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Abstract

Greater unmanned system autonomy will lead to im-
provements in mission outcomes, survivability and
safety. However, an increase in platform autonomy in-
creases system complexity. For example, flexible au-
tonomous platforms deployed in a range of environ-
ments place a burden on humans to understand evolv-
ing behaviors. More importantly, when problems arise
within complex systems, they need to be managed with-
out increasing operator workload. A supervisory control
paradigm can reduce workload and allow a single hu-
man to manage multiple autonomous platforms. How-
ever, this requires consideration of the human as an in-
tegrated part of the overall system, not just as a cen-
tral controller. This paradigm can benefit from novel
and intuitive techniques that isolate and predict anoma-
lous situations or state trajectories within complex au-
tonomous systems in terms of mission context to allow
efficient management of aberrant behavior. This infor-
mation will provide the user with improved feedback
about system behavior, which will in turn lead to more
relevant and effective prescriptions for interaction, par-
ticularly during emergency procedures. This, in turn,
will enable proper trust calibration. We also argue that
by understanding the context of the user’s decisions or
system’s actions (seamless integration of the human),
the autonomous platform can provide more appropriate
information to the user.

Introduction

Unmanned systems will perform an increasing number of
missions in the future, reducing the risk to humans, while in-
creasing their capabilities. The direction for these systems is
clear, as a number of Department of Defense roadmaps call
for increasing levels of autonomy to invert the current ratio
of multiple operators to a single system (U.S. Department of
Defense 2011). This shift will require a substantial increase
in unmanned system autonomy and will transform the opera-
tor’s role from actively controlling elements of a single plat-
form to supervising multiple complex autonomous systems.
This future vision will also require the autonomous system
to monitor the human operator’s performance and intentions
under different tasking and operational contexts, in order to
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understand how she is influencing the overall mission per-
formance.

Successful collaboration with autonomy will necessitate
that humans properly calibrate their trust and reliance on
systems. Correctly determining reliability of a system will
be critical in this future vision since automation bias, or
overreliance on a system, can lead to complacency which
in turn can cause errors of omission and commission (Cum-
mings 2004). On the other hand, miscalibrated alert thresh-
olds and criterion response settings can cause frequent alerts
and interruptions (high false alarm rates), which can cause
humans to lose trust and underutilize a system (i.e., ignore
system alerts) (Parasuraman and Riley 1997). Hence, it is
imperative that not only does the human have a model of
normal system behavior in different contexts, but that the
system has a model of the capabilities and limitations of the
human. The autonomy should not only fail transparently so
that the human knows when to assist, but autonomy should
also predict when the human is likely to fail and be able
to provide assistance. The addition of more unmanned as-
sets with multi-mission capabilities will increase operator
demands and may challenge the operator’s workload just to
maintain situation awareness. Autonomy that monitors sys-
tem (including human) behavior and alerts users to anoma-
lies, however, should decrease the task load on the human
and support them in the role of supervisor.

Noninvasive techniques to monitor a supervisor’s state
and workload (Fong et al. 2011; Sibley, Coyne, and Baldwin
2011) would provide the autonomous systems with informa-
tion about the user’s capabilities and limitations in a given
context, which could provide better prescriptions for how to
interact with the user. However, many approaches to work-
load issues have been based on engineering new forms of
autonomy assuming that the role of the human will be min-
imized. For the foreseeable future, however, the human will
have at least a supervisory role within the system; rather than
minimizing the actions of the human and automating those
actions the human can already do well, it would be more
efficient to develop a supervisory control paradigm that em-
braces the human as an agent within the system and lever-
ages on her capabilities and minimizes the impact of her lim-
itations.

In order to best develop techniques for identifying
anomalous behaviors associated with the complex human-



autonomous system, models of normal behaviors must be
developed. For the purpose of this paper, an anomaly is not
just a statistical outlier, but rather a deviation that prevents
mission goals from being met, dependent on the context.
Such system models may be based on, for example, mission
outcome measures such as objective measures of success-
ful mission outcomes with the corresponding behaviors of
the system. Normalcy models can be used to detect whether
events or state variables are anomalous, i.e., probability of a
mission outcome measure that does not meet a key perfor-
mance parameter or other metric.

The anomalous behavior of complex autonomous systems
may be composed of internal states and relationships that
are defined by platform kinematics, health and status, cyber
phenomena and the effects caused by human interaction and
control. Once the occurrence and relationships between ab-
normal behaviors in a given context can be established and
predicted, our hypothesis is that the operational bounds of
the system can be better understood. This enhanced under-
standing will provide transparency about the system perfor-
mance to the user to enable trust to be properly calibrated
with the system, making the prescriptions for human inter-
action that follow to become more relevant and effective dur-
ing emergency procedures.

A key aspect of using normalcy models for detecting ab-
normal behaviors is the notion of context; and behaviors
should be understood in the context in which they occur. In
order to limit the false alarms, effectively integrating context
is a critical first step. Normalcy models must be developed
for each context of a mission, and used to identify potential
deviations to determine whether such deviations are anoma-
lous (i.e., impact mission success). Proper trust calibration
would be assisted through the development of technology
that provides the user with transparency about system be-
havior. This technology will provide the user with informa-
tion about how the system is likely to behave in different
contexts and how the user should best respond.

We present an approach for modeling anomalies in com-
plex system behavior; we do not address modeling human
limitations and capabilities in this paper, but recognize that
this is equally important in the development of trust in col-
laborative human-automation systems.

Understanding the Value of Context

The role of context is not only important when dealing
with the behavior of autonomous systems, but also quite
important in other areas of command and control. Today’s
warfighters operate in a highly dynamic world with a high
degree of uncertainty, compounded by competing demands.
Timely and effective decision making in this environment
is challenging. The phrase “too much data — not enough
information” is a common complaint in most Naval oper-
ational domains. Finding and integrating decision-relevant
information (vice simply data) is difficult. Mission and task
context is often absent (at least in computable and acces-
sible forms), or sparsely/poorly represented in most infor-
mation systems. This limitation requires decision makers to
mentally reconstruct or infer contextually relevant informa-
tion through laborious and error-prone internal processes as

they attempt to comprehend and act on data. Furthermore,
decision makers may need to multi-task among competing
and often conflicting mission objectives, further complicat-
ing the management of information and decision making.

Clearly, there is a need for advanced mechanisms for the
timely extraction and presentation of data that has value and
relevance to decisions for a given context. To put the issue of
context in perspective, consider that nearly all national de-
fense missions involve Decision Support Systems (DSS) —
systems that aim to decrease the cycle time from the gather-
ing of data to operational decisions. However, the prolifera-
tion of sensors and large data sets are overwhelming DSSs,
as they lack the tools to efficiently process, store, analyze,
and retrieve vast amounts of data. Additionally, these sys-
tems are relatively immature in helping users recognize and
understand important contextual data or cues.

Context and the Complexity of Anomaly
Detection

Understanding anomalous behaviors within the complex
human-autonomous system requires an understanding of
the context in which the behavior is occurring. Ultimately,
when considering complex, autonomous systems comprised
of multiple entities, the question is not what is wrong with
a single element, but whether that anomaly affects perfor-
mance of the team and whether it is possible to achieve the
mission goals in spite of that problem. For example, plat-
form instability during high winds may be normal, whereas
the same degree of instability during calm winds may be ab-
normal. Furthermore, what may appear as an explainable de-
viation may actually be a critical problem if that event causes
the system to enter future states that prevent the satisfaction
of a given objective function. The key distinction is that in
certain settings, it may be appropriate to consider anomalies
as those situations that effect outcomes, rather than just sta-
tistical outliers. In terms of the team, the question becomes
which element should have to address the problem (the hu-
man or the autonomy).

The ability to identify and monitor anomalies in the com-
plex human-autonomous system is a challenge, particularly
as increasing levels of autonomy increase system complex-
ity and, fundamentally, human interactions inject significant
complexity via unpredictability into the overall system. Fur-
thermore, anomaly detection within complex autonomous
systems cannot ignore the dependencies between commu-
nication networks, kinematic behavior, and platform health
and status.

Threats from adversaries, the environment, and even be-
nign intent will need to be detected within the communica-
tions infrastructure, in order to understand its impact to the
broader platform kinematics, health and status. Possible fu-
ture scenarios might include cyber threats that take control
of a platform in order to conduct malicious activity, which
may cause unusual behavior in the other dimensions and
corresponding states. The dependency on cyber networks
means that a network provides unique and complete insight
into mission operations. The existence of passive, active, and
adversarial activities creates an ecosystem where ‘“normal”



or “abnormal” is dynamic, flexible, and evolving. The intrin-
sic nature of these activities results in challenges to anomaly
detection methods that apply signatures or rules that have
a high number of false positives. Furthermore, anomaly de-
tection is difficult in large, multi-dimensional datasets and
is affected by the “curse of dimensionality.” Compounding
this problem is the fact that human operators have limited
time to deal with complex (cause and effect) and / or sub-
tle (“slow and low”) anomalies, while monitoring the infor-
mation from sensors, and concurrently conducting mission
planning tasks. The reality is that in future military environ-
ments, fewer operators due to reduced manning may make
matters worse, particularly if the system is reliant on the hu-
man to resolve all anomalies!

Below we describe research efforts underway in the area
of anomaly detection via manifolds and reinforcement learn-
ing.

Manifolds for Anomaly Detection

A fundamental challenge in anomaly detection is the need
for appropriate metrics to distinguish between normal and
abnormal behaviors. This is especially true when one deals
with nonlinear dynamic systems where the data generated
contains highly nonlinear relationships for which Euclidean
metrics aren’t appropriate. One approach is to employ a non-
linear “space” called a manifold to capture the data, and then
use the natural nonlinear metric on the manifold, in particu-
lar the Riemannian metric, to define distances among differ-
ent behaviors.

We view the path of an unmanned system as a continu-
ous trajectory on the manifold and recognize any deviations
due to human inputs, environmental impacts, etc. Mathemat-
ically, we transform the different data types into a common
manifold-valued data so that comparisons can be made with
regard to behaviors.

For example, a manifold for an unmanned system could
be 12 dimensional, composed of position, pitch, roll, yaw,
velocities of the position coordinates, and angular velocities
of the pitch, roll and yaw. This 12- dimensional model cap-
tures any platform (in fact any moving rigid object’s) trajec-
tories under all possible environment conditions or behav-
iors. This manifold is the tangent bundle, TM of SO(3) x 3.
Here SO(3) denotes the set of all possible rotations of the
unmanned system which is a Lie group, and :? the set of
all translations of the platform. Since rotations and transla-
tions do not commute, this is not a direct product of SO(3)
with )3, The product between SO(3) and R? is a “Semi-
Product” x. Non-linear key geometric, dynamical and kine-
matic characteristics are represented using TM. This mani-
fold model is able to encapsulate the unique structure of the
environment, effects of human behaviors, etc. through con-
tinuous parameterizations and coherent relationships.

Once we have this manifold model and its Riemannian
metric, it is possible to define concepts of geodesic neigh-
borhood and other appropriate measurements and map those
to mission cost. Such a mapping is done by designing
a weighted cost function with dynamical neighborhoods
around a trajectory of the platform. For example, if the
weather is good in the morning, the neighborhood is smaller

than it would be with bad weather. This innovative mani-
fold method could be used to dynamically identify normal
or abnormal behaviors occurring during a mission, taking
into consideration whether a mission could be successfully
achieved under a given cost constraint. We also have the
freedom to adjust normal neighborhoods if a mission sud-
denly changes while en-route. Our model is robust and cap-
tures complicated dynamics of unmanned systems and is
able to encapsulate very high dimensional data using only
a 12 dimensional configuration space.

The algorithms use continuous parameterizations and
coherent relationships and are scalable. Our manifold-
based methods provide new techniques to combine qualita-
tive (platform mechanics) and quantitative (measured data)
methods and are able to handle large, nonlinear dynamic
data sets.

Reinforcement Learning for Anomaly Detection

Another angle of approach for the problem is through rein-
forcement learning. We view the path of the platform as a
trajectory through a discrete-time Markov Decision Process
(MDP): M = (S, A, P,R,v). Given a state s; € S, the
probability of a transition to a state s; as a result of action
a € Ais given by P(s;|s;,a) and results in an expected
reward of R(s;).

In this application, the state comprises the status of the
platform at that moment in time, as collected via telemetry.
For example, for a UAV, state may contain factors such as al-
titude, roll, pitch, yaw, ground velocity, wind speed, warning
light status, fuel status, etc. The reward function may con-
sider physical damage to the platform, stress on the control
surfaces, or simply maintenance costs from another second
of operation; these costs would be represented as negative
rewards, while success in reaching a waypoint would receive
a positive reward.

The optimal value function is the expected, discounted
sum of future costs given the current state of the platform
and an optimal pilot. Mathematically, this is represented
with the Bellman equation,

V*(s) = R(s) +7 > P(s|s, 7 () V*(s),
s’eS

where s and s’ are states in the state space S and 7* is the
optimal policy, which maps states to the action maximizing
the expected sum of future rewards.

For large or continuous state spaces, such as the ones
of interest to us, it is impossible to solve for the optimal
value function exactly, necessitating some form of approxi-
mation. There are a wide range of approaches, but the prob-
lem is well suited to L;-Regularized Approximate Linear
Programming (RALP) (Petrik et al. 2010; Taylor and Parr
2012). Given a feature matrix ® of size n x k, where n is the
number of sampled states, and & is the number of features,
RALP produces a linear approximation of the optimal value
function; this is to say, RALP provides a weight vector w
such that dw ~ V™.

RALP is based on preceding linear programming ap-
proaches to value function approximation presented by



d’Epenoux (1963), Schweitzer and Seidmann (1985), and de
Farias and Van Roy (2003). However, RALP adds L; regu-
larization. Therefore, given a set of samples 3 where each
sample consists of a state s, a reward received r, and a next
state s, the linear program solved by RALP is as follows:

min p? dw
st r4+y®(sHw < P(s)w V(s,r, ) €D
[wll1,e <.

p is a distribution over states, [|w]1,. = Y, |e(i)w(7)|,
where e(7) is 0 if ¢ corresponds to the bias feature, and 0
otherwise, and 1 is the tunable regularization parameter.

RALP is unique in several useful ways. First, RALP ap-
proximates the optimal value function V*, not the value
function of a given intermediate sub-optimal policy. Second,
it can do this with samples drawn from multiple sampling
policies, which is convenient when collecting telemetry data
from a range of missions. Third, the error in the value func-
tion is bounded, and has been experimentally demonstrated
to be close to the true optimal value function. Finally, due to
the well-known sparsity effect of L; regularization (see, for
example, Tibshirani, 1996), nearly all elements of the vec-
tor w will be zero. This means RALP performs automated
feature selection, and can do so from an extremely large,
over-complete feature set. Only the most important features
for value function approximation given the data set receive
a non-zero weight, providing an objective way of identify-
ing features that are most helpful for predicting the future
success or failure of a mission. As a value function approx-
imation, this is useful in its own right, but this feature set
may be particularly powerful as an informative complement
to other approaches mentioned in this paper.

In addition, an accurate value function approximation
may prove to be a helpful tool in identifying anomalies. Sud-
den large-magnitude drops in value may indicate the occur-
rence of an adverse event, whether it be due to mechanical
failure, worsening environmental factors, or pilot error. Ad-
ditionally, because the value function predicts expected re-
wards, a sequence of states with values which underperform
expectations may indicate a “slow and low” anomaly, such
as a consistent headwind, which may endanger timely mis-
sion success.

Predictive and Prescriptive Analytics

It is clear the DoD and the U.S. Navy are increasingly re-
liant on autonomy, machines and robotics whose behavior
is increasing in complexity. Most research indicates opera-
tional improvements with autonomy, but autonomy may in-
troduce errors (Manzey, Reichenbach, and Onnasch 2012)
that impact performance. These errors result from many fac-
tors, including faulty design assumptions especially in data
fusion aids, stochasticity with sensor/observational data, and
the quality of the information sources fed into fusion algo-
rithms. Furthermore, additional factors may include greater
sophistication and complexity and the subsequent inability
of humans to fully comprehend the reasons for decisions
made by the automated system (i.e., a lack of transparency).

In spite of these known faults, some users rely on auton-
omy more than is appropriate, known as autonomy “‘mis-
use” (Parasuraman and Riley 1997). Another bias associated
with human-automation collaboration is disuse, where users
underutilize autonomy to the detriment of task performance.

We conjecture that in order to help overcome issues asso-
ciated with misuse/disuse, the next generation of integrated
human-autonomous systems must build upon the descriptive
and predictive analytics paradigm of understanding and pre-
dicting, with a certain degree of confidence, what the com-
plex autonomous system has done and what it will do next
based on what is considered normal for that system in a
given context. Once this is achievable, it will enable the de-
velopment of models that proactively recommend what the
user should do in response in order to achieve a prescriptive
model for user interactions (Figure 1).

Descriptive
Analytics

Answers the
question, "What
happened?”
Examines data to
identify trends
and patterns.

Predictive
Analytics

Answers the
question, "What
might happen in

the future?"
Uses Predictive

Models to
forecast future.

Prescriptive
Analytics

Answers the
question, "What
is the best
decision to take
given the
predicted
future?”

Figure 1: Different forms of Analytics

By properly presenting current and future system func-
tioning to the user, and capturing user interactions in re-
sponse to such states, we believe more effective human-
automation collaboration and trust calibration can be estab-
lished. The key question is “how are the best user interac-
tions captured?”

Capturing User Interactions and Inference

Transparency in how a system behaves should enable the
user to calibrate their level of trust in the system. However,
there are still significant challenges that remain with regard
to capturing and understanding the human dimensions of su-
pervisory control in order to provide prescriptions for inter-
action. We envision several longer term challenges related to
the notion of prescriptive analytics, specifically how best to
understand and model the information interaction behaviors
of the user. These information seeking behaviors may be in
reference to the potential anomalies in the system, in rela-
tion to what is provided by the on-board sensors, etc. and
may require the development of the following capabilities:

e Adequately capturing users’ information interaction pat-
terns (and subsequently user information biases)



e Reasoning about information interaction patterns in or-
der to infer decision making context; for example, the
work being done by researchers within the Contextualized
Attention Metadata community and the Universal Inter-
action Context Ontology (Rath, Devaurs, and Lindstaedt
2009) might serve as a foundation

o Instantiating formal models of decision making based on
information interaction behaviors (potentially using cog-
nitive architectures)

e | everaging research from the Al community in plan
recognition to infer which decision context (model) is ac-
tive, and which decision model should be active

e Recognizing decision shift based on work that has been
done in the Machine Learning community with “concept
drift,” and assessing how well this approach adapts to
noisy data and learns over time

e Incorporating uncertainty and confidence metrics when
fusing information and estimating information value in re-
lation to decision utility

e Using models of cognition and decision making (and task
performance) to drive behavior development and interface
development

Lastly, research is needed to address how the autonomous
platform should adapt to user behaviors in order to balance
both mission requirements as well as servicing the needs of
the human supervisors.

Challenges and Opportunities

Elaborating on our ideas, longer-term research should be fo-
cused on the following: decision models for goal-directed
behavior, information extraction and valuation, decision as-
sessment and human systems integration.

With regard to decision models for goal-directed behav-
ior, the key research question may include how to instantiate
prescriptive models for decision making, which integrate in-
formation recommendation engines that are context-aware.
Furthermore, what are the best techniques that can broker
across, generalize, or aggregate individual decision models
in order to enable application in broader mission contexts?
Supporting areas of research may include the development
of similarity metrics that enable the selection of the appro-
priate decision model for a given situation, and intuitive de-
cision model visualizations.

The notion of information extraction and valuation would
involve locating, assessing, and enabling, through utility-
based exploitation, the integration of high-value information
within decision models, particularly in the big data realm.
This is a particular research challenge due to heterogeneous
data environments when dealing with unmanned systems. In
addition, techniques that can effectively stage relevant in-
formation along the decision trajectory (while representing,
reducing and/or conveying information uncertainty) would
enable a wealth of organic data to be maximally harvested.

In reference to decision assessment, research needs to ad-
dress what are the most effective techniques for modeling
decision “normalcy,” in order to identify decision trajecto-
ries that might be considered outliers and detrimental to

achieving successful outcomes in a given mission context.
Furthermore, techniques that proactively induce the correct
decision trajectory to achieve mission success are also nec-
essary. Metrics for quantifying decision normalcy in a given
context can be used to propose alternate sequences of deci-
sions or induce the exact sequence of decisions. This would
require pre-staging the appropriate information needed to
support the evaluation of decisions, potentially improving
the speed and accuracy of decision making.

Lastly, with regard to human systems integration, the key
challenges are in understanding, modeling and integrating
the human state (workload, fatigue, experience) as well as
the human decision making component as an integral part
of the aforementioned areas. Specific topics include: repre-
senting human decision-making behavior computationally;
accounting for individual differences in ability and prefer-
ences; assessing human state and performance in real-time
(during a mission) in order to facilitate adaptive automation;
mathematically capturing the human assessment of infor-
mation value, risk, uncertainty, prioritization, projection and
insight; and computationally representing human foresight
and intent.

Summary

The development of robust, resilient, and intelligent systems
requires the calibration of trust by humans when working
with autonomous platforms. We contend that this can be en-
abled through a capability which allows system operators to
understand anomalous states within the system of systems,
which may lead to failures and hence impact system reliabil-
ity. Likewise, the autonomy should understand the decision
making capabilities and other limitations of the humans in
order to proactively provide the most relevant information
given the user’s task or mission context.

This position paper has discussed the need for anomaly
detection in complex systems promote a human supervi-
sor’s understanding of system reliability. This is a challeng-
ing problem due to the increasing sophistication and grow-
ing number of sensor feeds in such systems which creates
challenges for conducting big data analytics. Technical ap-
proaches that enable dimensionality reduction and feature
selection should improve anomaly detection capabilities.
Furthermore, building models that account for the context of
each situation should improve the understanding of what is
considered an anomaly. Additionally, we argue that anoma-
lies are more than just statistical outliers, but should also be
based upon whether they hinder the ability of the system to
achieve some target end state. Understanding anomalies, we
believe, should inform, and make more effective, the user’s
interaction with system. The interaction may include learn-
ing more about the anomaly through some form of query,
command and control of the situation, entering into some
emergency control procedure, etc.

Numerous research questions remain about the most ef-
fective interactions between human and autonomy. We be-
lieve the following research areas require further exploration
in order to build more robust and intelligent systems. First,
researchers should seek to capture users’ interaction pat-
terns (and subsequently user information biases) and rea-



soning about interaction patterns in order to infer decision
making context. The work being done by researchers within
the Contextualized Attention Metadata community and the
Universal Interaction Context Ontology (Rath, Devaurs, and
Lindstaedt 2009) might serve as a foundation for this ap-
proach. Second, instantiating formal models of human de-
cision making based on interaction behaviors would lead to
autonomous recognition of human capabilities and habits.
Third, leveraging research from the Al community in plan
recognition would allow for the inference of active deci-
sion contexts (model), and decision model selection. Fourth,
adapting work that has been done in the Machine Learning
community with concept drift, to recognize decision shifts
and assess how well this approach adapts to noisy data. Fi-
nally, it is necessary to incorporate uncertainty and confi-
dence metrics when fusing information and estimating in-
formation value in relation to decision utility.

In order to build trusted systems which include a human
component performing supervisory control functions, it is
vital to understand the behaviors of the autonomy as well
as the human (and his/her interaction with the autonomy).
This should provide a holistic approach to building effective
collaborative human-automation systems, which can operate
with some level of expectation and predictability.
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