be exact for all the invariants of �. For some interesting
methods that are both sound and complete, we refer the reader to [8].

The following theorems about abstraction are a generalization of many of the
practical \abstraction methods" used in the veri�cation of invariants for SCR
speci�cations [8, 12].

1 Theorem proving does provide some information, which may be thought of as a
\partial counterexample", upon proof failure. For example, when application of the
proof rule SINV (see previous section) fails, one can usually extract information
about the state or pair of states for which one of the premises of the rule is false.

9

7.1 A Theorem of Sound Abstractions

Let � = (V; S;�; �) be a state machine and let �R = (V; S;�A; �A) be another
state machine constructed such that:

(a) 8s 2 S : �(s)) �A(s), and
(b) 8s; s0 2 S : �(s; s0)) �A(s; s

0)

then �R is a sound abstraction of � with respect to the invariance of any SOL
predicate x, i.e., if x is an invariant of �R, then x is also an invariant of �.

Proof: We initially prove the following lemma:

Lemma 1: For state machines � and �R de�ned as above,
8s : Reachable�(s)) Reachable�R(s).
Proof: Let s be a state of �. Suppose s is reachable in �. Then, by the
de�nition of Reachable� , �(s) or 9s0; s1; : : : ; sn�1; s : �(s0)^ �(s0; s1)^
: : :^�(sn�1; s). From conditions (a) and (b) above, and by the de�nition
of Reachable�R , the conclusion follows.

Case 1: Suppose x is a one-state SOL predicate. Since x is a state invariant of
�R (premise), i.e., 8s : Reachable�R(s)) x(s), the conclusion follows from the
application of Lemma 1.

Case 2: Suppose x is a two-state SOL predicate. Since x is a transition invariant
of �R (premise), i.e., 8s; s0 : (Reachable�R(s) ^ Reachable�R(s

0) ^ �A(s; s
0)))

q(s; s0), the conclusion follows from condition (b) above and by the application
of Lemma 1.

7.2 Quotient Automata

Consider the state machine �R = (V; S;�A; �A). Let VA = v1; v2; : : : vk be the
set of state variables whose names appear in the logical formulae2 characterizing
predicates �A and �A. Each state s 2 S is an interpretation of the state variables
of V . Let s(v1); s(v2); : : : s(vk); : : : s(vn) denote the interpretation of variables
v1; v2; : : : vk; : : : vn in state s. The following equivalence relation � on S:

f(s1; s2) j (s1(v1) = s2(v1)) ^ (s1(v2) = s2(v2)) ^ : : : (s1(vk) = s2(vk))g

can be shown to be a bisimulation on �R. This follows from the de�nition of a
bisimulation relation { by de�nition, R is a bisimulation relation if R progresses
to R itself; therefore, since relation � collapses all states that are equal into
an equivalence class, transitions emanating from any state in that set must be
identical. Therefore�A = (VA; SA; �A; �A), the quotient automaton with respect
to the bisimulation, whose state space SA is the set of equivalence classes induced
by �, will be a sound and complete abstraction of �R for all invariants. Since
�R is a sound abstraction of � relative to the invariance of all SOL predicates,
�A is a sound abstraction of � for all SOL invariants. We call this the General
Theorem of Sound Abstractions.
2 We assume that these formulae have been simpli�ed to their normal form.

10

7.3 The SOL Theorem of Sound Abstractions

A corollary of the General Theorem of Sound Abstractions is that by establishing
the invariance of an SOL predicate x for any subset of a collection of SOL
modules, one establishes the invariance of x for the complete SOL multi-agent
system. The proof of this follows from the observation that the components
(corresponding to the dependent variables) of the initial predicate � and the
transition relation � of the state machine described by a SOLmodule are speci�ed
as a conjunction of predicates, each one corresponding to a dependent variable in
V . Selection of a subset of SOL de�nitions (which de�ne the values of dependent
variables) amounts to \throwing away" the conjuncts that correspond to the
variables whose de�nitions are being eliminated. Therefore, since

(: : : ^ �rI+1 ^ �rI+2 : : : ^ �rk : : : ^ �rn)) (: : : �rI+1 ^ �rI+2 : : : ^ �rk)

(: : : ^ �rI+1 ^ �rI+2 : : : ^ �rk : : : ^ �rn)) (: : : ^ �rI+1 ^ �rI+2 : : : ^ �rk)

it follows from the General Theorem of Sound Abstractions that an invariant of
a reduced SOLmodule with dependent variables vI+1; vI+2; : : : ; vk will also be an
invariant of a SOLmodule with dependent variables vI+1; vI+2; : : : vk; vk+1; : : : vn.

8 Discussion and Related Work

SOL is based on ideas introduced in the Software Cost Reduction (SCR) project
[14, 15] of the Naval Research Laboratory which dates back to the late seventies.
The design of SOL was directly in
uenced by the design of SAL (the SCR Ab-
stract Language), a speci�cation language based on the SCR Formal Model [13].
SOL includes certain key features of SAL including the notion of events and mod-
ularity. The notation of SCR has directly or indirectly in
uenced more recent
notations such as Reactive Modules [4]. Whereas the application areas of Reac-
tive Modules are primarily hardware and communication protocols, the focus of
SCR and related languages has primarily been on specifying software systems.

Because of in�nite or very large state spaces of systems described in SOL,
�nite-state veri�cation methods such as that of Alur and Henzinger [3] and tools
such as Mocha [2] are limited in scope. For veri�cation to succeed, abstrac-
tion [12, 8] therefore plays a very important role when applying model checking.
Although many researchers routinely apply abstractions during model check-
ing, the abstractions are often applied in an ad-hoc way and are therefore not
always sound. In our approach, a systematic application of abstraction guar-
antees soundness [8]. An important advantage of model checkers is their use
for refutation since the counterexamples they provide when a check fails servers
practitioners as a valuable debugging aid [8].

Theorem proving, the only other viable alternative, has the associated prob-
lems of incompleteness (i.e., a property that is not provable may indeed be valid)
and lack of user guidance, along the lines of counterexamples provided by model
checkers, in case of proof failure. Also, \traditional" theorem proving systems
such as PVS [16] require manual e�ort and mathematical sophistication to use.

11

The tool SOLver, currently under development, is based on the tool Salsa [9]
which uses SAL as the input language. Although a theorem prover, Salsa a�ords
\push-button" automation, ease of use, and counterexample generation that typ-
ify model checkers. The results of our experiments with Salsa and a comparison
of its performance with those of popular model checkers and the theorem prover
PVS are presented in [9]. Since the architecture of SOLver is based on Salsa
(see [9] for details), and the algorithms of SOLver are extensions of those in
Salsa, we expect SOLver to have comparable performance and to possess similar
attributes as Salsa.

9 Conclusion

In this paper we present an integrated formal framework for the speci�cation
and analysis of Multi-Agent Systems (MAS). Our framework uses a composition
operator the semantics of which are guaranteed to preserve certain individual
agent properties. We demonstrate that the formal framework may serve as the
basis for various analysis and transformation techniques such abstraction, and
veri�cation by model checking or theorem proving. We are currently developing
a suite of analysis and transformation tools for SOL based on this framework.

10 Acknowledgements

I thank Connie Heitmeyer and the anonymous referees for their very useful
comments on previous drafts of the paper.

References

1. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2:117{126, 1987.

2. Rajeev Alur et al. Mocha: Modularity in model checking. In Proc. Computer-Aided
Veri�cation, 10th Annual Conf. (CAV'98), Vancouver, Canada, 1998. Springer.

3. Rajeev Alur and Thomas A. Henzinger. Computer Aided Veri�cation: An Intro-
duction to Model Building and Model Checking for Concurrent Systems. Draft,
www-cad.eecs.berkeley.edu/~tah/CavBook, 1998.

4. Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in
System Design, 15:7{48, 1999.

5. R. Bharadwaj. SINS: a middleware for autonomous agents and secure code mobil-
ity. In Proc. Second International Workshop on Security of, Moble Multi-Agent Sys-
tems (SEMAS-02), First International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS'02), Bologna, Italy, July 2002.

6. R. Bharadwaj. SOL: A veri�able synchronous language for reactive systems.
In Proc. Synchr. Languages, Apps., and Programming, ETAPS 2002, Grenoble,
France, April 2002.

7. R. Bharadwaj et al. An infrastructure for secure interoperability of agents. In Proc.
Sixth World Multiconference on Systemics, Cybernetics, and Informatics, Orlando,
Florida, July 2002.

12

8. R. Bharadwaj and C. Heitmeyer. Model checking complete requirements speci�-
cations using abstraction. Automated Software Engineering, 6(1), January 1999.

9. R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for
automatic invariant checking. In Proc. 6th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS'2000), ETAPS
2000, Berlin, March 2000.

10. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
11. L. Gong. Java Security: Present and near future. IEEE Micro, 15(3):14{19, 1997.
12. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction

and model checking to detect safety violations in requirements speci�cations. IEEE
Trans. on Softw. Eng., 24(11), November 1998.

13. C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency checking
of requirements speci�cations. ACM Transactions on Software Engineering and
Methodology, 5(3):231{261, April{June 1996.

14. K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallander. Software requirements
for the A-7E aircraft. Technical Report 3876, Naval Research Lab., Wash., DC,
1978.

15. K. L. Heninger. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE TSE, SE-6(1):2{13, January 1980.

16. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
veri�cation for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107{125, February 1995.

17. F. B. Schneider. Enforceable security policies. ACM Trans. Infor. and System
Security, 3(1):30{50, February 2000.

18. E. Tressler. Inter-agent protocol for distributed SOL processing. Technical Report
To Appear, Naval Research Laboratory, Washington, DC, 2002.

19. W3C. Simple Object Access Protocol (SOAP) 1.1. Technical Report W3C Note
08, The World Wide Web Consortium, May 2000.

13

