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Current Unmanned Aerial Vehicle (UAV) operator task demands are highly variable and 
unbalanced across team members, resulting in sub-optimal operator utilization which leads to 
mishaps. This has driven the Department of Defense’s desire for more flexible team structures 
and task allocation tools. Unobtrusive and continuous measures of operator state are needed 
to effectively allocate tasking to operators and prevent errors. Twenty participants completed 
two twenty minute supervisory control sessions where task load was manipulated by varying 
event frequency (e.g., information requests) and eye tracking data was collected. Pupillometry 
data revealed increased mean and maximum pupil sizes with increased task load and larger 
pupil size standard deviation in participants who performed poorly, compared to those who 
performed well. These results suggest that increased pupil size is indicative of increased 
processing demands and could be predictive of task performance within a complex 
environment where performance measures can be challenging to obtain. 
 
An increasing number of military aviation missions are being performed by unmanned systems, 

reducing the risk to Warfighters while increasing mission capabilities. Ironically though, unmanned systems 
have high manpower costs associated with conducting operations, partially due to specialized operator roles 
and highly variable levels of tasking throughout missions. Numerous Department of Defense (DoD) roadmaps 
have been promoting reductions in UAV manning via increased automation and more effective tasking tools 
(DoD, 2013); in particular, the 2015 Navy S&T plan highlights the need for improvements in “task 
allocation/assignment, planning, and coordination and control for heterogeneous systems” (ONR, 2015).  

 
Enhanced planning and task assignment tools necessitate knowledge of the unmanned system’s state 

and availability as well as the operator’s state and availability. Ensuring that an operator’s workload is 
balanced is critical, given that extremes in workload have been demonstrated to cause reductions in 
performance and human error (Yerkes & Dodson, 1908; Kahneman, 1973). This paper presents how 
pupillometry data collected from remote eye tracking systems can help provide insight into an operator’s 
mental state and possibly aid in future task allocation.  

 
Research conducted over the last several decades has established that pupil size varies as a function of 

cognitive processing and that the magnitude of the dilation correlates with the amount of mental effort exerted 
(Kahneman, 1973; Beatty & Lucero-Wagoner, 2000; Andreassi, 2007).  The vast majority of these studies, 
however have been conducted within highly controlled and simple environments where participants are asked 
to perform tasks such as digit sequence recall, mental arithmetic, or verbal processing (Klingner, Tversky, & 
Hanrahan, 2011; Johnson, Miller Singley, Peckham, Johnson, & Bunge, 2014). For the purposes of this initial 
study, the authors were interested in investigating whether pupillometry data collected in a realistic UAV 
supervisory control environment could serve as a continuous metric of user state and be predictive of task 
performance. 

 
 

 



Method 
 
Supervisory Control Operations User Testbed 
  
 Human subject data collection was conducted using the Supervisory Control Operations User Testbed 
(SCOUT) which enables the investigation of the impact of scenarios of varying levels of difficulty on UAV 
operator task performance. SCOUT was developed by the Naval Research Laboratory to represent the tasking 
that a future UAV supervisory controller will likely perform assuming advancements in automation. The 
tasking within SCOUT was developed through interaction with current UAV operators and involved an 
iterative design and feedback process. SCOUT contains a pre-mission planning phase as well as mission 
execution phase.    
  
 During planning, the operator must determine the best initial route for sending their three 
heterogeneous vehicles, with different speed and sensor range capabilities, to search for seven stationary 
targets with varying priority levels, deadlines, and location uncertainties. Once a vehicle arrives at a target 
search area, the search is automated such that a target is found once the vehicle’s sensor comes within range of 
the target. After the planning phase, mission execution begins and the operator is responsible for responding to 
incoming information requests (via chat), performing flight parameter updates (i.e. changing altitude and 
speed), managing airspace (requesting access to restricted operating zones) and re-planning vehicle routes as 
either new targets or new intelligence on existing targets (i.e. more precise location information) becomes 
available. All events within SCOUT are pre-scripted to occur at specific times. 
  
 In order to promote participant motivation, SCOUT was designed to be game-like, where the user 
receives points for responding to chat messages and finding targets. Additionally, the user loses points if a 
vehicle enters a restricted operating zone without receiving authorization. SCOUT was designed to be used on 
two thirty inch monitors. Figure 1 shows SCOUT’s left and right screens, where the left screen’s primary 
functions involve communication, planning, and airspace management, and the right screen functions include 
monitoring and updating vehicle parameters. Lastly, SCOUT is integrated with the SmartEye Pro 6.1 eye 
tracking system, such that all simulation events, behavioral data and eye tracking data are synchronized and 
logged together.  
  

 
 
Figure 1.  SCOUT’s left and right screens depicting three heterogeneous vehicles conducting a search mission.  
 
Experimental Design 
  
 Twenty-three individuals voluntarily participated in this experiment. Three participants were excused 
from the study; two due to a lack of comprehension and one due to a simulation error. Analyses were 
conducted on the twenty remaining participants (7 women and 13 men) ranging in age from 18 to 48 years (M 
= 30, SD = 9.6).  
  

 



 Prior to data collection, participants received approximately thirty minutes of training, which included 
videos demonstrating how to perform tasks within SCOUT and interactive assessments to ensure 
comprehension. Following training, each participant engaged in two experimental sessions. The order in which 
participants conducted sessions was randomized to help prevent any order effects, where half the participants 
received Session A first, while the other half received Session B first. Table 1 illustrates the difficulty 
associated with each block, demonstrating that Block 1 was always of medium difficulty, followed by either an 
easy or hard block.  
  
 Each SCOUT session was pre-scripted and included four segments that always occurred in the 
following order: Planning, Block 1, Block 2, Block 3. Participants were given ten minutes to create an initial 
plan before the mission execution phase. Each mission execution block took approximately six minutes, for a 
total of approximately 18 minutes of mission execution per session. Each block had a different level of 
difficulty which was manipulated via the frequency of chat tasking and the frequency of new targets added (see 
Table 2). During the easy, medium and hard blocks, events were presented approximately every 75, 45 and 15 
seconds, respectively. In particular, participants were tasked via chat message to update flight parameters, i.e. 
speed and altitude, on specific vehicles. This task required the operator to increase or decrease the current 
speed or altitude by a specific amount (e.g. “Decrease altitude of UH-28 by 117”). Performance on each of 
these requests was analyzed in terms of completion, reaction time and accuracy.  
  
Table 1.       Table 2. 
Sessions and difficulty blocks    Difficulty manipulations by block 
 

   
 

Results 
 
Performance Results 
  
 The primary performance metric within difficulty blocks was success on flight parameter updates (i.e., 
altitude and speed updates). Success was measured by percent of tasks completed, reaction time, and percent 
error for the completed tasks within each block. A two-way (Session X Difficulty) repeated measures 
ANOVAs was conducted for each of the flight parameter update metrics (percent completed, reaction time, 
percent error). Table 3 shows the p-values associated with each two-way ANOVA test.  
  
 As shown in Table 3, there was a significant and large main effect of Difficulty F(2,38) = 37.422, p = 
.000, p

 = 0.663 for the percent of tasks completed. Additionally, there was a significant and medium main 
effect of Difficulty F(2,38) = 4.095, p = 0.025, p

 = 0.177  for the percent of error on completed tasks. See 
Figure 2 for a visual depiction of these effects.  
 No main effects were found for Session, however there was a significant and medium interaction 
effect between Difficulty and Session F(2,38) = 3.288, p = .048, p

 = 0.148  for the percent error, due to the 
fact that error slightly increased in the session two easy block and decreased in the hard and medium blocks. 
No differences were found in reaction times, indicating that participants responded at the same rate, both 
across sessions and difficulty blocks.  
 
 
 
 
 

Block 1 Block 2 Block 3
Session A Medium Hard Easy
Session B Medium Easy Hard

Difficulty Level 

Block Difficulty 
Level

Chat Task 
Frequency

New Targets 
Added

Easy 75 seconds 1
Medium 45 seconds 3

Hard 15 seconds 4

 



Table 3. 
Significance values from two-way (Session X Difficulty) repeated measures ANOVA 
 

 
 

 
 
Figure 2. Performance on the Flight Parameter update task shown by block difficulty level  
 
Pupillometry Results 
  
 Pre-processing was conducted prior to analyzing the pupillometry data. The first step involved 
filtering out all dropped and poor quality data, defined as having a value of zero, using SmartEye Pro’s built-in 
quality measure. This initial step reduced the amount of data by 13%. Next, outliers were removed, which were 
defined as the top and bottom 1% of the entire twenty subject dataset. This ensured that erroneous data which 
were not caught by the quality measure (e.g. pupil measurements of 12 mm) were removed. Pupillometry data 
from both the left and right eye were consistent, but only data from the left eye are presented here. 
  
 Three pupillometry metrics were considered within this analysis: pupil size mean, pupil size standard 
deviation, and pupil size maximum. Each of these metrics was calculated for each individual, during each 
block, and within each session. A two-way (Session X Difficulty) repeated measures ANOVA was conducted 
on each of the three pupil size metrics (see Table 4). Analysis revealed a significant main effect of Difficulty 
for pupil mean F(2,38) = 8.985, p = .001, p

 = 0.321 and pupil maximum F(2,38) = 3.577, p = .038, p
 = 

0.158.  
  
 Post hoc comparisons using a Least Significant Difference test indicated that the mean pupil size in 
the hard block (M = 3.60, SD = 0.55) was significantly greater than the mean pupil size in the easy block (M = 
3.52, SD = 0.55). Additionally the maximum pupil size in the hard block (M = 5.84, SD = 0.25) was also 
greater than the maximum pupil size in the easy block (M = 5.73, SD = 0.41). Lastly, there was a significant 
main effect of Session F(1,19) = 15.026, p = 0.001, p

 = 0.442 for the pupil mean metric, where mean pupil 
size was significantly smaller in the second session than the first, which may reveal fatigue or learning. No 
interaction effects were found.  
 
 

Percent Completed Reaction Time Percent Error
Difficulty    p = 0.000* p = 0.860   p = 0.025*
Session p = 0.335 p = 0.113 p = 0.883

Difficulty X Session p = 0.074 p = 0.636   p = 0.048*

Performance Data ANOVA Significance Results

* Denotes significance at p < 0.05

 



Table 4. 
Significance values from two-way (Session X Difficulty) repeated measures ANOVA 
 

 
  
 Pupillometry data were also collected immediately following a Situation Awareness (SA) probe that 
occurred within each block.  During this time, known as the Regain SA phase, the screen and mission 
execution was paused so that the user could take as much time as needed to relax, regain situation awareness, 
and not have to attend or respond to any events before the block tasking resumed. Each of the three pupil 
metrics were computed during the easy, medium and hard block’s Regain SA phases. A two-way (Session X 
Difficulty) ANOVA was conducted for each pupil metric (pupil mean, standard deviation and maximum) and 
revealed no significant main effects and no significant interaction effects; meaning no differences existed 
among the different Regain SA blocks. 
 
Operator Performance and Pupillometry Data 
  

Out of the twenty participants, the top four and bottom four performer’s pupillometry data were 
analyzed to investigate whether those who performed well had different pupillary signatures than those who 
perform poorly. Performance was considered based upon a combination of overall mission score at the end of 
each session, and flight parameter update performance (i.e. high performance was defined as high percentage 
of events answered, low reaction times, and low error).  No statistical analyses were conducted, given the low 
number of participants; however Figure 3 shows a comparison of pupil size standard deviations for the top and 
bottom performers in the easy, medium and hard blocks.  

 
Visual inspection suggests that the bottom performers had higher variability in their pupil sizes, 

compared to the top performers. The minimum and maximum pupil sizes were assessed for each performer 
group to ensure there wasn’t an inherent pupil size difference between the two groups. No difference existed: 
the maximum pupil size for the low performers was 5.966 and 5.961 for the high performers; the minimum 
pupil size was 1.997 for the low performers and 1.997 for the high performers. Mean pupil size and maximum 
pupil size were also compared between the two performance groups, but did not reveal anything conclusive.  
 

 
Figure 3. Pupil Size Standard Deviations for top and bottom four performers during easy, medium and hard 
difficulty blocks 

Pupil Mean
Pupil Standard 

Deviation
Pupil Maximum

Difficulty   p = 0.001* p = 0.062   p = 0.038*
Session   p = 0.001* p = 0.801 p = 0.586

Difficulty X Session p = 0.301 p = 0.319 p = 0.301

Pupillary Metrics ANOVA Significance Results

* Denotes significance at p < 0.05

 



Discussion 
 

The results of this initial study are consistent with previously mentioned research conducted within 
simple task environments, and demonstrates that pupillometry data is also effective at discriminating between 
extremes in task load levels within a complex supervisory control environment. In particular, the mean and 
maximum pupil size metrics were significantly larger in high task load blocks of time compared to low task 
load blocks. Furthermore, the lack of difference among the metrics within the RegainSA phases, which took 
place in the middle of each difficulty block, provides additional evidence that pupillometry metrics are in fact 
indicative of a user’s mental state (i.e. cognitive processing) and not some other factor such as fatigue.  

 
While pupil size standard deviation was not statistically different among block levels at the aggregate 

level, it did appear to be trending towards significance at p=0.062. More interestingly, though, is the data in 
figure 3 which suggests that individuals who are struggling with tasking have greater variability in their pupil 
size. This finding requires further investigation but could be promising for potentially identifying operators 
who are overloaded and susceptible to making an error. None of the twenty participants were able to complete 
all tasking during either of the difficult blocks without making an error. Future analysis will involve a finer 
grained investigation into this performance data to assess whether it is possible to identify a signature in the 
pupillometry metrics indicating a user has become overloaded and is susceptible to making errors. 

 
These results suggest that pupillometry data could be a useful metric for determining how to allocate 

tasking within an actual supervisory control environment, where operator state and task performance data is 
very rarely captured or available. Pupillometry data provides a continuous stream of information about an 
individual’s mental state, which could be used to reveal when a user is overloaded. This information could be 
used to shed tasking either to another team member or automation before an error occurs. Future research will 
focus on building individual performance models and investigate the utility of embedding pupillometry data 
within a task allocation tool.   
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