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ABSTRACT:  The ability to interface C4I systems with simulations represents a powerful approach for analyzing 
complex military plans, and generating appropriate courses of action.  The simulations provide a context of the real 
world, in which the plan can be exercised, “what-if’s” can be performed, and intelligent courses of action can be 
generated.  To build more “intelligence” in our ability to generate courses of action, we must be able to decompose 
plans from C4I systems, so that critical events and actions/consequence relationships can be understood.  Through 
this understanding, we can begin to intelligently monitor how the execution of the plan may be deviating from the 
original simulated plan.  This paper will describe technology development allowing High Level Architecture (HLA) 
Run Time Infrastructure (RTI)-based simulations to interact with grid-aware software agents, allowing those agents 
to intelligently decompose planning information from systems such the Global Command and Control System-
Maritime, or GCCS-M (HLA-enabled) and monitor critical events associated with those plans within simulations. 
This will lead to a better understanding of the important cause-effect relationships in plans and consequently a more 
effective generation of courses of action. 
 
1.  Introduction 
 

Agent-aided information retrieval and decision 
support has attracted the attention of the agent 
research community for several years. The concept of 
large ensembles of semi-autonomous, intelligent 
agents working together is emerging as an important 
model for building the next generation of 
sophisticated software applications. This model is 
especially appropriate for effectively exploiting the 
increasing availability of diverse, heterogeneous, and 
distributed on-line information sources, and as a 
framework for building large, complex, and robust 
distributed information processing systems. The 

development of enabling infrastructure for mobile 
computing and interoperability among programs 
residing at distant sites, and new generations of 
distributed operating systems has made the 
construction of systems based on this model much 
easier. Software agents represent a new paradigm in 
distributed computing.  The notion of software 
entities able to work autonomously, or in cooperation 
with each other, to perform tasks represents a 
powerful concept.  Software agents have been 
deployed in many domains, ranging from the 
commercial, academic to the military domains.    
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Over the past several years, the Defense Advanced 
Research Projects Agency (DARPA) has sponsored 
the development of the Control of Agent-Based 
Systems (CoABS) Grid [1].  The Grid is a 
middleware that enables the integration of 
heterogeneous agent-based systems, object-based 
applications and legacy systems.  The CoABS grid 
was integrated with Critical Mission Data over Run-
Time Infrastructure (RTI) (CMDR) system to allow 
dynamic discovery, integration and sharing of HLA 
compliant simulation objects with legacy C4I 
systems and grid-aware software agents.  The 
development of the CMDR has paralleled, in an 
analogous fashion, the C4I-to-Simulation program 
sponsored by Defense Modeling and Simulation 
Organization (DMSO) that has featured the use of the 
High Level Architecture (HLA) RTI to pass data 
between systems such as the Global Command and 
Control System (GCCS) and the Integrated Theater 
Engagement Model (ITEM) [2].  The bridging of 
technology between the CoABS grid and the HLA 
using CMDR provides a wonderful opportunity to 
leverage the power of agent technology with the 
ability to tap into multiple C4I sources and 
simulation systems at the same time, and could lead 
to profound benefits in plan-understanding and 
execution monitoring using software agents.   This 
paper will describe these “enabling” technologies, as 
well as their application for extracting C4I plan data, 
in order for agents to decompose and monitor that 
data within simulation.    
 
This paper will begin with a description of the 
technology developments within the DARPA CoABS 
program, allowing agents to seamlessly interoperate 
with each other and exchange data in order to 
accomplish the goals of their users.  Next, we will 
describe the developments within the C4I-to-
Simulation interoperability program, specifically, the 
enabling technology that permits C4I systems and 
simulations to exchange data via the HLA RTI.  We 
will then describe the CMDR application, allowing 
C4I/simulation data to be dynamically discovered 
and forwarded to CoABS grid agents in order for 
them to decompose plans and monitor crucial events 
within the simulations. We will conclude with a 
description of the planned integrated demonstration 
in the upcoming year, which will showcase the power 
of the CoABS Grid, CMDR and software agents for 
decomposing C4I plan data and intelligently 
monitoring the simulated execution of those plans.  
 
2.  The DARPA CoABS Program 
 

The Control of Agent-Based Systems (CoABS) was a 
DARPA program, to develop and demonstrate 

techniques to safely control, coordinate, and manage 
large systems of autonomous software agents. 
CoABS was investigating the use of agent technology 
to improve military command, control, 
communication, and intelligence gathering. The 
military environment is dynamic, with quickly 
changing operations, moving hardware and software 
that are continually connecting and disconnecting, 
and bursty bandwidth availability. Inflexible stove-
piped legacy systems that were never meant to be 
integrated are, nevertheless, of vital importance to 
military planning and operations. Multiple hardware 
and software platforms as well as data interfaces and 
standards further complicate the picture. In addition, 
military personnel are overwhelmed by the increased 
data availability from the modern battlefield and 
suffer from information overload with no adequate 
tools to filter and correlate the data. A goal of 
CoABS was to enhance the dynamic connection and 
operation of military planning, command, execution, 
and combat support systems to quickly respond to the 
changing operational picture. Software agents were 
developed to work side-by-side with human military 
planners and operators to ease the burden of their 
daily tasks.  
 
The CoABS Grid (hereafter referred to simply as the 
“Grid”), developed at Global InfoTek, Inc (GITI) 
under the DARPA’s CoABS program, arguably 
provides the most successful and widely used 
infrastructure to date for the large-scale integration of 
heterogeneous agent frameworks with object-based 
applications, and legacy systems. Based on Sun’s Jini 
services, it includes a method-based application-
programming interface to register and advertise 
capabilities, discover services based on those 
capabilities, and provides the necessary 
communication between services. Systems and 
components on the Grid can be added and upgraded 
without reconfiguration of the network. Failed or 
unavailable components are automatically purged 
from the registry and discovery of similar services 
and functionality is pursued. 
 
The Grid supports a wide variety of applications, 
from simple monitoring and information retrieval to 
complex, dynamic domains such as military 
command and control. Using the Grid, agents and 
wrapped legacy systems can (1) describe their needs, 
capabilities and interfaces to other agents and legacy 
systems; (2) find and work with other agent 
components and legacy systems to accomplish 
complex tasks in flexible teams; (3) interact with 
humans and other agents to accept tasking and 
present results, and (4) adapt to changes in the 
application domain, the task at hand, or the 



 

computing environment. The Grid does this by 
providing access to shared policies and ontologies 
(mechanisms for describing agents’ capabilities and 
needs), and services that support interoperability 
among agents and legacy systems with simple or rich 
levels of semantics—all distributed across a network 
infrastructure. 
 
Although most agent frameworks provide some of 
the interoperability and other services that the Grid 
provides, each framework typically supports 
specialized constructs, communication, and control 
mechanisms. This specialization is desirable because 
particular systems can use mechanisms appropriate to 
the problem domain/task to be solved. The Grid is 
not intended to replace current agent frameworks but 
rather to augment their capabilities with services 
supporting trans-architecture teams.  
 
The Grid provides both local and distributed 
components, as shown in Figure 1. The Grid provides 
helper utility classes that are local to an agent and 

hide the complexity of Jini. These classes 
automatically find any Look-up Services (LUS) in 
both the local area network and user-designated 
distant machines. The Grid supports agent and 
service discovery based on Jini entries and arbitrary 
predicates as well as by service type. The Grid also 
provides event notification when agents register, 
deregister, or change their advertised attributes.  
 
In the next section, we describe the developments 
within the C4I Simulation Interoperability Program.   

 
3.  C4I-Simulation Interface via HLA RTI 
 

Work involving various instances of HLA-based C4I-
Simulation applications has been detailed in many 
other papers.  In 1998, DMSO sponsored an effort to 
utilize the HLA for passing data from the Joint 
Theater Level Simulation (JTLS) into the Global 

Command and Control System (GCCS) [3].  This 
application led to the development of a similar 
capability in which the Naval Simulation System 
(NSS) could stimulate GCCS, also using the HLA 
RTI [4].  While these applications successfully 
demonstrated the ability of the RTI to be used to pass 
information between simulations and C4I systems in 
much the same way that it was designed to be used 
between simulations, this capability was never used 
as part of an operational exercise. 
 
The demonstrated utility of stimulating GCCS from 
JTLS and NSS using the RTI led to further 
applications involving the Army's Eagle simulation.  
In recent years, the TRADOC Analysis Center 
(TRAC) has sponsored development of an effort to 
use the RTI to pass information between Eagle and 
many of its C2 systems including All Source 
Analysis System (ASAS), Maneuver Control System 
(MCS), and Combat Service Support Control System 
(CSSCS). Details of this implementation can be 
found in [5].   
 
During 2001, the GCCS-NSS capability was revived, 
as part of an effort to perform rapid initialization of 
NSS during the Global 01 exercise.  Previous uses of 
NSS as a COAA tool in Global 00 were limited 
because of the need to manually input data, read off 
of C4I devices such as GCCS.  The initialization 
scheme required modifications to both the GCCS RTI 
Interface (known as the "GCCS Ambassador”) and 
the NSS RTI interface to allow data flow from GCCS 
to NSS. Details of this implementation are 
documented in [6] 
 
During 2002, the GCCS-NSS initialization scheme 
was extended for use with the Integrated Theater 
Engagement Model (ITEM), an analysis application 
used primarily by US Pacific Command (PACOM) 
and United States Forces Korea (USFK).  A similar 
scheme for initialization was developed, which relies 
upon data present in the GCCS Track Database 
Manager (TDBM) to be sent via the RTI to ITEM so 
that the initial state of the simulation is synchronized 
with GCCS as the starting point for running an 
analysis.  This capability was successfully 
demonstrated in Reception Staging and Onward 
Integration (RSOI) 02 and Ulchi Focus Lens (UFL) 
02, and will be further used during FY03 by Korea 
Battle Simulation Center (KBSC).  Details of the 
implementation can be found in [7] 
 
During 2003, DMSO is further extending the work 
done with NSS and ITEM to the Joint Warfare 
System (JWARS). An initial capability that will 
synchronize data from the GCCS Common 
Operational Picture (COP) with the current JWARS 

Figure 1:  Grid Architecture 



 

scenario is planned to be completed by the end of 
2003.  This capability will help to address one of the 
major JWARS requirements to promote its use in 
Combatant Commands for in-theater analysis. 
 
Throughout the pursuit of these efforts, a Modeling 
and Simulation (M&S) Technical Working Group 
(TWG) under the Defense Information Infrastructure 
Common Operating Environment (DII COE) has 
been working to implement the HLA RTI as a 
"segment" within the COE.  This would allow the 
RTI to become part of the COE and run as a process 
on any command and control system that utilizes the 
COE.  The advantage of this is that it would allow 
simulation applications and C4I applications to 
exchange data much more rapidly and efficiently, 
while staying within a configuration managed 
process (the COE) that most C4I systems utilize.  
Unfortunately, the history of most C4I-simulation 
interfaces used for training exercises is that they are 
implemented outside of the COE process and act as 
separate stand-alone processes that do not 
interoperate and replicate functionality.  A summary 
of the work done to implement COE M&S segments, 
including the RTI can be found in [8]. 
 
In the following section, we will describe the 
capabilities of CMDR, and set the stage to describe 
the components of CMDR that will be used to act as 
the bridge between the C4I/Simulation worlds as well 
as with the software agent world in the planned 
integrated demonstration (section 5). 
 
4.  Current Mission Data via the RTI 
(CMDR) 
 

The CMDR is a tool for developing HLA compliant 
applications that significantly reduces development 
time.  CMDR has been designed and developed by 
GITI and is currently being used in support of a 
number of DARPA and DMSO sponsored initiatives. 
The software is a Java library designed to enable 
developers to quickly federate with HLA compliant 
simulation systems.   CMDR provides a general 
framework for interacting with the RTI.   Reusability 
of applications with new federations is enhanced 
when the applications are built using CMDR due to 
an independence from low-level RTI structures and 
data formats.   
 
4.1 CMDR Architecture 
 

The architecture of CMDR allows developers to 
rapidly develop core HLA compliant applications.  
The software acts as middleware between the 
application code and the RTI.  This allows the 

middleware functionality to be implemented once, 
and can then be reused by each application through 
library calls.   The RTI libraries and the API’s 
provided in the HLA specification are the under-
pinning of the CMDR software.  Some of an 
application's primary responsibilities that are 
implemented in CMDR are:  
 

• Maintaining a database or internal 
representation of remotely simulated objects 
and their current states. The RTI does not 
maintain a database of objects that can be 
queried for current attribute values by an 
application. It is simply the communications 
mechanism through which messages describing 
object creations, removals and attribute updates 
are exchanged among federates. By having this 
function in CMDR, an application can just query 
its CMDR to obtain the current state of each 
remote object, ignoring the details of which 
attributes have been updated when.  

  

• Managing the transmission of attribute 
updates for locally simulated objects. The RTI 
does not keep track of the current state of the 
locally simulated objects either, so it can know 
when attribute values are out of date and thus 
need to be communicated to other federates. 

 

• Converting between raw data formats and 
actual objects.  The RTI transmits object 
attributes and interactions parameters as arrays 
of raw data.  An important feature of CMDR is 
the ability to automatically translate raw data 
into objects and back again for many data types.  
This greatly reduces the amount of work 
necessary for examining and using the data in an 
application.  

 
CMDR maintains a representation of the remote 
objects, adding new objects in response to the 
discoverObjectInstance RTI service, 
removing them in response to the 
removeObjectInstance RTI service, and 
updating components of their current state in 
response to attribute updates delivered by the 
reflectAttributeValues RTI service 
(attribute updates typically contain values for only a 
subset of an object's attributes, rather than its entire 
state.)  Sometimes attributes are updated to their 
same value, for instance the heartbeat that indicates 
an object still exists appears as a complete update of 
the attributes.  One of CMDR’s features to improve 
an application’s performance is the option to filter 
out updates that do not actually change the value.  
This can reduce unnecessary updates to the screen or 
other data models.   



 

 
4.2  Agile FOM 
 

A major issue in the development of an HLA 
compliant simulation is the ability of a single federate 
to participate in multiple federations using different 
Federation Object Models (FOM).  Current efforts to 
mitigate these problems through the use of standard 
names and formats, while important and necessary, 
do not solve the problem since the ability to use 
different representations is a powerful feature of the 
HLA.  Object model independence was an important 
consideration when developing CMDR and was the 
reason an internal and flexible information model 
was chosen.  Applications built with CMDR can be 
quickly adapted for new federations since CMDR 
uses the FOM to automatically learn about the data 
types available and how to convert them into objects. 
The framework implements the agile-FOM concept 
by allowing the application to work with new FOMs 
simply by accessing those attributes that are relevant 
at the time.  If desired, the objects and interactions 
found in the FOM are mapped to the applications 
internal object model using custom converters 
specified by the application. 
 
Converters can be implemented to properly decode or 
encode objects moving between the internal object 
model and the FOM representation.  When the 
CMDR receives an incoming attribute update, it 
determines the proper converter to use for decoding 
and converting the update.  In many cases, this 
conversion can happen automatically based on 
information in the FOM.  The same process occurs in 
reverse for outgoing updates.  This allows a range of 
tasks, from the simple to complex, to be 
accomplished.  For example, unit conversions 
between the FOM and the applications internal 
representation can be implemented.  The ability of 
CMDR to use new FOMs with minimal impact 
allows the applications to be much more flexible and 
brings about additional reuse of tools between 
federations. 
 
4.3  Composable Service Aware C4I Application 
 

A C4I application has the ability to discover running 
agents, services, and wrapped legacy systems that are 
available on the network.  This ability, combined 
with a plug-in architecture allow for vast power as 
the application can incorporate new capabilities by 
discovering and downloading remotely provided 
plug-ins.  It puts the power of networked agents and 
services at the disposal of the users.  As new agents 
or services are provided on the network, the 
application can instantly benefit from the new 
capability without having to wait for a new software 

rollout.  During the course of an operation, if new 
tools are released or updates are made, the user’s 
application discovers the available updates. 
 
4.3.1 Plug-in Architecture 
 

The most powerful feature of the end-user application 
is the architecture’s ability to use software plug-ins to 
extend its basic capability.  The architecture is 
designed for flexibility and reusability.  The plug-ins 
can be provided from the local computer system or 
can be downloaded off the network and incorporated 
into the application.  By using Java’s introspection 
and reflection, the downloaded plug-in will be 
interrogated to determine the provided capabilities.  It 
might be determined, for example, that the plug-in 
provides additional toolbar features.  The plug-in 
architecture will add the newly discovered features to 
the user’s C4I application toolbar. 
 

The C4I application is not designed for use with any 
specific models or even for use with the HLA but 
through the use of a plug-in called CMDR, the 
architecture will incorporate the ability to become an 
HLA federate.  The loading process is shown in 
Figure 2; (1) The application will query the Grid 
registry to locate available services.  The user will 
see a list of the available network agents and 
services.  (2) The user can then query the registered 
simulations systems to learn more about the service.  
In the case of a simulation model being advertised, 
the user might choose to investigate the purpose and 
assumptions of the advertised model.  (3) The users 
application can then locate and download the 
necessary plug-ins to interoperate with models and 
simulation systems.  As shown in Figure 2, a plug-in 
that allows the C4I application to become HLA 
compliant (CMDR) will be downloaded as well as a 
plug-in that provides additional graphical displays to 
view the model output.   
 

Figure 2:  CMDR Plug-in Loading Process 



 

 
4.3.2 Model Initialization and Tasking 
 

A key feature of the C4I application is the capability 
to have the model and simulation systems initialized 
from remote systems and to accept tasks remotely.  
With these features, a remote user can initialize the 
model with data from a real world command and 
control system.  This will provide the user with a 
model that more closely matches the factors in their 
situation.  Tasking requests can also be made to the 
model to allow remote users to perform course of 
action analysis (COAA) and ‘what-if’ scenarios.  All 
of this allows for the configuration of the underlying 
statistical model to test or stress the trainees decision-
making process.   
 
As a COAA tool, the model can be initialized with 
information from real world data.  The model can 
then, for example, represent the population trends the 
logistician has been seeing over the past week.  
Information regarding the frequency of re-supplies 
can also be provided.  The model would then be 
capable of providing feedback to the user on the 
projected resource situation. 
 
4.3.3 Model Registration 
 

A key function of the system is the ability to 
dynamically discover agents and services that are 
available on the network.  To accomplish this, the 
simulation system needs to ‘advertise’ itself on the 
network as an available service.  This advertisement 
will allow other agents, services, legacy systems, or 
applications to search for the model’s offered 
capabilities.  The advertisement consists of a 
description of the models capabilities, the elements of 
the simulation object model (SOM), and other 
relevant meta-data to be registered.  A software plug-
in is made available for download to agents, 
applications, or other services, which allows them to 
connect and interact with the model.  This plug-in 
will allow client applications to federate with the 
model.   
 
In the first step, the meta-data describing the model 
will be created, as shown in Figure 3.  Some of this 
information will come directly from the software 
model and some from the user who is making the 
model available as a service.  Information regarding 
the usage of the model, users allowed access to the 
model, the SOM, and other data may be provided in 
the meta-data advertisement.  In the second step, this 
information is registered onto the Grid.  Once in the 
Grid registry other services, agents, or legacy systems 
can dynamically discover the resource and search the 
meta-data to determine its appropriateness.  Lastly, 

software plug-ins are provided for potential users of 
the system.  The system will register, for potential 
users, two plug-ins.  The first plug-in will provide 
HLA interoperability and the second will provide 
expanded graphical tools for C4I applications. All of 
this provides an advertisement for the model that 
allows agents and other applications to search, 
discover, and use the service. 

In the next section, we describe the integration of the 
RTI, CMDR and Grid to showcase the power of 
software agents for plan decomposition and 
execution monitoring. 
 
5.    Planned Integration between HLA 
RTI, CMDR and Grid 
 

The planned demonstration will involve integration 
between the GCCS Ambassador, CMDR and the 
CoABS grid, in order to showcase the power of 
software agents for decomposing military plans, and 
monitoring those plans in simulation.  The 
architecture is shown in Figure 4.   
 
 
 
 
 
 
 
 
 
 
 

The GCCS Ambassador will publish the tracks 
maintained in the TDBM to the RTI (using the Naval 
Training MetaFOM, or NTMF [9]); once published, 
the ITEM simulation will use the RTI subscription 
mechanism to obtain those tracks. In other words, 
GCCS will initialize the ITEM simulation with tracks 

Figure 3:  Model Registration Process 
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Figure 4:  Integrated Demonstration Architecture 



 

from its database. The tracks and associated updates 
will be passed from CMDR to the CoABS Grid.  
 
Plan-understanding agents registered on the Grid will 
be capable of decomposing external planning 
information, for example, from Operational Tasking 
(OPTASK) messages, or Air Tasking Orders 
(ATO’s) and forming relationships between events 
both spatially and temporally, as well as linking those 
relationships with the track information from the 
RTI.  Having formed these relationships and 
communicating these to the monitoring agents, the 
latter will begin to monitor both ITEM (which 
represents how entities should be moving and 
interacting) with GCCS (representing how entities 
are actually moving and interacting based on a re-
play of a scenario) in order to take note of the 
differences that are occurring with regard to critical 
movements and relationships. In other words, the 
agents will monitor only those events and 
relationships that are deemed of critical importance 
with regard to some measurement criteria.   By 
measuring deviations in those critical events such as 
rendezvous points, temporal delays in events that 
may impact future events,  (and not every deviation 
occurring in the simulation, since a local deviation 
does not necessarily imply that a mission will not 
succeed), the user will be better able to comprehend 
the simulation.  This will allow the user to perform 
better courses of action since now that user has a 
better understanding of the relationships between key 
events, and the agents can perform notification based 
on those dependencies as the courses of action are 
performed particularly when the constraints imposed 
by those dependencies are violated.  In a large and 
complex scenario, visual detection of such 
dependencies will be difficult, and automation 
through software agents will be valuable.   
 
5.1 Multi-Agent System (MAS) Infrastructure 
 

This integration of the components contained within 
this demonstration architecture will require, among 
other things, additional research with regard to the 
development of the software agent infrastructure.   
One of the key areas of investigation will be in the 
area of agent ontology.  An ontology is used to 
describe the objects or entities, their relationships 
with each other and other objects, their attributes, etc 
so that agents have an understanding of their world 
and are able to reason intelligently about their world.  
An ontology is also important when you consider the 
ability to reason about relationships in events, 
particularly when those events are related spatially 
and temporally.  With regard to temporality, for 
example, and agent must be able to understand the 

concepts associated with time such as time instants, 
time intervals and durations, etc.  The relationships 
associated with time may be represented in an 
ontology that defines these concepts.  With regard to 
events that are spatially represented, the ontology 
will define what those events are and where they 
occur.  An agent needs to understand an event 
ontology to be able to reason about events, 
particularly if there is a need to reason about things 
such as two or more events occurring in close 
proximity (like aircraft refueling point).   The reason 
an agent needs to understand both a temporal and 
spatial ontology is that, using the example of aircraft 
refueling point, it must be able to reason about this 
refueling not only occurring at some point in space, 
but also at some specified time and for some 
duration. The DARPA Agent Markup Language 
(DAML) [10] is a candidate technology that may 
serve the purpose of building the needed ontological 
references for the software agents.   The DAML 
language is an extension of the eXtensible Markup 
Language (XML) [11] and the Resource Description 
Framework (RDF) [11].  There are several efforts 
ongoing within the DAML community that may be 
leveraged, for example, the time ontology effort.  
Other possible candidates include XML schema and 
RDF schema.   
 
There are several advantages to utilizing software 
agents (vice a federate that performs the plan 
decomposition and monitoring functions) in this 
architecture.  One of the biggest advantages lies in 
the ability of software agents to understand an 
ontological description (or inter-related ontological 
descriptions) in order to reason about their world.  
One may argue that a federate could perform the 
same functions, as one might claim that a FOM also 
loosely resembles an ontology.  However, the field of 
Artificial Intelligence, from which software agents 
have emerged, provides a richer set of technologies 
for software agents.  For example, research in this 
field is examining ontology negotiation techniques to 
allow software agents to negotiate between the 
meanings of their respective ontology, thereby 
permitting agents to “on-the-fly” understand and 
reason about these new concepts based on how it 
relates to their own internal knowledge.  In our 
example of aircraft refueling, perhaps additional 
agents with a similar ontology to our event ontology 
could be discovered on the agent grid to provide 
additional critical information about the refueling 
event as well that may not have been a part of the 
original event ontology.  In comparison, the HLA 
does not permit a new federate to join a federation 
unless it uses a pre-specified FOM (i.e., a federate 
that may provide useful information, but uses a 



 

different FOM, would not be able to communicate 
and exchange meaningful data with the federation 
unless it used the same FOM as the federation it is 
joining or is bridged through a third federate).  Even 
the use of converters, as discussed previously in the 
paper, relies on a-priori development and 
implementation as opposed to a more dynamic 
approach to understanding an ontological description 
at run-time (although agents capable of negotiating to 
understand the ontological descriptions of plug-in’s 
may provide a solution).  Research in ontology 
negotiation techniques is still in the early stages, but 
there are promising approaches [12] 
 
The second advantage is in the ability of agent’s to 
understand multiple, unique ontological descriptions.  
This approach provides a more flexible distributed 
computing environment.  In comparison, if one were 
to encode all of the knowledge in a FOM, then, very 
quickly, the FOM could become large and difficult to 
use and eventually maintain.  Having agents 
understand multiple ontological descriptions and 
negotiate (as was just previously discussed) on those 
terms that are unfamiliar, can provide a much robust 
distributed computing solution.   
 
The third primary benefit of the use of software 
agents comes from research being done in field of 
agent teamwork theory and models.  There has been 
significant research in this area examining how teams 
of agents cooperate with each other to form beliefs 
about the world, and how and when they take action 
in order to reach a team goal.  One could imagine 
within this architecture how teams of agents with 
varying capabilities are able to decompose various 
aspects of the plans, monitor those plans, and perhaps 
even aid in repairing the plans based on the outcome 
of the simulated results.  These teams of agents may 
converse with other teams of agents (or even teams of 
users) with differing ontological knowledge and 
negotiate meanings of information in reaching their 
goals in the process of performing courses of action 
analysis.  As with ontology negotiation techniques, 
there are many research topics to be addressed in 
making this a reality, but the basic research is being 
conducted in this area and is being pushed to solve 
practical problems.   
 
6.  Conclusion and Future Direction 
 

This paper has presented research that is being 
conducted in order to bring together HLA-compliant 
simulations with multi-agents systems.  We have 
described enabling technology that provides the 
bridge between these two “worlds” and the utility of 
using agents for monitoring plan data within 

simulation in order to conduct more effective courses 
of action.   We have described an initial architecture, 
but there are many opportunities to build upon this 
initial research.  One specific area we would like to 
investigate is the integration of our architecture with 
a formal approach to representing plans and their 
interdependencies.  This will allow agents to 
interrogate the output from these systems to get a 
better handle of the relationships.  An example 
system might be the Interactive Decision Support 
(IDS) that uses a Microsoft project interface to 
represent such dependencies.   
 
Additional topics for investigation include federating 
additional simulations that provide specific and 
unique capabilities, integrating additional agent-
based products emanating from the CoABS program, 
and expanding the capabilities of the plan-
understanding and monitoring agents.    
 
A candidate simulation of interest is the Network 
Warfare Simulation (NETWARS) [13].  NETWARS 
is an HLA compliant simulation that provides the 
capability to analyze communications effects on the 
battlefield.  An effort to link NETWARS and ITEM 
for purposes of conducting synchronous planning is 
scheduled to be sponsored by DMSO during FY03.  
This will allow the effects of the communication 
infrastructure to be taken into consideration during 
development and refinement of an OPLAN that is 
being generated using ITEM. 
 
With regard to integrating with CoABS products and 
research, the area dealing with agent teamwork 
theories and models are of particular interest in order 
to support the capability of teams of agents (perhaps 
with different ontological representations) working 
together to decompose and monitor plans, and 
propose COA solutions based on individual and team 
goals.   
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