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Abstract. In this paper we show how we can increase the ease of reading
and writing security requirements for cryptographic protocols by devel-
oping a visual language based on fault trees. We develop such a semantics
for a subset of NPATRL, a temporal language used for expressing safety
requirements for cryptographic protocols, and show that the subset is
sound and complete with respect to the semantics. We also show how
the fault trees can be used to improve the presentation of some spec-
ifications that we developed in our analysis of the Group Domain of
Interpretation (GDOI) protocol.

1 Introduction

Like cryptographic protocols themselves, requirements for cryptographic proto-
cols are not easy to get right. Although it is possible to divide cryptographic pro-
tocol requirements into broad classes such as secrecy, authentication, freshness,
and so forth, requirements within the classes can vary in subtle, but nevertheless
crucial ways. And, since many security problems arise from a misunderstanding
of the requirements rather than a problem with the design of the protocol itself,
it is important to get this right.

One of the first steps in supporting the development of sound requirements
is to find a way of stating them precisely. Since the goal of most cryptographic
protocols is to guarantee that certain events do not occur unless certain other
events have or have not taken place, some sort of temporal logic seems like the
most likely candidate. With that in mind, we have developed the NRL Protocol
Analyzer Temporal Requirements Language (NPATRL) [10], that is intended to
be used with our analysis tool, the NRL Protocol Analyzer (NPA). NPATRL
has been used to specify different types of requirements not only for generic
key distribution and agreement protocols, as in [10], but also for complex proto-
cols such as Secure Electronic Transaction (SET) [6] and the Group Domain of
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Interpretation Protocol [7]. Others have developed similar temporal languages
for expressing requirements for cryptographic protocols; see for example Mar-
rero’s logic for Brutus [5]. Yet others, for example [1, 2], have developed generic
requirements that can be applied to any protocol, for example the correspon-
dence requirement developed in [1, 2]. But even here it may make sense, as Lowe
has argued in [4], to develop families of correspondence requirements suited to
different applications rather than a single generic requirement.

The next step is to make sure that requirements are easy to read, write, and
understand. This, unfortunately, is where temporal languages fall short. Even
for relatively simple languages like NPATRL, which includes only one temporal
operator, requirements can quickly become complex and difficult to understand.
Thus, it is necessary to develop some more user-friendly forms of representation
for them. This is particularly true as protocols themselves become larger and
more complex.

NPATRL requirements, as they are used in conjunction with NPA, have a
tree-like structure. One gives an end goal, such as the intruder’s learning a key,
or a principal accepting a key as genuine, and then defines the sequences of ac-
tions that either should or should not precede that event. These conditions on
sequences of events are defined in terms of the usual logical connectives, “and”,
“or”, and “not”, and one temporal operator (3- ), which denotes “happened be-
fore”. Given this treelike structure, and the use of logical connectives, it appears
that fault trees [11] could provide a natural candidate for a graphical repre-
sentation. Fault trees, which were originally developed for use in the analysis
of safety-critical systems, have also proved popular as a graphical language for
formally specifying software safety requirements. Formal semantics have been
provided for fault trees in terms of various logical systems (see [3] for an exam-
ple and a discussion of the literature). More recently, fault trees have been used
for the security analysis of systems[8, 9], although no attempt has been made to
provide a formal semantics in this context yet.

Our intended use of fault trees is somewhat different from the above. In most
applications to system safety and security, the root node is assumed to be an
undesired event: either a system fault or a security violation, while the branches
of the tree describe the conditions and events leading up to the fault. In our case,
the root node represents an event which may or may not be desirable; what is
important is that the event should not occur unless the conditions specified in the
branches have previously been satisfied. Thus, while most fault tree semantics
interpret precedence in the tree in terms of causality, we will be interpreting
precedence in terms of a temporal relationship. Moreover, since we will also be
interested in events that should not occur before a given event (e.g., if a principal
accepts a session key as genuine, it should not have accepted that key before),
we will need NOT-gates as well as the mainstream AND-gates and OR-gates.
While NOT-gates are included in some variations of fault trees, they are not a
standard component.

The remainder of this paper is organized as follows. In Section 2, we recall
the NPATRL language. In Section 3, we give a brief introduction to fault trees



and present the variant we will be using. We give an NPATRL semantics for it
in Section 4. In Section 5, we give some example NPATRL requirements with
their fault tree interpretations. Section 6 concludes the paper.

2 The NPATRL Language

We define and motivate the NPATRL specification logic in Section 2.1, give a
model semantics for it in Section 2.2, and then identify the sublanguage currently
used for writing security requirements in Section 2.3.

2.1 NPATRL

The NRL Protocol Analyzer Temporal Requirements Language, better known
as NPATRL (and pronounced “N Patrol”), was designed to address the short-
comings mentioned in the introduction [10]. This formalism makes available the
abstract expressiveness of a logical language to specify generic requirements at
a high enough level to capture intuitive goals precisely, and yet it can be inter-
preted in the NPA search engine.

NPATRL requirements are logical expressions whose atomic formulas are
event statements. An event describes an action by a principal. It either denotes
an action by an honest principal or the special learn event that indicates the
acquisition of information by the adversary. In NPATRL, an event is represented
by a predicate symbol defined on four arguments. The name of the predicate
symbol is the name of the event. The first argument is the principal executing
the event. The second is the names of other principals relevant to the event
(for example, the intended recipient of a message). The third argument is a list
of other terms relevant to the event (for example a key being exchanged). The
last argument is the local round number that identifies the sequence of events
executed by a principal who is participating in the protocol. Round numbers are
unique to each instantiation of a role. Since a principal may engage in a protocol
more than once, the round number serves to distinguish different rounds. The
use of round numbers thus guarantees that no event occurs more than once.

For example, we consider the case in which an initiator A accepts a key K
as good for communicating with a responder B. This would be represented as
follows:

initiator accept key(A, B, K, N)

Here and below, symbols starting with a capital letter stand for a variable.
The logical infrastructure of NPATRL consists of the usual connectives ¬,

∧, ⇒, etc, and the temporal modality 3- which is interpreted as “happened at
some time before” or “previously”. NPATRL is then defined by the following
grammar:

E ::= a | ¬E | E1 ∧ E2 | E1 ∨ E2 | E1 ⇒ E2 | 3- E

where a stands for an event. The variables in an NPATRL specification are
implicitly quantified at the front of the clause.

For example, we may have the following requirement:



If a principal A accepts a key K for communicating with another principal B,
then a server must have previously generated and sent this key with the idea
that it should be used for communications between A and B.

We can construct an expression of the above requirement as follows:

initiator accept key(A, B, K, N) ⇒ 3- svr send key(server, (A, B), K, M)

For more discussion of event statements and how they relate to NPA speci-
fications, see [10].

2.2 A Model Semantics for NPATRL

We will now endow NPATRL with a trace semantics that describes when a given
formula is satisfied relative to a sequence of recorded events. This is expressed
through the judgment T |= E where E is the formula and T is the sequence of
events or trace, formally defined as follows:

T ::= · | T, a

Here, “·” stands for the empty trace, a is an event as defined in the previous
section but with requirement that it contains no variable, and “,” extends a
trace with an event. We assume that times flows from left to right so that a is
the most recent event of the trace T, a. While this grammar suggests that traces
shall be finite in length, the definitions below apply also to infinite traces.

The above satisfiability judgment is defined by the following inference rules:

T |= E1 T |= E2
∧

T |= E1 ∧ E2

T |= Ei
∨i=1,2

T |= E1 ∨ E2

T 6|= E
¬

T |= ¬E

T |= [t/x]E
∀

T |= ∀x.E

atom

T, a |= a

T |= E
3-

T, T ′, a |= 3- E

The rules in the upper row unsurprisingly reduce the satisfiability of a formula
with a traditional logical symbol as its main operator to the satisfiability (or
lack thereof) of its immediate subformulas, relative to the same trace. Here,
we denote with T 6|= E the unsatisfiability of E w.r.t. T which we interpret
as a meta-theoretic notion (although this judgment could be defined via proper
inference rules). In rule for the (implicit) universal quantifier, t shall be a ground
term. The interpretation of implication is as usual derived from that of ¬ and
either ∧ or ∨.

The two lower rules define the temporal interpretation of NPATRL. An
atomic event is satisfiable only if it appears as the last event in the trace at
hand. A temporal formula 3- E is satisfiable in the current trace (T, T ′, a) only if
E is satisfiable in some trace T obtained by stripping a non-empty suffix (T ′, a)
from the trace at hand. Notice that this non-emptiness requirement realizes the
strict interpretation of 3- [7].



2.3 NPA-Acceptable NPATRL Expressions

Although NPATRL was originally designed to be used with the NRL Protocol
Analyzer, it is actually much more expressive than the set of specifications whose
negations are accepted by the tool. Thus, in order to make NPATRL usable
with NPA, it is necessary to identify a subset of NPATRL requirements that
are acceptable by NPA, and to put them into a normal form that is parsable by
NPA.

The language of NPA-acceptable NPATRL expressions is given by the fol-
lowing grammar. We will refer to this language as NPATRLNPA.

R ::= a ⇒ F
F ::= E | ¬E | F1 ∧ F2 | F1 ∨ F2

E ::= 3- a | 3- (a ∧ E)

Note that the grammar requires that any negation come before any occurrence of
the temporal operator, which has not always been the case with the examples we
have examined. However, we can always transform a formula where a negation
occurs further down into an NPATRLNPA expression. Thus, for example, we
can express a ⇒ 3- (b ∧ ¬3- c) as a ⇒ 3- b ∧ ¬3- (b ∧ 3- c). Note, however, that
this has the effect of making complex requirements somewhat less readable, since
occurrences of events must be replicated.

3 Fault Trees

We will now introduce fault trees in Section 3.1 and then define the specialized
notion of precedence tree in Section 3.2 that we will later use for specifying
requirements for security protocols.

3.1 Fault Trees

Fault trees [11] were originally introduced to facilitate the safety analysis of
system designs. A fault tree has as its root the description of a failure situation
the system designer wishes to avoid. Inner nodes represent the conditions or
events that enable the fault. These children will be roots of subtrees that define
the conditions and events that enable them, and so on. Structures isomorphic to
fault trees have also been used to specify conditions that should be met in order
for an event to take place. For example, a simple tree will describe the constraint
“A passenger needs a ticket and a photo ID to board a plane, but should not carry
a weapon” as soon as we have defined these objects.

The nodes in a fault tree can be either basic events (defined below) or logical
gates. The most common such combinators are the AND-gate (� �) and the OR-
gate ( ). Edges link them to a top node and to two children. They specify that
the event in the top node can occur only when all (resp., at least one) of the
situations expressed by the children nodes takes place. Another combinator node
we will use is the NOT-gate (��BB), which specifies that the event in the top node



can occur only when the situation described by the single child node does not.
For our purposes, events will be first-order atomic formulas akin to those already
used in NPATRL (e.g., canBoard). We enclose them in a box in our graphical
representation: the last example becomes canBoard .

We can formalize the above definition of a fault tree by means of the following
tree grammar:

T ::= a

a

T

��BB

T

��
T1

��

T2

AA

T1

��

T2

AA

Edges have a double meaning in a fault tree: when the parent node is a gate, they
act as simple connectors. However, when the parent node is an event, they typ-
ically denote either implication or equality (actually if-and-only-if), depending
on the semantics chosen.

canBoard��
hasTicket

�
�
�

hasID
T

T
T

��BB

carriesWeapon

Sequences of AND-gates are often represented as
an n-ary AND-gate (with n ≥ 2). This can be viewed
as a canonical form that abstracts associativity and
commutativity issues away. An analogous convention
is applied to OR-gates. We rely on this simplified
syntax in the tree on the left, that specifies the naive
requirement about boarding a plane stated above.

3.2 Precedence Trees

A direct, syntax-oriented, translation of the non-temporal fragment of NPATRL
in the language of fault trees is an easy exercise, and even the precedence operator
3- could be handled by adding a dedicated gate, or a special type of edge. In the
reverse direction, giving an elegant translation that spans over subtrees rooted
at an event node is however problematic. For this reason, we will concentrate on
the language of NPA-acceptable NPATRL expressions and define a fragment of
the language of fault trees that allows a sufficiently well-behaved translation.

We introduce precedence trees, a variant of fault trees aimed at giving a
graphical representation to NPA-acceptable NPATRL expression. Similarly to
NPATRLNPA expressions, we will layer the tree grammar for precedence trees
in three classes, that we label with the calligraphic letter corresponding to the
syntactic categories R, F , and E of these objects (the translations in Section 4
will actually define a direct mapping between homonymous classes). The follow-
ing grammatical productions define precedence trees:

R ::=

a

F
E ::= a

a

E

F ::= E
��BB

E

��
F1

��

F2

AA

F1

��

F2

AA



While the edges of a generic fault tree had a double meaning (connectors and
implication/iff), the edges of a precedence tree have a unique meaning within
each syntactic category. However, the interpretation differs from category to
category. The single edge of an R-tree represents an implication as every NPA-
acceptable NPATRL requirement starts with this connective. The edges of F-
trees are essentially connectors. The edges of E-trees have instead a temporal
interpretation: each event in a chain happens before its successor. This effectively
implements a PRIORITY AND without the need of introducing an additional
gate. We have considered using different lines for the various interpretations of
an edge in a precedence tree, but have come to the conclusion that the benefits
of such a departure from the syntax of fault trees would be fairly minimal.

4 NPATRL Semantics

In this section, we define the translation from NPATRLNPA to precedence
trees. These translations are important components of systems that uses human-
readable precedence trees to enter and visualize machine-efficient NPATRL re-
quirements.

We first define a family of three representation functions p qc, with c ∈
{r, f, e}, that transform an NPATRLNPA R-, F - and E-expression N into a
precedence tree pNqc. We will generally keep the superscript c implicit as it
will typically be possible to deduce it from the context. These translations are
displayed in Figure 1: for every syntactic category defining NPATRLNPA (top
row), we give a mapping between each grammatical production in this category
(middle row) and a precedence tree fragment (bottom row). By construction,
p qc is total for each c.

The translation functions p q explicitly attribute the intuitive meaning we
ascribed to the edges of a precedence tree in Section 3.2. Indeed, the single edge
of an R-tree derives from the implication of R-expressions, the edges of F-trees
are connectors, and the edges of an E-subtree embed the precedence operator 3-
of E-expressions.

The construction of the inverse translation is straightforward, and we omit
it in this abstract.

5 Example

In this section, we describe some requirements similar to those that came up
in our analysis of the Group Domain of Interpretation (GDOI) protocol [7] to
demonstrate the benefits of fault trees over NPATRL for communicating non-
trivial requirements. This protocol had some extremely complex requirements,
especially for secrecy, that could be stated very precisely in NPATRL, but that
we sometimes had difficulties reading back and explaining to others. However,
even these requirements turned out to be fairly straightforward to understand
once we reduced them to a visual representation.



pRqr pFqf pEqe

a ⇒ F E ¬E F1 ∧ F2 F1 ∨ F2 3- a 3- (a ∧ E)

a

pFq

pEq
��BB

pEq

��
pF1q

��

pF2q
AA

pF1q
��

pF2q
AA

a

a

pEq

Fig. 1. Translating NPATRLNPA to Precedence Trees

We describe a protocol that has two types of principals: group controllers and
group members. A member joins the group by initiating a handshake protocol
with the controller using a pairwise key shared between it and the controller.
As a result of the handshake, the controller sends the current group key to the
member. We wish to be sure that the member always gets the most current
group key, but as we will see the exact meaning of this requirement is subtle.

The following types of data are relevant: the controller name, denoted by G,
the member name, denoted by M , the pairwise key, denoted by KGM , and group
keys, denoted by Knew,Kold, K, K ′, and K ′′. All terms are variables universally
quantified over their respective types. The symbol is a “don’t-care” symbol.
We have four types of events:

1. member acceptkey(M,G, (KGM ,K), N) describes a new member accepting
a key as a result of the handshake protocol.

2. gcks losepairwisekey(G, (), (M,KGM ), N) describes the compromise of the
pairwise key.

3. gcks createkey(G, (), (Knew,Kold), N) describes the controller creating and
distributing new key Knew and making an old key Kold obsolete.

4. member requestkey(M,G, (), N) describes a member requesting to join a group.

We consider two anti-replay requirements for the handshake protocol. The
first says that, if a member accepts a key from the controller in a protocol run, no
new key should have been distributed prior to the member’s request. This we call
recency freshness, since says that the member should accept the most recently
generated key. We express it as the formatted NPATRL statement below.

member acceptkey(M, G, (KGM , Kold), N)

⇒ 3- gcks losepairwisekey(G, (), (M, KGM ), )
∨¬(3- ( member requestkey(M, G, (), N)

∧3- gcks createkey(G, (), (Knew, Kold), )))

The second says that, if a member accepts a key from the group controller
in a protocol run, then it should not have previously accepted a later key. This
we call sequential freshness, since it is a requirement on the order in which keys



member acceptkey
(M, G, (KGM , Kold), N)

gcks losepairwisekey
(G, (), (M, KGM ), )

�
��

��BB
T

T
TT

member requestkey
(M, G, (), N)

gcks createkey
(G, (), (Knew, Kold), )

(a) Recency Freshness

member acceptkey
(M, G, (KGM , Kold), )

gcks losepairwisekey
(G, (), (M, KGM ), )

�
��

��BB
T

T
TT

member acceptkey(M, G, (KGM , Knew), )

gcks createkey(G, (), (Knew, K′), ))

gcks createkey(G, (), (Kold, K′′), )

(b) Sequential Freshness

Fig. 2. Freshness Requirements for the GDOI Pull Protocol

are accepted. It is formalized by the following NPATRL expression [7]:

member acceptkey(M, G, (KGM , Kold), )

⇒ 3- gcks losepairwisekey(G, (), (M, KGM ), )
∨¬(3- ( member acceptkey(M, G, (KGM , Knew), )

∧3- ( gcks createkey(G, (), (Knew, K′), )
∧3- gcks createkey(G, (), (Kold, K′′), )))

Figure 2 displays the precedence trees corresponding to these two forms of
freshness.

We note that both trees describe two possible conditions under which the
final event (the member’s accepting a key) should be reachable. One describes
a safety condition; if the final event occurs, then a certain sequence of events
should not have occurred in the past. But the other describes a condition, the
compromise of a pairwise key, under which we can make no guarantees. In our
analysis of the GDOI protocol, especially of the secrecy requirements, we found
many such conditions, under which the protocol could either make no guarantees
or only partial guarantees. For example, the perfect forward secrecy condition
says that, if the pairwise key is compromised, then the intruder can learn group
keys generated after the compromise, but not before. Many of these conditions
interacted with each other, making it difficult to specify them correctly. We found
that a graphical representation made it much easier to keep these conditions
straight, and to mix and match the different conditions.



6 Conclusions

In this paper we have developed a visual semantics based on fault trees for
the subset of the NPATRL language that is used with the NRL Protocol An-
alyzer. We have also shown how this language can be used to display complex
requirements in the case of our analysis of the Group Domain of Interpretation
Protocol. Indeed, we found the ability to express requirements in terms of prece-
dence trees very helpful. As the analysis progressed, we often found it easier to
write a precedence tree specification first, and then translate it into NPATRL
and subsequently the NPA query language. Furthermore, whenever we came to
a difference of opinion about what a particular requirement should say, we would
often find it helpful to translate the requirement back into the precedence tree
language to resolve ambiguities.

Our language right now is limited in that it can only capture specifications
that are acceptable by the NRL Protocol Analyzer. We do intend, however, to
investigate how much further it can be extended, both within the NPATRL
framework and possibly beyond it.
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