NRL Release Number 04-1221.1-1145

To be presented June 23, 2004 at MEMOCODE 2004, San Diego Hilton Hotel, San Diego, California.

Using Invariants to Optimize Formal Specifications Before Code Synthesis

Ralph D. Jeffords and Elizabeth I. Leonard
Naval Research Laboratory (Code 5546)
Washington, DC 20375 USA
{jeffords,leonard@itd.nrl.navy.mil

Abstract correct code provides the highest confidence that the code
captures the specified behavior. We have shown in previous
Formal specifications of required system behavior can work [21] how to construct code from requirements speci-
be analyzed, verified, and validated, giving high confidencefied in the Software Cost Reduction (SCR) tabular notation.
that the specification captures the desired behavior. Trans-The development of high-quality SCR requirements speci-
ferring this confidence to the system implementation de-fications is supported by a suite of editing and verification
pends on a formal link between requirements and imple-tools designed and developed by the Naval Research Labo-
mentation. The automatic generation of provably correct ratory. Automatic code synthesis is consistent with our SCR
code provides just such a link. While optimization is usu- toolset design philosophy, the goal of which is to automate
ally performed on code to achieve efficiency, we propose(as much as possible) the process of system specification,
to optimize the formal specification before generating code, analysis, and implementation using tools and methods de-
thus providing optimization independent of the particular signed for practicing engineers.
code generation method. This paper investigates the use of gqip speed and code size are important in code for em-
i.nvariants. in optimizing code generatgd from formal speci- pagded systems. Compilers generally perform optimiza-
fications in the Software Cost Reduction (SCR) tabular no-ions for speed, while code size optimization is often done
tation. We show that invariants (1) provide the basis for 1y hang on either the source code or the compiled code [28].
simplifying expressions that otherwise cannot be improvedgaiher than perform optimizations only on the code itself,
using traditional compiler optimization techniques, and (2) oyr approach is to translate the formal specification into an
allow detection and elimination of parts of the specification equivalent form that will lead to smaller, and frequently
that would lead to unreachable code. faster, code than the original specification, thus providing
optimization independent of the particular code generation
method. This will then be followed by more typical opti-
1. Introduction mizations on the code. This paper investigates the use of
requirements level invariants in optimizing code generated

Formal requirements specifications are useful becausdrom executable formal requirements specifications repre-
they can be analyzed to show that they satisfy critical prop- sented in the SCR tabular notation. Invariants are proper-
erties such as safety, security, and timeliness. Additionally, ties that hold in every reachable state of such an executable
with executable specifications, the user may symbolically System. In previous work, we have developed algorithms
execute the system to validate that the specification capturedor automatically generating invariants [16, 17]; these and
the intended system behavior. Thus, analysis and simulatiorPther invariants that have been established can be used with
can provide confidence that a specification is correct. Trans-OUr techniques.
ferring this confidence to the implementation requires afor-  To illustrate our notion of optimization, we consider a
mal link between requirements and implementation. This simple state maching with state se{z;, z»}. Associated
formal link may be realized by a sequence of (usually) man- with ¥ is a variableX, whose value represents the current
ual refinements, but the automatic generation of provably state of%, and Boolean variabled and B. The machine
Y changes state based on (and in parallel with) changes in
A and B. Here and below, we follow the standard conven-
U.S. Government work not protected by U.S. copyright. tion in which unprimed variables represent values prior to a
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transition and primed variables represent values after a tranthe guard column of the table are the focus of our sim-
sition. plifications. We are able to perform the simplification be-
cause (1) the system is in state (i.e., X = zy), (2) the
AN=A invariant (X = z;) = A always holds, and (3) the pre-

m vious two facts together imply that holds. If we take
A K = (X =x1) A (X = z; = A) to be thecontextof
- the cell containing the expressidh A =B’ A A, then our

simplification may be expressed as follows.
BA-B'AA

If K is the context for a cell containing the expres-

Figure 1. Simple Example State Machine sion & and K = A then, A may be replaced by

truein E.
Figure 1 indicates that, whenevErenters stater;, A A generalization of the above rule to replace any subex-
holds. This is because (1) id's initial statex;, A holds,  pression (rather than just the Boolean variatt)és one of

and (2)A holds after the machine enters staiéfrom state e simplification rules that we have developed. However,
x2; this follows from the labeb-A A A’ on the (unique)  the simplification is not yet complete because this rule says
transition from stater, to statez; and the convention on  hat B A =B’ A A is transformed intaB A =B’ A true.
primes. Also from Figure 1, if whil&S is in statez1, A Transforming this expression 8 A —B’ is trivial; we sim-
changes frontrue to false (i.e., A A —~A’), then the ma-  pjify using the identityP A true < P. In the general case,
chine exits stater;. (We assume a semantics that forces \ye apply this and other standard Boolean simplifications.
a transition whenever one is possible, even if the choice isTransforming the table as described results in a table with a

nondeterministic.) Given this, it is easy to show tHaal- simplified middle row:
ways holds when the machine is in statg or, in other
words, the expressiofX = x;) = A is invariant. In fact, source state guard | target state
a generalization of this observation is the basis for our algo- p
rithms for invariant generation [16, 17]. 1 ~A T2
Notice that, in state, if B changes frontrue to false, x1 BA-B X9
and A holds before this change (i.€3, A =B’ A A holds), Zo “ANA 7
then the machine enters statg However, it is redundant
to check thatd holds as part of the evaluatidhA =B'A A Note that the simplification rule with the same context has

since A always holds in state; due to the invariant prop-  also been applied to remove the tervirom the guard cell
erty given above. Thus, we may simplify the expression of the first line of the table.

labeling this transition td3 A —B’ to avoid checkingd. This simple example illustrates that invariants can pro-
The transitions illustrated by Figure 1 may be expressedyide the basis for simplifying expressions that cannot be fur-
in a tabular format as follows: ther simplified without use of those invariants. Such modi-
source statd guard target statel fications are a form o¢ontextL_JaI simplifi_cationanalogous
to contextual rewriting [35], since they involve the use of a
1 ANn-A T2 context of known facts to aid in the simplification. In addi-
T1 BA-B' NA To tion to the generalization of the above rule, we also develop
o “ANA o rules for detecting and eliminating parts of the specifica-

tion that would lead to unreachable code. Our general ap-
The SCR method uses similar tables to define state machingroach is to apply a convergent set of contextual simplifica-
transitions. The above table is a compact representation otion rules, each application of which may require additional
the function defining\’, the value of variabl&X in the new non-contextual simplification.
state. The standard mathematical definition of the function ~ While this paper considers only a set of simple rules for
is more complex: simplifying propositional formulas, we are in the process of
investigating more sophisticated techniques to include ac-
z2 X =21 AN((AN-A)V(BA=B' AA)) tual algorithms for doing these optimizations, as well as ex-
X'=¢ o fX=2A(—ANA) tension to contextual simplification of a more general nature
(e.g., simplification of arithmetic expressions).
Section 2 provides background on SCR and on invari-
The simplification performed above can be used to in- ants that can be automatically derived from SCR specifi-
duce a transformation of the table. The cells comprising cations. Section 3 explains how invariants may be used to

X otherwise



simplify SCR tables by removing portions of the specifica- mode is an equivalence class of system states useful in spec-
tion that would lead to unnecessary or dead code. Examplesfying as well as understanding the required system behav-
are given to illustrate the utility of invariants in this process. ior. A term is a state variable defined by an expression over
Section 4 discusses related work. Section 5 presents conmonitored variables, mode classes, or other terms. Mode
clusions and ideas for future work. classes and terms often capture history—the changes that
occurred in the values of the monitored variables—and help
to make the specification more concise.

The SCR model represents a system as a state machine
¥ = (5,50, E™,T), whereS is the set of statesj; C S

Originally formulated to document the requirements of is the set of initial statesy™ is the set of monitored events,
the flight program of the U.S. Navy's A-7 aircraft [14], the andT is the transform describing the allowed state transi-
SCR requirements method is designed to support detectiontions [13]. In our model, the transforffi is a function that
and correction of errors during the requirements phase ofmaps a monitored eveatc E™ and the current statec S
software development [13, 9]. The SCR toolset provides to the next state’ € S. Further, astateis a function that
a user-friendly approach to writing requirements specifica- maps eaclstate variablei.e., each monitored or controlled
tions in a tabular format and a number of analysis tools, variable, mode class, or term, to a type-correct valwsra
including a consistency checker [13], a simulator [12], a dition is a predicate defined on a system state, anevant
model checker [10], theorem provers [2, 4], and an invariant s a predicate requiring that two consecutive system states
generator [16, 17]. By applying the SCR tools to uncover differ in the value of at least one state variable.
errors, a user can develop high confidence that a specifica- The notation @T(c) WHEN d denotes aconditioned

2. Background

tion correctly captures the required system behavior. eventwhich is defined by
The SCR method has been used successfully by many ot
organizations in industry and in government (e.g., Bell Lab- @T(c) WHEN d= —cAd Ad,

oratories [15], Grumman [26], Lockheed [7], the Naval ) » ,
Research Laboratory [10, 20], Ontario Hydro [31], and where the unprimed condmomsand_c? are evaluated .|nthe
Rockwell Aviation [27]) to develop and analyze specifi- current state and the primed conditigris evaluated in the

cations of practical systems, including flight control sys- NeXt state. The ever@T(c) WHEN doccurswhen its
tems [7, 27], weapons systems [10], space systems [6], andlefining expression evaluatesttaie. We also define
cryptographic devices [20]. Most recently, the SCR tools @F def

were used, together with a test case generator, by Lockheed © = (=e).

Martin to detect a critical error described as the “most likely

cause” of a $165 million failure in the software controlling 2.2 The SCR Tables

landing procedures in the Mars Polar Lander [5]. , . )
The transformT" is a composition of smaller functions

calledtable functions which are derived from the condi-
tion tables, event tables, and mode transition tables in SCR
requirements specifications. These tables define the values
In SCR the required system behavior is defined in terms of the dependent variablesthe controlled variables, mode
of monitored and controlled variables which represent  classes, and terms. Férto be well-defined, no circular de-
guantities in the system environment that the system mon-pendencies are allowed in the definitions of the dependent
itors and controls. The environment nondeterministically variables. The variables are partially ordered based on the
produces a sequence of monitored events, whar®ai- dependencies among the next state values.
tored evensignals a change in the value of some monitored  Each table defining a term or controlled variable is ei-
variable. The system, represented in the model as a statéher a condition table or an event table. cAndition ta-
machine, begins execution in some initial state and then re-ble associates a mode and a condition in the next state with
sponds to each monitored event in turn by changing statea variable value in the next state, whereasesant table
In SCR the system behavior is assumed teyrechronous  associates a mode and a conditioned event with a variable
the system completely processes one set of inputs before/alue in the next state. Each table defining a mode class

2.1 SCR Requirements Model

processing the next set. Furthermore, @e Input As-  is amode transition tablewhich associates a source mode
sumptionallows at most one monitored variable to change and an event with a target mode. Our formal model requires
from one state to the next. the information in each table to satisfy certain properties,

To specify the required behavior concisely, the SCR guaranteeing that each table describes a total function [13].
model contains two types of auxiliary variablesnode Some SCR tables may be modeless, i.e., they define the
classeswhose values are calladodes andterms Each value of a variable without referring to any mode class.



Old Mode Event New Mode
TooLow @T(WaterPres > Low) Permitted
Permitted @T(WaterPres > Permit ) High
Permitted @T(WaterPres < Low) TooLow
High @T(WaterPres < Permit ) Permitted

Table 1. Mode Transition Table for Pressure

Mode Conditions
High , Permitted True False
TooLow Overridden NOT Overridden
Safety _Injection Off On

Table 2. Condition Table for Safety _Injection

To illustrate the SCR tabular notation, three example ta- of consecutive states. We have designed two algorithms
bles are presented. These tables define the values of thfl6, 17] for constructing state invariants from the tables
three dependent variables in a simplified version of a safetydefining the dependent variables in an SCR specification.
injection system (SIS) [13] for a nuclear power plant. The Suppose that dependent variableas values in a finite set
SIS system monitors water pressure, and if the pressure i§v1, va, ..., v, }. If the value ofr is defined by a mode transi-
too low, the system injects coolant into the reactor core.  tion table or an event table, then, for eaghthe algorithms

Table 1 is a mode transition table defining the new value generate invariants of the form
of the mode clas®ressure as a function of the current
mode and the monitored variables. For example, the first r=v; = Cj,
row of the table states that if the current mod€i®Low

and the water pressure becomes greater than or equal to thghere(; is a predicate over the variablesihon whichr

Low threshold, the new mode Fermitted. depends. Invariant generation from SCR tables is based on
Table 2 is a condition table defining the value of the f0||owing idea: Inan SCR Speciﬁcation,: v; = C; is

the controlled variable;afety_Injection as a function an invariant if 1)07 is a|WayS true whem's value Changes

of the modes and the term variabwerridden. The  toy,, and 2) an event falsifying; unconditionally causes

first row states that in théligh or Permitted modes,  to have a value other than. Since stronger invariants may

Safety Injection is Off. The second row states pe computed with knowledge of previously computed in-

that in the modeTooLow, if Overridden is true then  yariants, the full algorithms repeat the computations of the

Safety.Injection is 0ff, and if Overridden is false invariants until a fixpoint is reached. The currentimplemen-

thensafety_Injection is On. tation of the SCR invariant generator applies our algorithms
Table 3 is an event table defining the tebrrerridden to both mode transition tables and event tables. State in-

as a function of the current mode and the monitored vari- variants constructed from a mode transition table are called
ables. The first row describes the behavior when the modemode invariants

of the system (i.e., the value Btessure in the old state)
is eitherTooLow or Permitted. In either of these modes, if
Block switches toOn whenReset is 0f£, then the new
value of Overridden is true, but if the Pressure be-
comesHigh or Reset switches to0n, then the new value
of Overridden is false.

We have also developed two prototype code synthesiz-
ers that construct C source code from an SCR requirements
specification [21]. The two synthesizers, each using a dif-
ferent code generation strategy, are based on Paige’'s APTS
program transformation system [30]. The first strategy uses
rewrite rules to transform the parse tree of an SCR specifi-
cation into a parse tree for the corresponding C code. The

2.3 Invariants and Code Generation second strategy associates a relation with each node of the
specification parse tree. Each member of this relation acts

We consider two forms of invariants in SCRtate in- as an attribute, holding the C code corresponding to the tree
variants expressions over a single state that hold in eachat the associated node; the root of the tree has the entire C
reachable state of the system, drahsition invariants ex- program as its member of the relation. The generated code

pressions over two states that hold for each reachable pairs efficient but has not been optimized.



Mode Pressure Events
TooLow, @T(Block =0n) @T(Pressure =High)OR
Permitted WHEN Reset = Off @T(Reset =0n)
High False @F(Pressure =High)
Overridden True False

Table 3. Event Table for Overridden

true if @T(Block =on) WHEN Reset =off
AND Pressure in {TooLow, Permitted }
, false if @T(Pressure =High ) OR @TReset =on) WHEN

Overridden ' = . .
Pressure in {TooLow, Permitted }

OR @F(Pressure= High) WHEN Pressure=High
Overridden otherwise

Figure 2. Functional Definition of Overridden Event Table.

3. Simplifying SCR Tables Using Invariants in Table 3 the mode context for the cell “@Wessure
= High )” obtained from the associated mode class Pres-
This section presents two simplification rules that make sure is ‘Pressure = High ,” while the mode context for
use of invariants: (1) a rule to remove unreachable parts ofthe cell in row 2 in Table 4 on page 7 i€fuiseMode =
the specification and (2) another rule to remove redundantinactive .
parts of the specification. Since invariants are properties
that hold in any reachable state, invariants may be used to B. CONSTRAINT ON THE OLD VALUE (Rule

simplify the expression of the next state function, the func- Rémove-Unreachable Only) For an event table, a con-
tion from which code is ultimately generated. Note that, Straintonthe old value of the variable being defined can also

to simplify an expressiort, it is not sufficient to simply be used as part of the context of a cell. Event tables have
conjoin the invariants witt and apply some simplification @ default “no change” condition, meaning that for a given
procedure, because this might entail the simplification of cell, we only need to consider the value of the variable if
both E and the invariants, when all we want to simplify is the actual value of the variable changes. This is supported
E itself. Thus, some form of expression simplification that Py the following property related to the formal definition of

uses the invariants as context is desired. tables as given in [13], of which Figure 2 is an example.
3.1. Contexts Property 1 For a variabler having the set of possible val-
ues{vy,...,v,}, the function definition
For each cell to be simplified, several different forms of
information may be assumed as context: the current value vy if Py
of the associated mode class, a constraint on the old value
of the variable being defined in the table, and the set of in- =9
variants. However, for a technical reason (as explained in vn WP,
the appendix) the contextual information involving the old r  otherwise
value of the variable may only be used as context for the
Rule Remove-Unreachable. is equivalent to the definition
A. THE MODE CLASS (Both Rules): Usually an vy P ATr#£u
event table in SCR has an associated mode dldsshat
is, the value of the variable defined by the table is described r = o
as a function of that mode class and an event. Except for L A
mode-less event tables, the mode in the old state can be used r  otherwise

as part of a cell's context. For mode transition tables, the
value of the mode in the old state can be used as context foif the set{P;, P, ..., P,,} satisfies Disjointness, i.ei #
the cell in the corresponding event column. For example,j = —(P; A P;) forall 1 <i,j <n.



This property also holds when only conjoining# v; for fectively the value ofF is unchanged by treating each oc-
some subset of th&; rather than all of the?;. Thus for currence of@) astrue. If applying this rule simplifies,
each cell in the definition of the new valué defined by ~ one would naturally further simpliff¢ using standard sim-
an event table we have the contextt v wherewv is the plification algorithms. In this paper, we shall only apply
value below the double line at the bottom of the column Remove-Redundancy to mode transition tables.
containing that designated cell. For example, in Table 3 this

gives the context for the “@P¢essure = High )" cell as Context for Remove-Unreachable K = (M =
“Overridden # false. m) A I A (r # v), where (a)m is the old value
of the mode clas8/ associated with the cell con-
C. THE INVARIANTS (Both Rules) : Though any state taining E, (b) I is some state invariant (in the old
invariant of ¥ can be used as context, this paper only con- state), and (c) is the new value of associated

siders mode invariants, i.e., state invariants of the form with the cell.

M = m; = Q;, whereM is a mode class name andgl

is a predicate defined on state variableEof Rule Remove-Unreachablelf K A E = false
is a tautology, ther® may be replaced byalse.

3.2. Simplification Rules . . : o
Obviously, if the context ig'alse, then the transition as-

sociated with this cell will never occur. Replacing the cell
entry with false results in a clearer and more concise spec-
ification.

Next, we illustrate several simplifications using Rule

For an intuitive presentation of our simplification tech-
nigues using invariants, we express the simplifications in
terms of transformations of the cells of an SCR table. A

tool implementing these simplifications would define these »
b g b Remove-Redundancy. Table 4 shows the mode transition

transformations directly in terms of the conditional expres- table f Cruise Control svst 111, ADDIVi .
sions defining the semantics of each table, but the results 2P ¢ '0f & LIUISE Lontrol system [11]. Applying our previ-

would be equivalent. For example, consider the event tableOUSIy developed invariant generation algorithms, produces
in Table 3. This table. which is ada’pted from the SCR Spec_the following two invariants for the cruise control specifica-
ification of a safety injection system [13], describes how téon.: (1|\)/|C(rjwse_l\/lgde j Inactnfe o :;IIEgnORn af?d (2)

the value of the variabl®verridden is updated. The se- ruiseviode - = Lvermde = 1gnun AEngrUNNINg -

mantics of Table 3 is given as the conditional expression of C_on5|der RQW 3 of Table 4 and_ lét b_e the event expres-
Figure 2. sion from this row. Letl be the invariant (1) and take the

our simplifications apply to cells containing the event contextK to be together with the mode context for this

expressions occurring in event tables (e.g. the cells above O CruiseMode = Inactive . Together these two

the double line with header “Events” in Table 3) and mode pRarés o;the con'ttext [nglz)lgggOn .I'Appl){lng‘}? u(;e IREQO\{,G i
transition tables (the cells with the header “Event” in Ta- edundancy witlQ = IgnOn e iminates And ignn .
ble 4). As a special case a cell may contéirise, meaning fror_n the end of the event expression In th_e cell (marked n
that the case is impossible. Our simplifications eoatex- italics). Code generated from the simplified table will be

tual in the sense that we shall simplify cells in the context of smaller and faster than code generated from the original ta-

the given invariants plus additional facts as described above.ble' Similarly, we can simplify line 9 of the mode transition

In this paper, we present only two rules, both defined over atable using invariants (1) and (2) to remove the expression

logical expressiot, the context of a cell, anfl, the event Ar;d Iﬁnon Aplclj Ifngthur:l ning (Ishowrllqlnl |taI|Rcs).
expression contained in that cell. ina’ty, we Hustrate now applying kule remove-
Unreachable will lead to elimination of a row of Table 3.

Context for Remove-Redundancy K = (M = 'I_'his corresponds to elimination of a part of the spe_cifica—
m) A I, where (ayn is the old value of the mode tion that would produ.ce dead code durmg_synthess. Let
classM associated with the cell, (b) is some E be the cell containing @Pfessure = High ) in the
state invariant (in the old state). event table given in Table 3 and Iétbe Pressure =
High = Overridden = false , one of the gener-
Rule Remove-Redundancy If E is an expres- ated state invariants for this system. Let the cont&xt
sion containing a subexpressighfor a cell as- be the invariant/ together with the mode class informa-
sociated with mode valug:, and K = Q is a tion, Pressure =High , and the old state value informa-
tautology, thenF may be simplified by replacing tion, Overridden # false . The three constraints of the
each occurrence @ within E with true. contextK taken together simplify tgalse; and thus by the

Rule Remove-Unreachable the cell itself can be replaced by
Intuitively, this rule says that if celE is being evalu-  false. Because all the cells in the second row of the table
ated in a context where botR® and ) are true, then ef-  now arefalse, the entire row of the table can be eliminated.



Old Mode Event New Mode

1 Off @T(gnOn) Inactive

2 Inactive @F(gnOn) Off

3 Inactive @T(Lever =const ) WHEN EngRunning Cruise
AND NOT Brake AND IgnOn

4 Cruise @F(QgnOn) Off

5 Cruise @FENgRunning ) Inactive

6 Cruise @T([Brake ) OR @T(ever =off ) Override

7 Override @F(QgnOn) Off

8 Override @FENgRunning ) Inactive

9 Override @T(Lever =resume ) OR @T(Lever =const ) WHEN Cruise
NOT Brake AND IgnOn AND EngRunning

Table 4. Mode Transition Table for Mode Class Variable CruiseMode.

The more compact table is shown in Table 5. The new table This latter work has been extended to consider use of deci-
will produce less code during synthesis because it omits thesion procedures in manipulating the context during rewrit-
part of the table that would lead to the construction of deading [3]. The most sophisticated of these techniques have

code. resulted in implementations of powerful theorem provers,
There is one special case of Remove-Unreachable thae.g., SIMPLIFY, which is based on the work of Nelson [29].
bears mention. If there is an invariant of the fatm m = The two rules we have given are special cases of contex-

false, any row of a table having = m as the mode class tual rewriting as originally defined by Remy [35], who first
context can be eliminated from the table. This one-step opti-coined the terminology “contextual rewriting.”

mization is equivalent to a series of applications of Remove-  Complementing the early work on logic simplification in
Unreachable (one for each cell in the row), resulting in a the 1950’s and 1960's was the development of techniques

row of cells having the valugalse, followed by the elimi-  for machine simplification, e.g., the minimization of the
nation of the row. number of states of incompletely specified finite state ma-

chines [32]. The monograph by Kam et al. gives a modern
4. Related Work perspective on this subject [18].

Invariants have been used for optimization during code
The language LUSTRE [8], developed at VERIMAG, is generation for many years, but for the most part such in-
conceptually similar to the SCR language: it provides a de- variants are related to implementation details rather than re-
terministic language, in which all non-input variables are guirements level invariants of reactive, embedded systems
simultaneously updated in response to some change in théhat we generate from SCR specifications. For example,
input environment. Efficient code generation is an integral “loop invariants” about the relative values of variables in
part of the LUSTRE toolset, and is based on the use of aa loop are used during the classic strength-reduction com-
“control automaton” that remembers a limited part of the piler optimization technique [1] and the finite differencing
old state of the system. The VERIMAG group has also ex- program transformation technique [30]. More recent work
tended LUSTRE into the hardware area by adding syntac-on strengthening such invariants has led to additional op-
tic sugar for array structures and circuit layout information, timization as well as providing a more general approach
which the Pollux tool uses to automatically configure the called incrementalization [23]. Another application of in-
hardware gates in Programmable Active Memory [34]. variants during code generation, but at a higher level akin
Early work on logical simplification in the 1950’s to requirements, is the technique of run-time code genera-
and 1960's addressed Boolean minimization with respecttion [22, 19]. In this method, specialized code is generated
to some measure (such as fewest number of literals inat run-time, given invariants based upon the known input
sum-of-products form) resulting in the well-known Quine- Values for a specialized (often one-time) use of a program.
McCluskey method [33, 25]. Later developments extended In our simplification of the cells of a table, we use the old
simplification over first-order theories with interpreted sym- state value of the variable as means of restricting the calcu-
bols: Loveland and Shostak [24] extended Quine’s methodlation of the variable’s new value to only the cases where
of prime implicants, while Zhang [36] gives a general there is to be a change from the old value of the variable.
framework for simplification viecontextual rewritingi.e., This check of the old value of the variable could also be
rewriting formulae in the context of additional information. generated as part of the synthesized code. If the check were



Mode Events

TooLow, @T(Block =0n) @T(Pressure =High ) OR
Permitted WHEN Reset = Off @T(Reset =0n)
Overridden True False

Table 5. Simplified Event Table for Overridden

true if @T(Block =on) WHEN Reset =off

AND Pressure

/

in {TooLow, Permitted }

Overridden * = false if @T(Pressure =High ) OR @TReset =on) WHEN
Pressure in {TooLow, Permitted }

Overridden otherwise

Figure 3. Functional Definition of Simplified Overridden Event Table.

generated such that it was a preliminary check before thehelped to improve the proof in the appendix and she fur-
rest of the calculations were performed, it would optimize nished Figure 1.

the code by preventing unnecessary calculations. This sort

of incremental update to the variable (i.e., basing its new References

value upon its old value) as well as the LUSTRE control

automaton approach to compilation are similar to finite dif- 11} A v, Aho, R. Sethi, and J. D. UllmanCompilers: Princi-

ferencing [30].

5. Conclusions and Future Work g

Though at a preliminary stage, the work reported in this
paper shows that some benefit can be derived from using in-
variants to simplify SCR specifications. In future work, we [4]
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where the set of guards; < (M = mi) A Ei, i = .
1,...,n are mutually disjoint; this ensures that this con- vp  if Gy A (r#v1)
ditional form represents a function.

For everyi, the Remove-Unreachable context foris vn i Gy A (1 £ 00) (5)
Ki=(M=m;)NI; A (r # v;) r  otherwise.
where’; is some state invariant, which may be chosen dif-  To show that this expression also evaluates,td suf-
ferently for each. Recall: fices to show
Vi i =(Gi A (r # vi)) (6)

Rule Remove-Unreachable If (K; A E;) =

false is a tautology, then replade; with false holds. But if (6) is false then there is somesuch that

G; N (r # v;) holds. In this case; # v;, and sinceG;
After applying this rule for every, we have a new definition  holds, we also have/ = m; and E;. Further,I; holds

F*, with eachG; in the definition of . replaced byG?, because state invariants hold in any reachable state. There-
where fore, we know that’; = (M = m;) A L; A (r # ;)
holds. ThusK; A E; holds, which means thdt; A E; =
G = (M =m;) ANE;, (1) false doesnot hold. From this, we knowE; = E;

(by (2)), and henceG; = G; (by (1)). Becauses;

in which holds, G} also holds. But this contradicts the assumption
b { false if (K; AE;) = false - Vi : =G . Therefore, we have established (6).
' E; otherwise. CASE [Ji : G¥]: Choosei such thatG* holds. Then

the case expression in (4) evaluatestoSinceG; = G,

G, also holds. But this means that the value of the case
expression in (3) also evaluatesuto Hence, the values of
the two case expressions are equal. [ ]

Note that (1) and (2) together imply th&t = G;.

For F} to define a well-formed table function, the
must be mutually disjoint. But this fact is easily established
since the only modification td’,. is to (possibly) replace
some of theF; by false.

Theorem 1 Semantically, with respect to the reachable
states of the system,. = F*.

T

Proof: In our proof, we may assume that all evaluation
takes place in a reachable state.
The definition ofF;* expands to

V1 if GT
R 3)
v, If G
r  otherwise
and the definition of;,. expands to
V1 if G1
R @)
v, IfG,

r otherwise.

We must show that the values of these two case expressions
are equal. We need only consider two cases.

CASE [Vi : =G7]: In this case, the conditional expres-
sion in (3) evaluates te. Using Property 1 on page 5 we
can rewrite the conditional expression in (4) to:





