

Agent-Mediated Interface Between Command Control Communications
Computer and Intelligence (C4I) Systems and Simulation

Ranjeev Mittu

Naval Research Laboratory
4555 Overlook Avenue
Washington, DC 20375

(202) 404-8716
Fax: (202) 767-1122

mittu@ait.nrl.navy.mil

Zach Furness
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102

(703) 883-6614
Fax: (703) 883-1370
zfurness@mitre.org

Ray Emami

GlobalInfoTek, Inc.
1920 Association Drive,

Reston, VA 20191
(703) 652-1600

Fax: (703) 652-1697
gemami@globalinfotek.com

Keywords: Agents, Multi-Agent Systems, Software Agents, Simulation, C4I

ABSTRACT: The ability to interface C4I systems with simulations represents a powerful approach for analyzing
complex military plans, and generating appropriate courses of action. The simulations provide a context of the real
world, in which the plan can be exercised, “what-if’s” can be performed, and intelligent courses of action can be
generated. To build more “intelligence” in our ability to generate courses of action, we must be able to decompose
plans from C4I systems, so that critical events and actions/consequence relationships can be understood. Through
this understanding, we can begin to intelligently monitor how the execution of the plan may be deviating from the
original simulated plan. This paper will describe technology development allowing High Level Architecture (HLA)
Run Time Infrastructure (RTI)-based simulations to interact with grid-aware software agents, allowing those agents
to intelligently decompose planning information from systems such the Global Command and Control System-
Maritime, or GCCS-M (HLA-enabled) and monitor critical events associated with those plans within simulations.
This will lead to a better understanding of the important cause-effect relationships in plans and consequently a more
effective generation of courses of action.

1. Introduction

Agent-aided information retrieval and decision
support has attracted the attention of the agent
research community for several years. The concept of
large ensembles of semi-autonomous, intelligent
agents working together is emerging as an important
model for building the next generation of
sophisticated software applications. This model is
especially appropriate for effectively exploiting the
increasing availability of diverse, heterogeneous, and
distributed on-line information sources, and as a
framework for building large, complex, and robust
distributed information processing systems. The

development of enabling infrastructure for mobile
computing and interoperability among programs
residing at distant sites, and new generations of
distributed operating systems has made the
construction of systems based on this model much
easier. Software agents represent a new paradigm in
distributed computing. The notion of software
entities able to work autonomously, or in cooperation
with each other, to perform tasks represents a
powerful concept. Software agents have been
deployed in many domains, ranging from the
commercial, academic to the military domains.

mailto:mittu@ait.nrl.navy.mil
mailto:zfurness@mitre.org
mailto:gemami@globalinfotek.com

Over the past several years, the Defense Advanced
Research Projects Agency (DARPA) has sponsored
the development of the Control of Agent-Based
Systems (CoABS) Grid [1]. The Grid is a
middleware that enables the integration of
heterogeneous agent-based systems, object-based
applications and legacy systems. The CoABS grid
was integrated with Critical Mission Data over Run-
Time Infrastructure (RTI) (CMDR) system to allow
dynamic discovery, integration and sharing of HLA
compliant simulation objects with legacy C4I
systems and grid-aware software agents. The
development of the CMDR has paralleled, in an
analogous fashion, the C4I-to-Simulation program
sponsored by Defense Modeling and Simulation
Organization (DMSO) that has featured the use of the
High Level Architecture (HLA) RTI to pass data
between systems such as the Global Command and
Control System (GCCS) and the Integrated Theater
Engagement Model (ITEM) [2]. The bridging of
technology between the CoABS grid and the HLA
using CMDR provides a wonderful opportunity to
leverage the power of agent technology with the
ability to tap into multiple C4I sources and
simulation systems at the same time, and could lead
to profound benefits in plan-understanding and
execution monitoring using software agents. This
paper will describe these “enabling” technologies, as
well as their application for extracting C4I plan data,
in order for agents to decompose and monitor that
data within simulation.

This paper will begin with a description of the
technology developments within the DARPA CoABS
program, allowing agents to seamlessly interoperate
with each other and exchange data in order to
accomplish the goals of their users. Next, we will
describe the developments within the C4I-to-
Simulation interoperability program, specifically, the
enabling technology that permits C4I systems and
simulations to exchange data via the HLA RTI. We
will then describe the CMDR application, allowing
C4I/simulation data to be dynamically discovered
and forwarded to CoABS grid agents in order for
them to decompose plans and monitor crucial events
within the simulations. We will conclude with a
description of the planned integrated demonstration
in the upcoming year, which will showcase the power
of the CoABS Grid, CMDR and software agents for
decomposing C4I plan data and intelligently
monitoring the simulated execution of those plans.

2. The DARPA CoABS Program

The Control of Agent-Based Systems (CoABS) was a
DARPA program, to develop and demonstrate

techniques to safely control, coordinate, and manage
large systems of autonomous software agents.
CoABS was investigating the use of agent technology
to improve military command, control,
communication, and intelligence gathering. The
military environment is dynamic, with quickly
changing operations, moving hardware and software
that are continually connecting and disconnecting,
and bursty bandwidth availability. Inflexible stove-
piped legacy systems that were never meant to be
integrated are, nevertheless, of vital importance to
military planning and operations. Multiple hardware
and software platforms as well as data interfaces and
standards further complicate the picture. In addition,
military personnel are overwhelmed by the increased
data availability from the modern battlefield and
suffer from information overload with no adequate
tools to filter and correlate the data. A goal of
CoABS was to enhance the dynamic connection and
operation of military planning, command, execution,
and combat support systems to quickly respond to the
changing operational picture. Software agents were
developed to work side-by-side with human military
planners and operators to ease the burden of their
daily tasks.

The CoABS Grid (hereafter referred to simply as the
“Grid”), developed at Global InfoTek, Inc (GITI)
under the DARPA’s CoABS program, arguably
provides the most successful and widely used
infrastructure to date for the large-scale integration of
heterogeneous agent frameworks with object-based
applications, and legacy systems. Based on Sun’s Jini
services, it includes a method-based application-
programming interface to register and advertise
capabilities, discover services based on those
capabilities, and provides the necessary
communication between services. Systems and
components on the Grid can be added and upgraded
without reconfiguration of the network. Failed or
unavailable components are automatically purged
from the registry and discovery of similar services
and functionality is pursued.

The Grid supports a wide variety of applications,
from simple monitoring and information retrieval to
complex, dynamic domains such as military
command and control. Using the Grid, agents and
wrapped legacy systems can (1) describe their needs,
capabilities and interfaces to other agents and legacy
systems; (2) find and work with other agent
components and legacy systems to accomplish
complex tasks in flexible teams; (3) interact with
humans and other agents to accept tasking and
present results, and (4) adapt to changes in the
application domain, the task at hand, or the

computing environment. The Grid does this by
providing access to shared policies and ontologies
(mechanisms for describing agents’ capabilities and
needs), and services that support interoperability
among agents and legacy systems with simple or rich
levels of semantics—all distributed across a network
infrastructure.

Although most agent frameworks provide some of
the interoperability and other services that the Grid
provides, each framework typically supports
specialized constructs, communication, and control
mechanisms. This specialization is desirable because
particular systems can use mechanisms appropriate to
the problem domain/task to be solved. The Grid is
not intended to replace current agent frameworks but
rather to augment their capabilities with services
supporting trans-architecture teams.

The Grid provides both local and distributed
components, as shown in Figure 1. The Grid provides
helper utility classes that are local to an agent and

hide the complexity of Jini. These classes
automatically find any Look-up Services (LUS) in
both the local area network and user-designated
distant machines. The Grid supports agent and
service discovery based on Jini entries and arbitrary
predicates as well as by service type. The Grid also
provides event notification when agents register,
deregister, or change their advertised attributes.

In the next section, we describe the developments
within the C4I Simulation Interoperability Program.

3. C4I-Simulation Interface via HLA RTI

Work involving various instances of HLA-based C4I-
Simulation applications has been detailed in many
other papers. In 1998, DMSO sponsored an effort to
utilize the HLA for passing data from the Joint
Theater Level Simulation (JTLS) into the Global

Command and Control System (GCCS) [3]. This
application led to the development of a similar
capability in which the Naval Simulation System
(NSS) could stimulate GCCS, also using the HLA
RTI [4]. While these applications successfully
demonstrated the ability of the RTI to be used to pass
information between simulations and C4I systems in
much the same way that it was designed to be used
between simulations, this capability was never used
as part of an operational exercise.

The demonstrated utility of stimulating GCCS from
JTLS and NSS using the RTI led to further
applications involving the Army's Eagle simulation.
In recent years, the TRADOC Analysis Center
(TRAC) has sponsored development of an effort to
use the RTI to pass information between Eagle and
many of its C2 systems including All Source
Analysis System (ASAS), Maneuver Control System
(MCS), and Combat Service Support Control System
(CSSCS). Details of this implementation can be
found in [5].

During 2001, the GCCS-NSS capability was revived,
as part of an effort to perform rapid initialization of
NSS during the Global 01 exercise. Previous uses of
NSS as a COAA tool in Global 00 were limited
because of the need to manually input data, read off
of C4I devices such as GCCS. The initialization
scheme required modifications to both the GCCS RTI
Interface (known as the "GCCS Ambassador”) and
the NSS RTI interface to allow data flow from GCCS
to NSS. Details of this implementation are
documented in [6]

During 2002, the GCCS-NSS initialization scheme
was extended for use with the Integrated Theater
Engagement Model (ITEM), an analysis application
used primarily by US Pacific Command (PACOM)
and United States Forces Korea (USFK). A similar
scheme for initialization was developed, which relies
upon data present in the GCCS Track Database
Manager (TDBM) to be sent via the RTI to ITEM so
that the initial state of the simulation is synchronized
with GCCS as the starting point for running an
analysis. This capability was successfully
demonstrated in Reception Staging and Onward
Integration (RSOI) 02 and Ulchi Focus Lens (UFL)
02, and will be further used during FY03 by Korea
Battle Simulation Center (KBSC). Details of the
implementation can be found in [7]

During 2003, DMSO is further extending the work
done with NSS and ITEM to the Joint Warfare
System (JWARS). An initial capability that will
synchronize data from the GCCS Common
Operational Picture (COP) with the current JWARS

Figure 1: Grid Architecture

scenario is planned to be completed by the end of
2003. This capability will help to address one of the
major JWARS requirements to promote its use in
Combatant Commands for in-theater analysis.

Throughout the pursuit of these efforts, a Modeling
and Simulation (M&S) Technical Working Group
(TWG) under the Defense Information Infrastructure
Common Operating Environment (DII COE) has
been working to implement the HLA RTI as a
"segment" within the COE. This would allow the
RTI to become part of the COE and run as a process
on any command and control system that utilizes the
COE. The advantage of this is that it would allow
simulation applications and C4I applications to
exchange data much more rapidly and efficiently,
while staying within a configuration managed
process (the COE) that most C4I systems utilize.
Unfortunately, the history of most C4I-simulation
interfaces used for training exercises is that they are
implemented outside of the COE process and act as
separate stand-alone processes that do not
interoperate and replicate functionality. A summary
of the work done to implement COE M&S segments,
including the RTI can be found in [8].

In the following section, we will describe the
capabilities of CMDR, and set the stage to describe
the components of CMDR that will be used to act as
the bridge between the C4I/Simulation worlds as well
as with the software agent world in the planned
integrated demonstration (section 5).

4. Current Mission Data via the RTI
(CMDR)

The CMDR is a tool for developing HLA compliant
applications that significantly reduces development
time. CMDR has been designed and developed by
GITI and is currently being used in support of a
number of DARPA and DMSO sponsored initiatives.
The software is a Java library designed to enable
developers to quickly federate with HLA compliant
simulation systems. CMDR provides a general
framework for interacting with the RTI. Reusability
of applications with new federations is enhanced
when the applications are built using CMDR due to
an independence from low-level RTI structures and
data formats.

4.1 CMDR Architecture

The architecture of CMDR allows developers to
rapidly develop core HLA compliant applications.
The software acts as middleware between the
application code and the RTI. This allows the

middleware functionality to be implemented once,
and can then be reused by each application through
library calls. The RTI libraries and the API’s
provided in the HLA specification are the under-
pinning of the CMDR software. Some of an
application's primary responsibilities that are
implemented in CMDR are:

• Maintaining a database or internal
representation of remotely simulated objects
and their current states. The RTI does not
maintain a database of objects that can be
queried for current attribute values by an
application. It is simply the communications
mechanism through which messages describing
object creations, removals and attribute updates
are exchanged among federates. By having this
function in CMDR, an application can just query
its CMDR to obtain the current state of each
remote object, ignoring the details of which
attributes have been updated when.

• Managing the transmission of attribute
updates for locally simulated objects. The RTI
does not keep track of the current state of the
locally simulated objects either, so it can know
when attribute values are out of date and thus
need to be communicated to other federates.

• Converting between raw data formats and
actual objects. The RTI transmits object
attributes and interactions parameters as arrays
of raw data. An important feature of CMDR is
the ability to automatically translate raw data
into objects and back again for many data types.
This greatly reduces the amount of work
necessary for examining and using the data in an
application.

CMDR maintains a representation of the remote
objects, adding new objects in response to the
discoverObjectInstance RTI service,
removing them in response to the
removeObjectInstance RTI service, and
updating components of their current state in
response to attribute updates delivered by the
reflectAttributeValues RTI service
(attribute updates typically contain values for only a
subset of an object's attributes, rather than its entire
state.) Sometimes attributes are updated to their
same value, for instance the heartbeat that indicates
an object still exists appears as a complete update of
the attributes. One of CMDR’s features to improve
an application’s performance is the option to filter
out updates that do not actually change the value.
This can reduce unnecessary updates to the screen or
other data models.

4.2 Agile FOM

A major issue in the development of an HLA
compliant simulation is the ability of a single federate
to participate in multiple federations using different
Federation Object Models (FOM). Current efforts to
mitigate these problems through the use of standard
names and formats, while important and necessary,
do not solve the problem since the ability to use
different representations is a powerful feature of the
HLA. Object model independence was an important
consideration when developing CMDR and was the
reason an internal and flexible information model
was chosen. Applications built with CMDR can be
quickly adapted for new federations since CMDR
uses the FOM to automatically learn about the data
types available and how to convert them into objects.
The framework implements the agile-FOM concept
by allowing the application to work with new FOMs
simply by accessing those attributes that are relevant
at the time. If desired, the objects and interactions
found in the FOM are mapped to the applications
internal object model using custom converters
specified by the application.

Converters can be implemented to properly decode or
encode objects moving between the internal object
model and the FOM representation. When the
CMDR receives an incoming attribute update, it
determines the proper converter to use for decoding
and converting the update. In many cases, this
conversion can happen automatically based on
information in the FOM. The same process occurs in
reverse for outgoing updates. This allows a range of
tasks, from the simple to complex, to be
accomplished. For example, unit conversions
between the FOM and the applications internal
representation can be implemented. The ability of
CMDR to use new FOMs with minimal impact
allows the applications to be much more flexible and
brings about additional reuse of tools between
federations.

4.3 Composable Service Aware C4I Application

A C4I application has the ability to discover running
agents, services, and wrapped legacy systems that are
available on the network. This ability, combined
with a plug-in architecture allow for vast power as
the application can incorporate new capabilities by
discovering and downloading remotely provided
plug-ins. It puts the power of networked agents and
services at the disposal of the users. As new agents
or services are provided on the network, the
application can instantly benefit from the new
capability without having to wait for a new software

rollout. During the course of an operation, if new
tools are released or updates are made, the user’s
application discovers the available updates.

4.3.1 Plug-in Architecture

The most powerful feature of the end-user application
is the architecture’s ability to use software plug-ins to
extend its basic capability. The architecture is
designed for flexibility and reusability. The plug-ins
can be provided from the local computer system or
can be downloaded off the network and incorporated
into the application. By using Java’s introspection
and reflection, the downloaded plug-in will be
interrogated to determine the provided capabilities. It
might be determined, for example, that the plug-in
provides additional toolbar features. The plug-in
architecture will add the newly discovered features to
the user’s C4I application toolbar.

The C4I application is not designed for use with any
specific models or even for use with the HLA but
through the use of a plug-in called CMDR, the
architecture will incorporate the ability to become an
HLA federate. The loading process is shown in
Figure 2; (1) The application will query the Grid
registry to locate available services. The user will
see a list of the available network agents and
services. (2) The user can then query the registered
simulations systems to learn more about the service.
In the case of a simulation model being advertised,
the user might choose to investigate the purpose and
assumptions of the advertised model. (3) The users
application can then locate and download the
necessary plug-ins to interoperate with models and
simulation systems. As shown in Figure 2, a plug-in
that allows the C4I application to become HLA
compliant (CMDR) will be downloaded as well as a
plug-in that provides additional graphical displays to
view the model output.

Figure 2: CMDR Plug-in Loading Process

4.3.2 Model Initialization and Tasking

A key feature of the C4I application is the capability
to have the model and simulation systems initialized
from remote systems and to accept tasks remotely.
With these features, a remote user can initialize the
model with data from a real world command and
control system. This will provide the user with a
model that more closely matches the factors in their
situation. Tasking requests can also be made to the
model to allow remote users to perform course of
action analysis (COAA) and ‘what-if’ scenarios. All
of this allows for the configuration of the underlying
statistical model to test or stress the trainees decision-
making process.

As a COAA tool, the model can be initialized with
information from real world data. The model can
then, for example, represent the population trends the
logistician has been seeing over the past week.
Information regarding the frequency of re-supplies
can also be provided. The model would then be
capable of providing feedback to the user on the
projected resource situation.

4.3.3 Model Registration

A key function of the system is the ability to
dynamically discover agents and services that are
available on the network. To accomplish this, the
simulation system needs to ‘advertise’ itself on the
network as an available service. This advertisement
will allow other agents, services, legacy systems, or
applications to search for the model’s offered
capabilities. The advertisement consists of a
description of the models capabilities, the elements of
the simulation object model (SOM), and other
relevant meta-data to be registered. A software plug-
in is made available for download to agents,
applications, or other services, which allows them to
connect and interact with the model. This plug-in
will allow client applications to federate with the
model.

In the first step, the meta-data describing the model
will be created, as shown in Figure 3. Some of this
information will come directly from the software
model and some from the user who is making the
model available as a service. Information regarding
the usage of the model, users allowed access to the
model, the SOM, and other data may be provided in
the meta-data advertisement. In the second step, this
information is registered onto the Grid. Once in the
Grid registry other services, agents, or legacy systems
can dynamically discover the resource and search the
meta-data to determine its appropriateness. Lastly,

software plug-ins are provided for potential users of
the system. The system will register, for potential
users, two plug-ins. The first plug-in will provide
HLA interoperability and the second will provide
expanded graphical tools for C4I applications. All of
this provides an advertisement for the model that
allows agents and other applications to search,
discover, and use the service.

In the next section, we describe the integration of the
RTI, CMDR and Grid to showcase the power of
software agents for plan decomposition and
execution monitoring.

5. Planned Integration between HLA
RTI, CMDR and Grid

The planned demonstration will involve integration
between the GCCS Ambassador, CMDR and the
CoABS grid, in order to showcase the power of
software agents for decomposing military plans, and
monitoring those plans in simulation. The
architecture is shown in Figure 4.

The GCCS Ambassador will publish the tracks
maintained in the TDBM to the RTI (using the Naval
Training MetaFOM, or NTMF [9]); once published,
the ITEM simulation will use the RTI subscription
mechanism to obtain those tracks. In other words,
GCCS will initialize the ITEM simulation with tracks

Figure 3: Model Registration Process

OPLAN
OPTASKS

ATO/ROE/OOB

N
T
M
F

Runtime
Infrastructure

(RTI)

Federation
Management

Declaration
Management

Object
Management

Ownership
Management

Logical
Time

Management

Data
Distribution
Management

HLA
GCCS

ITEM

GCCS Plan
Understanding

Agents
(JESS)

Plan
Monitoring
Agents for
GCCS/ITEM

Generation of
OPLAN,

OPTASKS, ATO,
ROE, Orders of

Battle

Simulation of
OPLAN &

OPTASKS/ATO/
ROE/OOB

Simulation “Discovery”
Captures FOM updates

for Agents

OPLAN
OPTASKS

ATO/ROE/OOB

CMDR

OPLAN
OPTASKS

ATO/ROE/OOB

N
T
M
F

Runtime
Infrastructure

(RTI)

Federation
Management

Declaration
Management

Object
Management

Ownership
Management

Logical
Time

Management

Data
Distribution
Management

HLA
GCCS

ITEM

GCCS Plan
Understanding

Agents
(JESS)

Plan
Monitoring
Agents for
GCCS/ITEM

Generation of
OPLAN,

OPTASKS, ATO,
ROE, Orders of

Battle

Simulation of
OPLAN &

OPTASKS/ATO/
ROE/OOB

Simulation “Discovery”
Captures FOM updates

for Agents

OPLAN
OPTASKS

ATO/ROE/OOB

CMDRCMDR

Figure 4: Integrated Demonstration Architecture

from its database. The tracks and associated updates
will be passed from CMDR to the CoABS Grid.

Plan-understanding agents registered on the Grid will
be capable of decomposing external planning
information, for example, from Operational Tasking
(OPTASK) messages, or Air Tasking Orders
(ATO’s) and forming relationships between events
both spatially and temporally, as well as linking those
relationships with the track information from the
RTI. Having formed these relationships and
communicating these to the monitoring agents, the
latter will begin to monitor both ITEM (which
represents how entities should be moving and
interacting) with GCCS (representing how entities
are actually moving and interacting based on a re-
play of a scenario) in order to take note of the
differences that are occurring with regard to critical
movements and relationships. In other words, the
agents will monitor only those events and
relationships that are deemed of critical importance
with regard to some measurement criteria. By
measuring deviations in those critical events such as
rendezvous points, temporal delays in events that
may impact future events, (and not every deviation
occurring in the simulation, since a local deviation
does not necessarily imply that a mission will not
succeed), the user will be better able to comprehend
the simulation. This will allow the user to perform
better courses of action since now that user has a
better understanding of the relationships between key
events, and the agents can perform notification based
on those dependencies as the courses of action are
performed particularly when the constraints imposed
by those dependencies are violated. In a large and
complex scenario, visual detection of such
dependencies will be difficult, and automation
through software agents will be valuable.

5.1 Multi-Agent System (MAS) Infrastructure

This integration of the components contained within
this demonstration architecture will require, among
other things, additional research with regard to the
development of the software agent infrastructure.
One of the key areas of investigation will be in the
area of agent ontology. An ontology is used to
describe the objects or entities, their relationships
with each other and other objects, their attributes, etc
so that agents have an understanding of their world
and are able to reason intelligently about their world.
An ontology is also important when you consider the
ability to reason about relationships in events,
particularly when those events are related spatially
and temporally. With regard to temporality, for
example, and agent must be able to understand the

concepts associated with time such as time instants,
time intervals and durations, etc. The relationships
associated with time may be represented in an
ontology that defines these concepts. With regard to
events that are spatially represented, the ontology
will define what those events are and where they
occur. An agent needs to understand an event
ontology to be able to reason about events,
particularly if there is a need to reason about things
such as two or more events occurring in close
proximity (like aircraft refueling point). The reason
an agent needs to understand both a temporal and
spatial ontology is that, using the example of aircraft
refueling point, it must be able to reason about this
refueling not only occurring at some point in space,
but also at some specified time and for some
duration. The DARPA Agent Markup Language
(DAML) [10] is a candidate technology that may
serve the purpose of building the needed ontological
references for the software agents. The DAML
language is an extension of the eXtensible Markup
Language (XML) [11] and the Resource Description
Framework (RDF) [11]. There are several efforts
ongoing within the DAML community that may be
leveraged, for example, the time ontology effort.
Other possible candidates include XML schema and
RDF schema.

There are several advantages to utilizing software
agents (vice a federate that performs the plan
decomposition and monitoring functions) in this
architecture. One of the biggest advantages lies in
the ability of software agents to understand an
ontological description (or inter-related ontological
descriptions) in order to reason about their world.
One may argue that a federate could perform the
same functions, as one might claim that a FOM also
loosely resembles an ontology. However, the field of
Artificial Intelligence, from which software agents
have emerged, provides a richer set of technologies
for software agents. For example, research in this
field is examining ontology negotiation techniques to
allow software agents to negotiate between the
meanings of their respective ontology, thereby
permitting agents to “on-the-fly” understand and
reason about these new concepts based on how it
relates to their own internal knowledge. In our
example of aircraft refueling, perhaps additional
agents with a similar ontology to our event ontology
could be discovered on the agent grid to provide
additional critical information about the refueling
event as well that may not have been a part of the
original event ontology. In comparison, the HLA
does not permit a new federate to join a federation
unless it uses a pre-specified FOM (i.e., a federate
that may provide useful information, but uses a

different FOM, would not be able to communicate
and exchange meaningful data with the federation
unless it used the same FOM as the federation it is
joining or is bridged through a third federate). Even
the use of converters, as discussed previously in the
paper, relies on a-priori development and
implementation as opposed to a more dynamic
approach to understanding an ontological description
at run-time (although agents capable of negotiating to
understand the ontological descriptions of plug-in’s
may provide a solution). Research in ontology
negotiation techniques is still in the early stages, but
there are promising approaches [12]

The second advantage is in the ability of agent’s to
understand multiple, unique ontological descriptions.
This approach provides a more flexible distributed
computing environment. In comparison, if one were
to encode all of the knowledge in a FOM, then, very
quickly, the FOM could become large and difficult to
use and eventually maintain. Having agents
understand multiple ontological descriptions and
negotiate (as was just previously discussed) on those
terms that are unfamiliar, can provide a much robust
distributed computing solution.

The third primary benefit of the use of software
agents comes from research being done in field of
agent teamwork theory and models. There has been
significant research in this area examining how teams
of agents cooperate with each other to form beliefs
about the world, and how and when they take action
in order to reach a team goal. One could imagine
within this architecture how teams of agents with
varying capabilities are able to decompose various
aspects of the plans, monitor those plans, and perhaps
even aid in repairing the plans based on the outcome
of the simulated results. These teams of agents may
converse with other teams of agents (or even teams of
users) with differing ontological knowledge and
negotiate meanings of information in reaching their
goals in the process of performing courses of action
analysis. As with ontology negotiation techniques,
there are many research topics to be addressed in
making this a reality, but the basic research is being
conducted in this area and is being pushed to solve
practical problems.

6. Conclusion and Future Direction

This paper has presented research that is being
conducted in order to bring together HLA-compliant
simulations with multi-agents systems. We have
described enabling technology that provides the
bridge between these two “worlds” and the utility of
using agents for monitoring plan data within

simulation in order to conduct more effective courses
of action. We have described an initial architecture,
but there are many opportunities to build upon this
initial research. One specific area we would like to
investigate is the integration of our architecture with
a formal approach to representing plans and their
interdependencies. This will allow agents to
interrogate the output from these systems to get a
better handle of the relationships. An example
system might be the Interactive Decision Support
(IDS) that uses a Microsoft project interface to
represent such dependencies.

Additional topics for investigation include federating
additional simulations that provide specific and
unique capabilities, integrating additional agent-
based products emanating from the CoABS program,
and expanding the capabilities of the plan-
understanding and monitoring agents.

A candidate simulation of interest is the Network
Warfare Simulation (NETWARS) [13]. NETWARS
is an HLA compliant simulation that provides the
capability to analyze communications effects on the
battlefield. An effort to link NETWARS and ITEM
for purposes of conducting synchronous planning is
scheduled to be sponsored by DMSO during FY03.
This will allow the effects of the communication
infrastructure to be taken into consideration during
development and refinement of an OPLAN that is
being generated using ITEM.

With regard to integrating with CoABS products and
research, the area dealing with agent teamwork
theories and models are of particular interest in order
to support the capability of teams of agents (perhaps
with different ontological representations) working
together to decompose and monitor plans, and
propose COA solutions based on individual and team
goals.

7. References
[1] Web Address: http://coabs.globalinfotek.com

[2] Furness et al. “Real-time Initialization of
Planning and Analysis Simulations based on
C4ISR System Data”. In Proceedings of the
2002 Command and Control Research and
Technology Symposium (CCRTS), Monterey,
CA 11-13 June 2002.

[3] Nielsen, J., Salisbury, M., “Challenges in
Developing the JTLS-GCCS-NC3A
Federation”, in proceedings of the 1998 Fall
Simulation Interoperability Workshop (SIW),
Orlando, Florida, 14-18 September 1998.

http://coabs.globalinfotek.com/

[4] Lutz, R., Salisbury, M., Bidwell, G., “A
Demonstration of C2I System-to-Simulation
Interoperability: The NSS/GCCS-M
Federation”, in proceedings of the 1999 Fall
Simulation Interoperability Workshop (SIW),
Orlando, Florida, 12-17 September 1999.

[5] Ogren, J., “Command and Staff Training and the
Practical use of the HLA”, in proceedings of the
2000 Fall Simulation Interoperability Workshop
(SIW), Orlando, Florida, 17-22 September 2000.

[6] Prochnow, D., King, R., Harrington, J., Regala,
B., Sonnenshein, J., Daly, J., Womble, J., “The
NSS-GCCS Federation: Course of Action
Analysis (COAA) Using a C4I-Simulation
Interface”, in proceedings of the 2001 Fall
Simulation Interoperability Workshop (SIW),
Orlando, Florida, 10-14 September 2001.

[7] Prochnow, D., Harrington, J., Walter, D.,
Womble, J., “Automate Initialization of an
Analysis Simulation With GCCS Track Data”,
in proceedings of the 2002 Fall Simulation
Interoperability Workshop (SIW), Orlando,
Florida, 9-13 September 2002.

[8] Layman, G., Daly, J., Furness, Z., Womble, J.,
"C4I-Simulation Interoperability Using the HLA
and DII COE", in proceedings of the 2001
Command Control Research and Technology
Symposium (CCTRS), Annapolis, MD, 19-21
June 2001.

[9] Mittu et al., “A Case Study for the Naval
Training Meta FOM: Analyzing the
Requirements from MAGTF FOM”. 7th
International Command and Control Research
and Technology Symposium, Quebec City,
Canada. 9-12 Sept. 2002.

[10] Web Address: http://www.daml.org

[11] Web Address: http://www.w3c.org

[12] Tamma et al, “An Ontology for Automated

Negotiation”. In Proceedings of the International
Workshop on Ontologies in Agent Systems.
AAMAS 02 Conferece, Bologna, Italy

[13] Web Address: http://www.disa.mil/tis/netwars.

8. Acknowledgements

The authors would like to thank the Defense
Modeling and Simulation Office (DMSO) for
providing the research funds for this effort.

Author Biographies

RANJEEV MITTU is a Program Manager at the
Naval Research Laboratory in Washington, DC.
Mr. Mittu has ten years experience in designing and
developing decision support systems for the Naval
community. His experiences include managing
programs ranging from the Strategic Defense
Initiative (SDI), Anti-Submarine Warfare (ASW) as
well as Force Level Planning for the Naval Strike
community. He has a Master of Science degree in
Electrical Engineering from The Johns Hopkins
University in Baltimore, MD.

ZACH FURNESS is an Associate Department Head
at the MITRE Corporation and technical lead
supporting the C4I-Simulation Interoperability
program at the Defense Modeling and Simulation
Office (DMSO). Since 2000, he has overseen the
implementation of automated initialization of
simulations directly from C4I systems such as GCCS
and worked to integrate simulation capabilities into
the DII COE. Prior to supporting DMSO, Mr.
Furness led the MITRE Systems Engineering team
that supported the development, integration, and
testing of the Joint Training Confederation (JTC).
Since joining MITRE in 1990, Mr. Furness has
worked on a variety of M&S projects related to the
application of simulation in the training, analysis, and
acquisition of C4ISR systems and has published
numerous papers on the subject. He holds an MS in
Electrical Engineering and BS in Physics, both from
Virginia Tech.

DR. RAY EMAMI is the CEO of Global InfoTek,
Inc. (GITI) which he founded in 1996. GITI is a
leader in cutting-edge software development and
integration. Dr. Emami is a technical visionary, who
has over 25 years experience conceiving, creating,
and leading cutting-edge technology development
projects. Under his leadership, GITI has become a
premier contractor supporting organizations such as
the Defense Advanced Research Project Agency
(DARPA), and organizations in the Intelligence
Community. Under his direction, GITI has
developed an impeccable reputation for creating
novel technologies and transitioning advanced
DARPA technologies to the warfighter.

http://www.daml.org/
http://www.xml.com/
http://www.disa.mil/tis/netwars

	4.1 CMDR Architecture
	4.2 Agile FOM
	4.3 Composable Service Aware C4I Application
	4.3.1 Plug-in Architecture
	4.3.2 Model Initialization and Tasking
	4.3.3 Model Registration

