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Abstract

As more people use the Web to gather information, commu-
nicate, work, and otherwise have fun, learning user pro�les
of Web browsing behavior can help personalize search re-
sults and identify persons of interest. Learning individual
user pro�les from Web browsing behavior also has applica-
tions in cybersecurity as a continuous soft biometric tech-
nique to verify a user's claim of identity, in online opinion
mining to eliminate duplicate users, in fraud detection to
discriminate between normal and anomalous behavior, in
adaptive user interfaces to contextualize the presentation
of information, and in recommender systems based on col-
laborative �ltering techniques. The contribution of this pa-
per is a novel method for modeling Web browsing behavior
and learning user pro�les using conditional random �elds
with experimental results in authenticating users from a
user study.

1 Introduction

Learning user pro�les has many applications and what is
learned from modeling a user can vary. For example, an
adaptive user interface model might model context in or-
der to help a user in the performance of a task regardless
of preferences. Selecting a representation and methodol-
ogy to learn user pro�les depends on the available data and
the objective. Cognitive user pro�les are generally distin-
guished from signatures or �ngerprinting approaches that
can identify a user but cannot make temporal predictions of
behavior. In contrast, the power of user models rests in its
generality. For example, an opponent model based on a spe-
ci�c player (or self-play) can improve the play of a computer
program against other opponents, or a user model for a rec-
ommender engine can be leveraged by similar users through
collaborative �ltering techniques. Debunking cognitive bi-
ases and coaching a user to learn new skills (or concepts)
are another type of application where group pro�les com-
bine with user pro�les. In this paper we investigate to what
extent user pro�les of Web browsing behavior can serve as
signatures with experimental results in the authentication
task from a user study. Authentication (one-to-one) is a
way of evaluating the accuracy of cognitive user pro�les
without the additional complexity of multi-class classi�ca-
tion (one-to-many). Challenges in discovering unique user

pro�les fromWeb browsing behavior include the commonal-
ity of certain websites across users (e.g., facebook.com) and
the di�culty of distinguishing rare but relevant clicks from
accidental clicks within a limited training time window.

The paper is organized as follows. In Section 2 we de-
scribe prior research in learning user models of Web brows-
ing behavior in di�erent application contexts. In Section
3 we introduce our learning approach based on conditional
random �elds (CRFs) including our modeling of Web brows-
ing behavior through a user study. To our knowledge, this
approach has not been used in the context of Web browsing.
In Section 4 we present our empirical study and experimen-
tal results for an adapted game of �name that tune� to the
authentication decision task. Finally, our conclusions and
future work are summarized in Section 5.

2 Related Work

Marketers have long been interested in understanding Web
interaction behavior [1] in order to design Web sites that
entice visitors to �nish their Web session with a checkout
of their shopping cart. Behavioral targeting is an approach
used by advertisers (e.g., DoubleClick) that track Web be-
havior to deliver advertisements matching an individual's
pro�le. Research in this area has concentrated on identi-
fying the behavior of users with speci�c demographic char-
acteristics such as age and gender [2] rather than authenti-
cating a single individual or predicting their next click.

In the area of recommender systems and information
�ltering, learning user pro�les from Web users has concen-
trated on learning relevant categories of webpages based on
topic content [3, 4] and user feedback. Work in Web usabil-
ity has focused on grouping users according to the similarity
of their navigational behavior [5] to improve the design of a
website. In [6], aggregated user pro�les are represented as
a collection of weighted URLs and recommendations made
according to a matching score with respect to the user ac-
tive session.

In [7] learning the pro�les of cellphones users included
features of speci�c URL domain names extracted from the
browser history in conjunction with mobility features. Those
user pro�le features conditioned on time-of-day are com-
bined in a Gaussian Mixture Model to produce an authen-
tication score. Unlike phone numbers, the commonality of
certain websites was found to be an issue in detecting mas-



queraders. Learning user pro�les from Web browsing be-
havior has also been approached from a Web usage mining
perspective [8] for identi�cation purposes. In this approach,
user pro�les are constructed from a �xed set of patterns (do-
main names) occurring together in a Web sessions. Users
are then identi�ed with a nearest-neighbor approach or with
a classi�cation learning method based on the strength of
those patterns. This approach works well in identifying a
�xed and limited number of users within a website where
the number of possible pages is also limited and �xed.

Modeling individual Web browsing behavior was shown
to be useful against distributed denial of service attacks
to distinguish abnormal HTTP requests from normal ones
[9] on the server side. Web browsing is modeled using a
hidden semi-Markov model with explicit duration where the
observations are the HTTP requests and the states are the
webpages. Because inline HTTP object requests (such as
an image logo) overlap among webpages, it is di�cult to
distinguish user clicks on the server side. A semi-Markov
model can model the jump to unrelated webpages through
the address bar of the browser or through bookmarks. In
this work, normal HTTP requests are distinguished from
abnormal ones by thresholding the accepted deviation from
the mean entropy of the model. However, this work does not
distinguish between normal HTTP requests as belonging to
di�erent users.

In [10] stochastic agent-based user models of Web brows-
ing behavior were shown to produce realistic results in the
simulation of Web tra�c patterns. The user model pa-
rameters are based on empirical observations, aggregated
over sessions, such as the topical locality of webpages where
the temporal distance of clicks is correlated with content
similarity. The relevant conclusion of this work was that
the broad distribution of aggregated behavior suggests that
there is no �typical� user described by their web tra�c.
However, this work does not attempt to recognize users
from their Web browsing behavior.

Path analysis based on Markov models and data mining
techniques [11, 12] to reduce model complexity has concen-
trated on modeling Web usage across users within a website
with no unknown webpages. While this approach models
common navigation behaviors, it does not model users di-
rectly and does not transfer to other websites or across web-
sites.

In contrast to temporal user pro�les, authentication from
Web browsing behavior has been addressed with a bag-of-
words ensemble approach of one-class SVMs [13]. While
this approach addresses the discriminative aspect of a sig-
nature, temporal user pro�les provide added capabilities
such as activity recognition and click prediction.

3 Proposed Approach

Hidden Markov models (HMMs) have long been the pre-
ferred method to model behavior but they are limited in
their capability to represent constraints between any two
states because of their Markov assumption and the inde-
pendence assumption of the observations [14]. Although
work has been done to overcome those limitations resulting

in complex models, structured prediction methods provide
a uni�ed framework to predict and learn arbitrary activ-
ity patterns. In addition, HMMs require enough training
data to obtain an accurate generative model of observations
while structured prediction methods leverage only from de-
pendencies in the observation sequence and local predic-
tions. There are several approaches to solve the combina-
torial problem of structured prediction and our approach is
based on CRFs [15], a probabilistic approach predicated on
the interaction of neighboring label sequences.

To learn user pro�les as signatures, it is not enough to
predict the activities in a temporal sequence. Rather a se-
quence of actions should be evaluated given a user model
relative to other user models. The probability of a click-
stream sequence given by a user model provides con�dence
toward the attribution of this sequence regardless of the ac-
tivities recognized by the model. Although temporal graph-
ical models such as CRFs have been primarily used for se-
quence tagging in natural language parsing [16] and activ-
ity recognition [17], another aspect of graphical models is
to provide an overall probabilistic evaluation. We �rst de-
scribe our user study to obtain the clickstream data.

3.1 Web Browsing Modeling

Logging of spontaneous clickstream data in this user study
consisted of recording through custom-built browser exten-
sions (Firefox and Chrome) the timestamp and the URL
that was visible at the time by the user in the address bar
of the browser (i.e. click). The data was parsed o�ine
to minimize interference with the user. Fourteen subjects
(4 females and 10 males) participated in this study dur-
ing the course of their work for one month. The popula-
tion was fairly homogeneous and rated themselves highly
�Web savvy.� Web browsing behavioral data is noisy and
requires some pre-processing for analysis. Noise occurs due
to distortion from the network behavior, errors in accessing
URLs, and automatic page insertion in the browser due to
the dynamic reloading of webpages. The clickstream data
is parsed into �sessions� where a session is de�ned as a con-
tinuous stream of clicks delimited by pauses greater than
30 minutes as in [18]. User sessions are the data points in
our study of Web behavior.

We categorized URLs into page types using Di�bot1, a
Web service for genre classi�cation, that currently catego-
rizes webpages into 21 pages (including �error�). Genres are
functional categories of information presentation. In other
words, genres are a mixture of style, form, and content. For
example, books have many genres such as mystery, science-
�ction, �ction, and biography. Similarly, webpages have
evolved their own genres (e.g, blog, homepage, article). Ba-
sically, the genre of a document is tied to its purpose and
re�ects social conventions for disseminating and searching
information. We claim that genres are more indicative than
topics for the attribution of Web browsing behavior. For ex-
ample, students read tutorials and professors read research
papers with high reading complexity regardless of topics.
Future work will develop a genre �palette� that enhances
the attribution from Web browsing behavior.

1http://www.di�bot.com



The following features were extracted from the data:
day-of-week, time-of-day, pauses (elapsed time between con-
tiguous clicks), burstiness (rate of change between pauses),
and time between revisits within a session. For clarity, we
only show the behavior of the same three users in our �g-
ures. Figure 1 illustrates three users and their patterns of
weekly online activity aggregated across all sessions. Figure
2 illustrates the time-of-day accesses of those users and Fig.
3 illustrates the genre of the webpage accesses. Only those
features are used in our user models.

Figure 1: Day-of-week activity patterns for 3 users aggre-
gated across all sessions. There is a lull on Wednesday
across users. User 3 is the only one not active during the
weekend.

Figure 2: Time-of-day accesses for 3 users aggregated across
sessions. There is a lull in the middle of the day across users.
User 2 is mostly active in the morning while User 1 is active
after dinner.

3.2 Conditional Random Fields

We describe below the derivation of CRFs from basic prob-
abilistic principles and we restrict our discussion to linear-
chain CRFs for the prediction of sequences.

The factorization of Bayesian nets according to condi-
tional independence enables the tractable computation of

Figure 3: Genre frequencies for 3 users (excluding errors)
aggregated across sessions. User 3 is distinguished by the
number of �Event� page accesses.

the joint probability of a collection of random variables P (ȳ)
according to the structure of a graphical model as follows.

P (ȳ) =
∏
i

p(yi|ypi ) (1)

where ypi are the parents of yi. However, it is sometimes
more natural to model a problem according to spatial or
temporal proximity of the nodes rather than their condi-
tional independence. For example, in a lattice-like graphical
structure, the Markov blanket of a node does not obey the
spatial neighborhood properties of the graph as expected
[19]. It is therefore more natural to model such graphs
as undirected graph models where the independence of the
nodes is determined only by the absence of a connecting
edge. It is possible to convert a directed graph to an undi-
rected graph by �moralizing� it (i.e. adding edges between
nodes to indicate implicit dependence). The edges of an
undirected graph cannot be weighted by conditional prob-
abilities anymore but can be evaluated according to the
�a�nity� of the nodes de�ned by a potential function or
factor ϕ(x, y). More generally, a factor ϕ associates a set of
related variables yc to a value R. Those factors are param-
eterized by a weight θc that can be learned from data using
various methods. According to the Hammersley-Cli�ord
theorem, the joint probability of the graph can then be ob-
tained as follows:

P (ȳ|θ̄) =
1

Z(θ)

∏
c

ϕ(yc|θc) (2)

where Z(θ) is the partition function normalizing the prod-
uct of factors in order to obtain a probability distribution.

CRFs leverage from the undirected graph modeling ap-
proach to model the conditional distribution P (ȳ|x̄) of a
set of target variables ȳ and a set of observed variables x̄ to
represent structured data. A factor represents the probabil-
ity of a target variable y as a linear function of the weight
parameters θ and the observed input variables x̄ which are
not necessarily independent. If the observed input variables
are indicator functions, φ(x, y), then P (y|x̄, θ̄) is de�ned as
follows:



P (y|x̄, θ̄) =
exp

∑
j θjφj(x̄, y)∑

y′∈Y Z(x̄, y′)
(3)

where Z(x̄, y′) = exp
∑

j θjφj(x̄, y
′). The weight parame-

ters θ of the factors are learned using discriminative learn-
ing methods for the target variable y (see 3.3). There are
two types of feature functions in representing a sequence
[20]: (1) edge functions between two labels and (2) pair-
wise functions relating x and y. Generally, fj(yt−1, yt, x̄, t)
represents a feature function (Fig. 4). CRFs are usually dis-
tinguished from maximum-entropy approaches [21] by con-
ditioning over the entire observation sequence. Generalizing
to �global� factors over the entire sequence of observations
where Fj(x̄, ȳ) =

∑n
t fj(yt−1, yt, x̄, t) and where t is the po-

sition in the sequence of length n, the probability of the
sequence ȳ is then:

P (ȳ|x̄, θ̄) =
1

Z(x̄, θ̄)
exp(

∑
j

θjFj(x̄, ȳ)) (4)

where Z(x̄, θ̄) =
∑

ȳ∈nPY
exp(

∑
j θjFj(x̄, ȳ)). The normal-

ization constant Z is computationally intractable but does
not need to be computed when predicting the labels in the
sequence given the weights of the feature functions. How-
ever, when comparing di�erent predictions from di�erent
models with possibly di�erent training data, Z needs to be
computed in order to comparatively evaluate the probabil-
ity of a sequence given a model relative to other models. An
algorithm to compute Z in linear-chair CRFs is the all-pairs
shortest path algorithm based on fast matrix multiplication
which is O(m3) where m is the cardinality of the label set
Y [15].

Figure 4: CRFs feature function relating observations and
labels.

In our approach, the Viterbi algorithm [14, 16] guides
the step-by-step predictions to maximize the choice of each
label y in the sequence albeit adding to the computational
complexity of the overall algorithm. P (ȳ|x̄, θ̄) is then de-
�ned as follows:

P (ȳ|x̄, θ̄) =
arg maxt1...tn

∏n
t=1 P (yt|yt−1, x̄t, θ̄)

Z(x̄, θ̄)
(5)

Algorithm 1 describes the Viterbi evaluation of a se-
quence of observations x̄ delimited by START and STOP
tags combined with the probabilistic evaluation of CRFs.

This algorithm is used in the evaluation of two di�erent dis-
criminative feature weight learning methods described be-
low (3.3). The time complexity of this algorithm is O(nm3)
due to the computation of Z. The learned feature function
weights are normalized to have zero mean and unit vari-
ance. In addition, very small weights (< 0.0001) are set
to zero for regularization purposes. Following [15], matrix
Mi(y, y

′|xi) collects the scores for all label transitions (y, y′)
at each step i in the sequence and Z is the START-STOP
entry of the product of these matrices.

Algorithm 1 Viterbi algorithm for CRFs where forward
and backtrack are functions as in the Viterbi algorithm,
get_matrix collects the scores for all label transitions (y, y′)
at step t, get_score evaluates a sequence of nodes by mul-
tiplying the corresponding entries in the matrices M , and
partition_score calculates the normalization constant Z as
the START-STOP entry of the product of the matrices.

input: model, x̄ //model and observation sequence

output: ȳ, P (ȳ|x̄, θ̄) //label sequence and probability

viterbi_crfs (model,x̄)=
//normalize weights

model ← scale_weights (model)
t ← 0
M0(y0, START |x0)← get_matrix (t,model,x̄)
history_m[t]← M0(y0, START |x0)
history_a[t] ← forward (history_m)
while t < length (x̄)
t ←t + 1
Mt(yt, yt−1|xt)← get_matrix (t,model,x̄)
history_m[t] ← Mt(yt, yt−1|xt)
history_a[t] ← forward (history_m)

end
ȳ ← backtrack (history_a, STOP)
score ← get_score (ȳ, history_m)
Z ← partition_score (history_m)
P (ȳ|x̄, θ̄) ← score

Z
return ȳ, P (ȳ|x̄, θ̄)

3.3 Feature Weight Learning

Several discriminative learning methods can be used to learn
the parameters (i.e. the weight of the feature functions).
We provide experimental results for three learning approaches.

Label maximum likelihood (hereafter LMK) is a param-
eter optimization method found in the sequence tagging tool
provided by Mallet [22] which consists of maximizing the
conditional log likelihood of the labels over the entire train-
ing set using limited-memory BFGS optimization. Taking
the default parameters, this optimization runs until conver-
gence up to 500 iterations.

The perceptron algorithm for CRFs [16] (hereafter PC-
TRN/VTRB) is an iterative algorithm for modifying the
weights of the feature functions depending on whether the
label, as predicted by the Viterbi algorithm, was correct
(Alg. 2). In our implementation, this algorithm runs for
100 iterations on misclassi�ed sequences in the training set



or until no misclassi�ed labels can be found. A mini-batch
approach was used where the prediction error was averaged
over 5 examples. The weights of the feature functions are
initialized with random zero-mean values.

Algorithm 2 Feature weight update for PCTRN/VTRB
where y is the label, ŷ is the predicted label by the Viterbi
algorithm, x̄ is the sequence of clicks for one session, edge-
�ns are the edge-observation feature functions and node-�ns
are the node-observations feature functions.
update_weight (model,yt,ŷt,x̄,yt−1,ŷt−1)=
if (yt 6= ŷt)
for edge-�n ∈ model.edge-�ns
edge-�n.weight ←edge-�n.weight

+ edge-�n (x̄,yt,yt−1)
- edge-�n (x̄,ŷt,ŷt−1)

for node-�n ∈ model.node-�ns
node-�n.weight ←node-�n.weight

+ node-�n (x̄,yt,yt−1)
- node-�n (x̄,ŷt,ŷt−1)

endif
return model //updated model

Stochastic gradient (ascent in this case) is also an iter-
ative procedure that often outperforms standard optimiza-
tion algorithms. That algorithm modi�es the weights one
example at a time along the gradient. In our implementa-
tion, the gradient for the weight θj of each feature function j
is calculated as the di�erence between empirical counts and
expected counts with L2 regularization as follows where n
is the length of the sequence:

∇θj =

n∑
t=1

φj(xt, yt)−
n∑

t=1

∑
y′∈Y

φj(xt, y
′)P (y′|xt, θj)− 2λθj

(6)
Our stochastic gradient ascent implementation (hereafter
SG/VTRB) initializes the weights of the feature functions
with random zero-mean values and runs for 100 iterations
on randomly accessed training examples. Here too, the
weights of the feature functions are initialized with ran-
dom zero-mean values. The learning rate 1

t progressively
decays as a function of the iteration number t while λ, the
regularization parameter, stays �xed at 0.09.

3.4 Model Representation

We model Web browsing behavior with a linear-chain CRFs
and a one-to-one mapping between clicks and genres. The
node observations in our model are extracted from click-
stream data as follows: (1) the URL for each click is de-
composed into ngrams delimited by punctuation charac-
ters and overlapping 5 characters; the correlation of ngrams
with genres is evaluated using mutual information and the
500 most-correlated ngrams from the training set are kept
for each user model (Table 1 shows the 5 most-correlated
ngrams found per user in the training set). Previously, [23]
has shown the feasibility of this approach for genre clas-
si�cation. Future work will reduce the cross-correlation of

ngrams within a URL; (2) the time-of-day; and (3) the day-
of-week. The labels (i.e. hidden nodes) in the model are
the genres as provided by a genre classi�er (Di�bot) dur-
ing training in a weakly-supervised manner. Consequently,
the pro�le constructed is also a personalized classi�er of
genres. Pairwise feature functions are generated to relate
each observation (i.e. click) to its corresponding label (i.e.
genre). To avoid exponential complexity in the number of
features, the feature functions are generated strictly from
the training data, including the edge-observation features.
The number of features functions in our user models ranges
from ~700 to ~1000 including a bias feature function. Ex-
amples of the feature functions in our model are as follows:

φj(yi−1, yi) =

 1 if yi = serp and
yi−1 = profile

0 otherwise

φj(yi, xi) =

 1 if url(xi) contains ”googl” and
yi = serp

0 otherwise

φj(yi, xi) =

 1 if dow(xi) = Th and
yi = event

0 otherwise

φj(yi, xi) =

 1 if tod(xi) = 11 and
yi = product

0 otherwise

where xi represents a click in the sequence.
Since it is not always possible to categorize the genre

of a webpage during training (due to connection errors or
page obsolescence), we substituted missing genre values (ap-
proximately 5% of the data) with the stochastic imputation
of genres according to transition probabilities in the user
dataset. Table 2 illustrates the data characteristics in our
empirical study.

Table 1: 5-most-correlated ngrams with genres (using
mutual information) per user in training.

User ngrams
1 navy, nrl, mil, googl, oogle
2 googl, oogle, ecamp, secam, aseca
3 q, nrl, navy, duckd, duckg
4 mil, navy, aq, 8, utf
5 mil, navy, q, nrl, sear
6 azett, zette, gazet, mca, marin
7 �le, hrome, chrom, url, j
8 app, webhp, earch, searc, ource
9 mail, u, inbox, calen, alend
10 nrl, mil, navy, aq, zilla
11 earch, ource, sourc, searc, 8
12 mil, navy, eline, pelin, nrl
13 navy, nrl, mil, google, oogle
14 mail, ca, u, inbox, ender



Table 2: User dataset characteristics where the number of
feature functions were extracted from the training sets of
one run.

User #clicks #sessions #sessions #feature

≥5 clicks functions

1 1817 99 61 738

2 2244 121 93 624

3 1899 81 58 737

4 6158 182 148 917

5 6231 206 161 833

6 1299 40 32 641

7 1864 60 36 703

8 992 46 36 653

9 6210 125 99 756

10 2514 129 95 729

11 5716 134 106 824

12 11561 95 83 566

13 7363 81 66 648

14 3577 100 73 635

4 Empirical Study

Can you authenticate that user in 5 clicks? Our experimen-
tal hypothesis is that the accuracy of temporal user pro�les
of Web browsing behavior learned from clickstream data
with CRFs is competitive with bag-of-words (BoW) user
models. While the aggregation of data found in BoW mod-
els reduces noise, temporal user pro�les are prone to over-
�tting over long sequences of clicks. Consequently, learning
over the �rst 5 clicks might better evaluate our hypothesis.
Toward that end, we conducted the following experiments
using the data obtained from our user study. The user
datasets are partitioned equally into a training and test set
preserving temporal order and the �rst 5 clicks of each ses-
sion are kept. We compare the performance of di�erent al-
gorithms for learning the weights of the feature functions in
linear-chain CRFs with identical feature functions using the
false rejection rate (FRR) and false acceptance rate (FAR)
metrics of authentication. A lower rate for both of these
metrics indicates a higher accuracy. The FRR is calculated
by applying the user model learned from the training set
to the user's own test set. A complete model is obtained
by additional learning from the test set. The FAR is calcu-
lated by applying the complete model to the test set of all
the other users combined. A threshold determined by the
equal error rate (EER) (i.e. the threshold minimizing the
di�erence between FRR and FAR) indicates whether a user
was authenticated.

We compare the results with the BoW approach of one-
class SVM (OCSVM) using the genre frequencies and the
genre bigrams frequencies contained in the �rst 5 clicks,
the day-of-week, and the time-of-day as features where the
genre has been determined by the Di�bot genre classi�er.
We used the OCSVM available with LibSVM [24]. Similarly
to the temporal models, the FRR is calculated by applying
the user model learned from the training set to the test
set and the FAR is calculated by applying a complete user

model to the test set of all the other users combined. Un-
like temporal CRFs models, the FRR is determined by the
unclassi�ed instances on the user test set and the FAR is
determined by the classi�ed instances on the test set of all
the other users combined.

Figure 5: Comparative evaluation (each point represents
the EER of one run for one user determined by a threshold
minimizing the di�erence between the FRR and FAR)

Figure 6: Comparative evaluation (each point represents
the EER of one run for one user determined by a threshold
minimizing the di�erence between the FRR and FAR)

Table 3 shows the FRR and FAR results for each user
averaged over 10 runs. Figure 5 illustrates the same re-
sults in a graphical representation where each point de-
notes the FRR and FAR results of one run for one user.
Since FRR and FAR results are related, we consider only
the FRR results in our signi�cance tests. While authen-
tication outcomes vary widely across users in the case of
LMK, all the CRFs algorithms perform signi�cantly bet-
ter than the BoW approach in OCSVM (two-sided t-test
p-value < 0.0001). SG/VTRB performs signi�cantly better
than LMK and PCTRN/VTRB (two-sided and one-sided
t-test p-value < 0.0001). There is no signi�cant di�er-
ence between LMK and PCTRN/VTRB (two-sided t-test
p-value 0.09). Experimental results with a hidden Markov
model (HMM/VTRB) using combinations of day-of-week



Table 3: Results per user obtained from the di�erent CRFs weight update algorithms and OCSVM. �Best� results per user
(min max(FRR,FAR)) are highlighted.

User OCSVM LMK SG/VTRB PCTRN/VTRB

FRR(%) FAR(%) FRR(%) FAR(%) FRR(%) FAR(%) FRR(%) FAR(%)

1 0.42±0.00 0.61±0.00 0.71±0.09 0.27±0.24 0.21±0.03 0.22±0.03 0.34±0.07 0.34±0.06

2 0.79±0.00 0.16±0.00 0.00±0.00 0.24±0.00 0.13±0.05 0.13±0.06 0.15±0.01 0.15±0.01

3 0.65±0.00 0.19±0.00 0.01±0.04 0.21±0.02 0.35±0.06 0.35±0.06 0.44±0.03 0.44±0.03

4 0.24±0.00 0.75±0.00 0.84±0.00 0.25±0.01 0.25±0.04 0.24±0.04 0.33±0.03 0.32±0.03

5 0.45±0.00 0.50±0.00 0.01±0.01 0.15±0.03 0.29±0.13 0.25±0.04 0.25±0.03 0.25±0.03

6 0.43±0.00 0.23±0.00 0.00±0.00 0.22±0.03 0.29±0.17 0.29±0.12 0.43±0.04 0.43±0.04

7 0.35±0.00 0.48±0.00 0.47±0.25 0.65±0.39 0.30±0.08 0.29±0.06 0.39±0.03 0.39±0.03

8 0.35±0.00 0.38±0.00 0.78±0.00 0.19±0.01 0.26±0.09 0.30±0.09 0.33±0.05 0.33±0.06

9 0.33±0.00 0.24±0.00 0.50±0.37 0.22±0.02 0.22±0.05 0.25±0.09 0.26±0.03 0.26±0.03

10 0.44±0.00 0.35±0.00 0.87±0.00 0.23±0.01 0.22±0.07 0.22±0.05 0.30±0.02 0.30±0.02

11 0.35±0.00 0.63±0.00 0.00±0.00 0.19±0.01 0.31±0.05 0.22±0.07 0.27±0.03 0.27±0.03

12 0.61±0.00 0.13±0.00 0.23±0.42 0.24±0.03 0.31±0.05 0.31±0.05 0.25±0.03 0.25±0.02

13 0.73±0.00 0.28±0.00 0.00±0.00 0.14±0.04 0.26±0.09 0.31±0.05 0.31±0.02 0.43±0.02

14 0.54±0.00 0.22±0.00 0.74±0.00 0.23±0.00 0.18±0.09 0.18±0.03 0.24±0.07 0.31±0.02

Avg. 0.47±0.16 0.37±0.19 0.37±0.39 0.24±0.16 0.26±0.09 0.26±0.09 0.32±0.02 0.32±0.08

Table 4: Results per user obtained from the di�erent CRFs weight update algorithms and OCSVM. �Best� results per user
(min max(FRR,FAR)) are highlighted.

User OCSVM LMK SG/VTRB PCTRN/VTRB

FRR(%) FAR(%) FRR(%) FAR(%) FRR(%) FAR(%) FRR(%) FAR(%)

1 0.53±0.00 0.23±0.00 0.71±0.09 0.27±0.24 0.11±0.02 0.11±0.02 0.34±0.07 0.34±0.06

2 0.75±0.00 0.03±0.00 0.00±0.00 0.24±0.00 0.05±0.02 0.05±0.01 0.15±0.01 0.15±0.01

3 0.55±0.00 0.28±0.00 0.01±0.04 0.21±0.02 0.27±0.03 0.26 ±0.03 0.44±0.03 0.44±0.03

4 0.60±0.00 0.35±0.00 0.84±0.00 0.25±0.01 0.15±0.04 0.15±0.04 0.33±0.03 0.32±0.03

5 0.73±0.00 0.33±0.00 0.01±0.01 0.15±0.03 0.21±0.03 0.21±0.02 0.25±0.03 0.25±0.03

6 0.80±0.00 0.10±0.00 0.00±0.00 0.22±0.03 0.25±0.09 0.26±0.08 0.43±0.04 0.43±0.04

7 0.72±0.00 0.16±0.00 0.47±0.25 0.65±0.39 0.20±0.04 0.19±0.04 0.39±0.03 0.39±0.03

8 0.63±0.00 0.23±0.00 0.78±0.00 0.19±0.01 0.17±0.05 0.17±0.05 0.33±0.05 0.33±0.06

9 0.37±0.00 0.11±0.00 0.50±0.37 0.22±0.02 0.20±0.02 0.20±0.02 0.26±0.03 0.26±0.03

10 0.55±0.00 0.15±0.00 0.87±0.00 0.23±0.01 0.16±0.03 0.16±0.03 0.30±0.02 0.30±0.02

11 0.56±0.00 0.39±0.00 0.00±0.00 0.19±0.01 0.13±0.04 0.13±0.04 0.27±0.03 0.27±0.03

12 0.44±0.00 0.13±0.00 0.23±0.42 0.24±0.03 0.15±0.03 0.14±0.03 0.25±0.03 0.25±0.02

13 0.80±0.00 0.15±0.00 0.00±0.00 0.14±0.04 0.23±0.07 0.24±0.07 0.31±0.02 0.43±0.02

14 0.82±0.00 0.05±0.00 0.74±0.00 0.23±0.00 0.11±0.02 0.11 ±0.02 0.24±0.07 0.31±0.02

Avg. 0.63±0.14 0.32±0.45 0.37±0.39 0.24±0.16 0.17±0.07 0.17±0.07 0.32±0.02 0.32±0.08



Figure 7: Average label accuracy comparison

and time-of-day as observations and genres as states did
not yield meaningful results in the authentication task.

The average label accuracies obtained from the di�erent
CRFs algorithms are illustrated in Fig. 7. We also compare
the results with HMM/VTRB. Unlike structured prediction
methods, OCSVM does not predict the sequence itself so no
label accuracies can be provided by this method. There is a
signi�cant di�erence between the label accuracies provided
by SG/VTRB and PCTRN/VTRB versus LMK (two-sided
t-test p-value < 0.0001). The strong bias of LMK results in
predicting the most common labels (genres) thereby reduc-
ing the overall label accuracy of this method. There is no
signi�cant di�erence between the label accuracies of LMK
and HMM/VTRB. PCTRN/VTRB performs signi�cantly
better than SG/VTRB (two-sided and one-sided t-test p-
value < 0.0001) which is not surprising since it directly
trains from the prediction error rather than bootstrap from
the expected counts (Eq. 6).

5 Conclusion

This paper has shown that temporal order matters when
learning short user pro�les of Web browsing behavior. In
this case, we have shown that the accuracy of temporal
CRFs models based on clickstream data only is compet-
itive with BoW learning methods such as OCSVM using
high-level features (i.e. genres). Consequently, methods
discovering duplicate or similar users will gain by includ-
ing temporal information as context. We have also shown
that CRFs, using the Viterbi algorithm, have high label
accuracy useful for activity recognition. Future work will
investigate how to evaluate longer sequences of data with
sliding windows. CRFs o�ers a �exible way of modeling
temporal user pro�les and future work in the personaliza-
tion of Web browsing will include automatic tuning of pa-
rameters and �nding discriminating feature functions. We
will also examine the contribution of relational features (i.e.
inter-node observations such as pauses, revisits, etc.) in the
performance accuracy of the learned temporal models.
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