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Abstract—The acoustic lens is a high-resolution, forward-
looking sonar for three-dimensional (3-D) underwater imaging.
In this paper, we discuss processing the lens data for recreat-
ing and visualizing the scene. Acoustical imaging, compared to
optical imaging, is sparse and low resolution. To achieve higher
resolution, we obtain a denser sample by mounting the lens on a
moving platform and passing over the scene. This introduces the
problem of data fusion from multiple overlapping views for scene
formation, which we discuss. We also discuss the improvements in
object reconstruction by combining data from several passes over
an object. We present algorithms for pass registration and show
that this process can be done with enough accuracy to improve
the image and provide greater detail about the object. The results
of in-water experiments show the degree to which size and shape
can be obtained under (nearly) ideal conditions.

Index Terms—Acoustic imaging, acoustic lens, pass registra-
tion, 3-D underwater imaging.

I. INTRODUCTION

T HE CAPABILITY to image underwater objects with
high resolution is important in many scientific and en-

gineering applications. Optical cameras and lasers provide
high-resolution images that can be easily interpreted, but their
visibility is limited to distances of no more than tens of meters
in clear water. They fail at centimeter ranges in turbid water, a
common condition in coastal waters and in waters disturbed by
people. Acoustic signals, however, propagate in turbid water
with little degradation. Thus, acoustical imaging becomes the
principal means of sight in this environment. In some cases,
such as in studying ocean floor hydrothermal plumes, sonars
are the preferred imaging devices, since acoustic wave prop-
agation and scattering are much more sensitive to variations
in temperature, salinity, etc.

Conventional sonars operate at longer ranges than optical
instruments. Low-frequency mapping sonars survey wide
swaths of ocean bottom, but only resolve features larger than
tens of meters. As the acoustic frequency rises, resolution
improves but range decreases. Sidescan sonars can produce
inches resolution on a two-dimensional (2-D) projection, but
do not directly resolve height information. The acoustic lens,
described in Section II, is a new high-frequency, forward-
looking sonar developed especially for three-dimensional
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(3-D) underwater imaging. It has high-resolution (for the
ocean), and is best suited for close-up imaging (distances
of several meters). The lens, which is a delay-and-sum
beamformer, eliminates the need for beamforming electronics,
an advantage when size, weight, and power consumption of
the sensor are important.

The acoustic lens and other high-resolution imaging sonars
are still low resolution compared to optical imaging devices.
For example, the lens prototype discussed in this paper has a
resolution of 25 cm at a range of 10 m. Thus, taking a single
snapshot of the scene yields a sparse, low-resolution image. To
obtain a denser data set, and improve the resolution, we mount
the lens on a moving platform and make a pass (or several
passes) over the scene. This data collection strategy introduces
the problem of sensor position information, and the attendant
difficulties of registering and combining data. In this work,
the lens is mounted on a carriage in a tow tank and moves
with a known velocity. Thus, highly accurate positional data
for the lens is available, a luxury lacking in most underwater
operations. These experiments serve to demonstrate the limits
of what can be achieved by this sensor mounted on a moving
platform.

The acoustic lens outputs 3-D gray-level data with nonuni-
form resolution. The grayness is the intensity of acoustic
backscatter from surfaces. In this paper, we discuss the tech-
niques for the various steps that are involved in obtaining
clear 3-D images from the raw lens data. In Section III,
we discuss scene reconstruction techniques. In Section IV,
we discuss filtering and rendering algorithms, and present
the results of controlled in-water experiments in a tow tank.
The object sizes and their features in the experiments are
of the order of one meter to a few centimeters. They are
viewed from distances of several meters. We also discuss
combining images taken in several passes to improve the
resolution of the reconstructed objects. Sensor position data in
a pass relative to other passes are not accurately known even
in the controlled experiments conducted here. In Section V,
we develop appropriate registration techniques to align and
combine data from several passes.

II. THE ACOUSTIC LENS

Traditional sonar systems use mechanical or electrical beam-
forming techniques to scan a highly directional beam over a
field of view. Acoustic lens technology, on the other hand,
forms high-resolution, conical beams by focusing sound on
small transducers populating a retina (see Fig. 1). Transmis-
sion time delays determine range, while transducer position
yields bearing and elevation coordinates. Lens technology [4]
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Fig. 1. Lens focusing diagram.

is not new, but recent advances in digital electronics now
permit dealing with a large volume of data in real time. The
acoustic lens prototype discussed in this paper is described in
[2]. We include a brief description here.

The lens retina is populated with transducers in eight rows
of 16 elements each. The transducers in each row are separated
and the rows staggered to produce 1.5resolution beams at the
3 dB points in both azimuth and elevation. The hemispherical
retina and the acoustically transparent hemispherical lens
window together form a cavity that is filled with a fluid. The
fluid has a speed approximately 60% of the sound speed in
water, and refracts the sound entering the window to focus on
the retina. This lens has a field of view of 48in azimuth and
12 in elevation. Its operating frequency is 300 kHz, which
corresponds to a wavelength of 0.5 cm in water. Each beam
has a conical beam pattern for transmit and receive. The range
bins, set by the sampling rate, are about 10 cm for ranges up
to about 100 m. The sensor is designed to focus in an ambient
temperature range that spans 13Celsius without having to
change the lens fluid.

In the active mode, a row of transducers on the lens retina
simultaneously emit a pulse and then receive and record the
energy of the backscattered waves. There are two sources
of scattering; the first is volume scattering caused by the
inhomogeneities in the water due to air bubbles, density
fluctuations of colloidal particles, etc. The second source is
scattering from interfaces such as water-seafloor, or object
surfaces, where there is a significant change in the index of
refraction. Volume scattering is usually much weaker than
surface scattering and in processing of the lens data can be
filtered out with thresholding. The signals received by each
transducer are first corrected for beam spreading (spherical
spreading in deep water, or cylindrical spreading in shallow
water), so that the recorded backscatter signal (in dB) [21] is
proportional to

is the coefficient of surface scattering, is the area element
on the scattering surface, and are transmit and receive
beam patterns, and and are the polar and azimuth angles

of the area element with respect to the transducer axis.
has a fanlike pattern composed of 16 narrow cones, while
is a single narrow cone. As we see from the expression for,
the backscatter signal depends on the surface material, as well
as the scattering angle, so that a plastic surface ensonified at
near normal incidence angles appears like a metallic surface
ensonified at a slant.

A sonar beam is strongly backscattered whenever it crosses
an interface separating two media with significantly different
indices of refraction. For example, if a metallic object is
ensonified by a sonar, the beam is backscattered both as it
enters and exits the object. The backscatter from the front sur-
face is obviously stronger, but the return signal from the rear
surface can also be significant and contain useful information.
The acoustic lens senses and retains both reflections. This is
unlike threshold sonars often used for robot navigation, where
the information after the first strong return is discarded. The
acoustic lens also uniquely localizes the backscatter signal,
unlike 3-D interferometric sonars, which may yield ambiguous
elevations [19]. These advantages make the lens a unique sonar
for viewing 3-D underwater scenes.

III. SCENE RECONSTRUCTION FROM ASINGLE PASS

For scene reconstruction, we partition the space into a
3-D grid of cubic voxels. This regular voxel-based volumetric
representation of the environment is well suited for transmis-
sion, image processing, and manipulations by most graphics
algorithms. We wish to estimate the return signal strength from
within each voxel. High voxel values indicate the presence of
objects or interfaces at those locations.

The acoustic lens has a constant resolution,, along range
which is set by the sampling rate. Its lateral resolution,
however, depends on range,, as , where
is the angle of the conical receive beam pattern. For example,
at 1 m range the lateral resolution is 2.5 cm, and at 10 m range
it degrades to 25 cm. Hence, keeping the lens stationary and
taking a snapshot produces data with inadequate resolution.
Since we wish to image small objects and resolve small
features, then the scenario for imaging a scene is constantly to
move the lens as it continually pings and collects backscatter
signals and, if possible, to make several passes over the scene.
In this manner, one obtains a dense set of data with much
greater resolution. The issue of correcting for navigational
errors and misregistration of passes is a difficult problem in
its own [10]. In this section, we assume the exact position
and orientation of the lens are known at all times with
respect to a global coordinate system fixed to the scene. We
discuss registering and combining data from multiple passes
in Section V.

Estimating voxel values involves two stages. First, since
each range bin intersects several voxels its backscatter must
be distributed among them. Second, a voxel is typically
ensonified by several beams, resulting in different estimates
that must be combined to yield a single value. Algorithms
for distributing returns involve modeling the beam pattern and
computing range bin intersections with voxels. This is concep-
tually straightforward, but it can be computationally intensive.
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Algorithms for combining estimates can be nontrivial because
we may have to deal with occlusions, partial ensonifications,
and differences in angle of incidence. In this section, we
discuss several techniques for distributing and combining the
data.

The voxel size is also an important consideration. As we
noted, because of its conical beams, the acoustic lens produces
data with varying spatial resolutions. In the near range, it
has high resolution, but as the range increases the volume
of range bins increase as range-squared. In multiple-pass
scenarios the same part of the scene may be sampled with
different resolutions. Since the scene is not sampled with
uniform resolution, one may have to choose different voxel
sizes for reconstructing different regions. Experience guides
us to choose voxels with volumes comparable to the volume
of the range bins in the region(s) of interest; also the number of
voxels spanning a given region should be roughly comparable
to the number of data points within that region.

For gridding the data, the range bins must be mapped onto
the scene coordinate frame. This is done by first transforming
the range data in the polar coordinate system to the
Cartesian coordinate system attached to the lens.
The elevation angle,, and the azimuth, , are known from
the row and column of the transducer on the lens retina. Then
we transform to the global Cartesian coordinates

fixed to the scene, which requires sensor position data.

A. Distributing Single Returns

The backscatter energy received in a range bin is the sum
of all returns from everywhere in that bin. Since a range bin
typically overlaps with several voxels, the energy must be
distributed among those voxels. Denote the backscatter energy
of range bin by , and the contribution of voxel to this
backscatter energy by . The general scheme for estimating

is

(1)

where the weight normalization sum is over all voxels that get
a share of the backscatter signal of range bin. The problem
is to assign appropriate weights to voxels.

In the absence of other information, it is reasonable to
assume that the backscatter signal coming from a voxel
is proportional to its volume overlap with the range bin,
convolved with the receive beam pattern profile. Thus we
must find all voxels that overlap with range bin; compute
the volume overlap of each of these voxels with the range
bin; convolve it with the beam pattern to obtain the effective
overlap volume ; and set . However, computing
the exact volume overlap of two solid objects when they
are positioned arbitrarily is a nontrivial task, even for simple
geometries such as a cube (the voxel) and a spherical cone
slice (the range bin). We used the following approach: divide
the cubic voxel into a large number of small cubic cells, say

cells; determine if the center of each cell falls inside the
conical slice, then the volume overlap is proportional to the
number ofin cells to . This is computationally expensive,

since the cost goes up as with the desired accuracy. Yet the
results are not much different from other schemes commonly
used. Below we discuss two such algorithms.

Algorithm 1: Consider the grid made up of voxel centers.
Find the cell in which the center of range bin, , falls.
Distribute the backscatter energy among the eight grid
points (or voxels) forming the cell according to their distances
from the range bin center, i.e., , where
is the center of voxel, and is a positive integer (we used

).
Algorithm 2: Find the voxel inside which the range bin

center falls, and assign all of the backscatter energy to that
voxel, i.e., .

Algorithm 1 is only slightly slower than Algorithm 2, but
the results are more satisfactory. In the experiments we have
analyzed, the scenes reconstructed using Algorithm 1 agrees
better with the ground truth, and appear less noisy because
the scheme performs a degree of smoothing. Furthermore,
Algorithm 2 is sensitive to the positioning of the voxel grid.
For example, if we displace the grid along any direction (
is the grid size), the reconstructed scene becomes noticeably
distorted. This effect is present also in Algorithm 1 but to
a far lesser degree, especially if the voxel size is chosen
appropriately, i.e., comparable to the size of the range bins.
Note that both algorithms implicitly assume that range bin
sizes are constant. If we wish to take into account the variable
range bin size we may use the Gaussian weighting function

with chosen proportional to the range bin volume. The
differences between these schemes become less pronounced
as the scene is sampled more densely. The figures presented
in this paper have been produced using Algorithm 1.

B. Combining Multiple Estimates

Each voxel typically receives contributions from several
range bins, and the question is how to estimate the backscatter
energy from voxel from the set of returns . Unlike
evaluating , estimating is not straightforward, since
the voxel values from individual range bins may have been
obtained under very different conditions. The following two
extremes illustrate this point.

Consider the empty voxel, which is near the surface of an
object. Suppose a particular range bin in beam 1 that covers
this voxel has no overlaps with the object and has zero return.
One would estimate that . Suppose a given range bin
in beam 2 covers voxel and overlaps with the object. Since
the return is significant one would estimate that the voxel is
nonempty, i.e., , and so on, with other beams that
ensonify voxel . In this case

yields the correct estimate, namely that voxelis empty. Now
consider the case where voxelis on the surface of an object.
Suppose a given range bin in beam 1, which covers the voxel,
views the object at normal angle. Since the return is strong, we
would assign a high value to . Suppose a given range bin
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in beam 2 also covers the voxel but views the object surface
at a near tangential angle. Since the return is weak we would
assign a near zero value to , and so on. In this case

yields the best estimate, that is voxelis nonempty.
As a simple compromise, we treat all gridded backscatter

values identically and take their unbiased average

(2)

to be the voxel estimate. Here is the number ofhits
received by voxel . For the experiments we have analyzed,
this scheme yielded results that agreed well with the ground
truths, and performed significantly better than the above-
mentioned two extreme cases. For cases where the scene is
cluttered with many objects and occlusion is frequent, one
may have to develop more elaborate algorithms based on
Bayesian evidence accumulation techniques, or Kalman filter
for dynamic scenes or when the sensor position information
is uncertain. Note that the gridding algorithms presented here
can process data sequentially and update the voxel estimates
as new data stream in.

IV. EXPERIMENTS

In this section, we present results of controlled experiments
performed with the acoustic lens that illustrate how well
underwater objects can be reconstructed. In these examples the
lens is mounted on a carriage in a tow tank and moves on a
straight line at constant speed. Objects are placed on or near the
tank bottom and the lens passes over them. The carriage speed
is fairly low, about 0.3 knots, and a pass is completed within 1
min. The bottom is made of concrete, and the backscatter from
it is so strong that we are able to deduce its position accurately.
Since our purpose is to find out how objects appear to the
acoustic lens, the bottom has been replaced in the reconstructed
scene with a constant intensity plane. Two experimental data
sets are examined. In the first, the lens passes over five metallic
spheres with diameters ranging from 25 to 45 cm that are
suspended 1 m above the bottom of the tow tank. In the second
case, which is of greater interest because we pass over a larger
object with different scale features, the lens passes over a 1.6-
m long remotely operated vehicle (ROV). For both data sets,
the scenes shown in this section are reconstructed from single
passes over the objects.

After obtaining a 3-D gray-level image, we must use a
technique to get a clear view of the objects of interest through
ambient noise. There are two main approaches to visualizing
3-D scalar data: volume rendering and surface rendering [5],
[11]. In volume rendering we assign to each voxel a color
and a partial transparency, and then form images by blending
together colored, semitransparent voxels that project to the
same pixel on the image plane. In surface rendering, we first
apply a surface detector to the volume data, then tile the
surface with polygons and finally render the surface. The main
drawback in surface rendering is that we have to classify each

voxel as belonging to a surface or not. Its advantage is in
rendering speed.

There are various techniques for surface reconstruction. One
approach that we have used is to first identify voxels that
are surface candidates, i.e., voxels that indicate discontinuity
in the backscatter intensity, and then reconstruct a surface
from these voxels. For discontinuity detection one may use,
for example, the technique of [12]. For surface reconstruction
there are a number of techniques; see [3] and the references
therein. Another approach is to perform the detection and
reconstruction simultaneously; see [20]. The marching cubes
algorithm [14] is also a valuable tool for quickly obtaining
a surface, by approximating thetrue surface with aniso-
value surface. Surfaces reconstructed with these techniques
and rendered using Phong shading produce realistic looking
objects. Nevertheless, we find that (for the data obtained
by this sensor) volume rendering produces images that look
more similar to the actual objects. We believe it is because
of the relatively uncertain position of surface voxels due to
low resolution as well as sensor motion blur. (For higher
resolution, sensors on stationary platforms surface rendering
produces equally good images [8].) The scenes are typically

cubic voxels, which can be relatively slow to render.
However, more efficient ways of volume rendering are being
developed [1]. The computer images presented in this paper
are generated by volume rendering with an adaptive subvoxel
trilinear interpolation of the gray-level values.

The backscatter intensity from objects’ surfaces exceed the
sensor/ocean noise levels at these ranges, yet the partial opacity
of noisy voxels prevents us from getting a clear view of the
objects of interest. Thus, we have to filter the scene before
volume rendering. We have found that thresholding alone is
unsatisfactory, because certain voxels belonging to objects
may be eliminated. To prevent this, each voxel below the
threshold is tested. It is kept only if at least of its 26
neighbors exceed the threshold. At the same time, we wish
to eliminate stray voxels that happen to have high values,
possibly because of secondary backscatter. Hence, each voxel
above the threshold is also tested to verify that some number
of neighboring voxels are also above the threshold. Images
thus obtained with are fairly similar, which gives
us a measure of confidence as to the validity of these filtering
operations. The effects of these filters are shown for the ROV
below. Similar filters for 2-D images are discussed in [17].

A. Spheres

In this experiment, a constellation of five metallic spheres
are suspended at a height of about 1 m above the bottom of
the tow tank. Fig. 2 shows the sketch of the experiment. The
three small spheres lined up along the lens track are 25 cm
in diameter, while the diameter of the two large spheres is 45
cm. The tow carriage moves the lens over the spheres at a
known rate of speed. In Fig. 3, we display the reconstructed
spheres viewed from the top and the side of the tow tank.

The recreated scene, in spite of distorted appearance of some
of the spheres, is in good agreement with the ground truth. The
spheres stand out clearly at the correct locations in the scene;
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Fig. 2. Sketch of the experiment with five spheres. The arrow indicates the
lens’s track.

Fig. 3. Top and side views of a volume rendered scene with five spheres.

note that one of the spheres is mounted on the pallet, and even
this detail is correctly recreated in the acoustic snapshot—that
sphere appears higher in the side view of Fig. 3. The sizes
of the objects are also recovered correctly to within voxel
dimensions. Although the spatial digitization relative to the
object size is too coarse to yield much shape information
(the diameters of the spheres span only three to five voxels),
nevertheless the objects have a spherical appearance. In this
experiment, the closest distance for viewing the spheres is 8
m. That is the single beam lateral resolution at target is at
best, m, or 20 cm, which is comparable
to the diameter of the spheres. Thus, imaging the spheres
with a stationary lens would not have yielded their correct
sizes, much less their shapes. Remarkably, by moving the lens,
the resolution of the reconstructed spheres is increased to the
degree that even their shapes may be inferred.

B. The ROV

In this experiment, the 1.6-m-long ROV (see Fig. 4) used
in underwater explorations is placed on a small pallet on the
bottom of the tow tank. Several passes were made over the
ROV, changing the ROV’s angle with the lens track direction
by 30 each time. In Fig. 5, we show acoustic images of the
ROV, reproduced from single passes. The orientation angle
of the ROV’s long axis with respect to the lens track is

Fig. 4. Picture of the 1.6-m-long ROV. The circle shows the lateral resolu-
tion of a single transducer at the object.

Fig. 5. Acoustic images of the ROV made from single passes: run one, top
left; run two, top right; run three bottom left; run four, bottom right. Voxel
size is 12 cm.

(approximately) 90, 60, 30, and 0, in runs one through four,
respectively. For comparison with the ROV’s picture, all four
runs displayed in Fig. 5 are viewed from angles that roughly
correspond to the same viewing angle as in Fig. 4. The scenes
are processed and volume rendered as described earlier in
this section. The dimension of the cubic voxels in Fig. 5 is
12 cm. The recreations of the ROV have the correct size,
dimensions, and orientations with respect to the tow tank. One
can also discern the outlines of the head and the body of the
ROV in the volume rendered images of runs one and two.
Finer features with sizes less than or comparable to a voxel
dimension (12 cm) are, of course, not discernible because of
insufficient resolution.

Fig. 6 is the same as Fig. 5, except here the voxel dimension
is 8 cm. These figures show the effects of voxel size. The
data is obviously too sparse to support the higher resolution
reconstructions, as the recreated objects (with the possible
exception of run one) have lost their resemblance to the ROV.
Our main purpose, however, in showing the single passes at
this higher resolution is for comparison with the results we
obtain in the next section when we register and combine these
four passes. When the data from four passes are combined,
there are roughly four times as much data, and the conjecture
is that the number of voxels may be increased by roughly
a factor of four. This suggests a voxel size of 8 cm for
the combined four-pass data; the ratio of voxel volumes is
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Fig. 6. Same as Fig. 5. Voxel size is 8 cm.

Fig. 7. Reconstruction of the ROV from run one without filtering the scene.
Voxel size is 8 cm.

. The results of Section V agree with this
conjecture (see Fig. 9).

In Fig. 7, we show the scene recreated from run one data
without the use of the -neighbor filtering described above.
Comparing this result with the filtered scene given in Fig. 6,
shows the effects of this filtering in cleaning the noise as well
as preserving certain features.

V. REGISTRATION OF MULTIPLE-PASS DATA

Combining data from several passes should result in re-
duced random noise and increased resolution. This would be
straightforward if sensor position data were always accurate.
However, in practice, ships and underwater vehicles in the
ocean are affected by a variety of factors, such as currents;
thus, position information contain significant inaccuracies.
Accordingly, algorithms are required to correctly align the
multiple views of the scene. In bottom mapping, misregis-
trations of hundreds of meters are common, and complex

Fig. 8. The ROV as reconstructed from all four passes without registration.
Voxel size is 8 cm.

Fig. 9. The ROV as reconstructed from four passes after registration. Voxel
size is 8 cm.

techniques are needed to register intersecting swaths of bathy-
metric data [10]. Even controlled conditions in the tow tank
left much to be desired. To produce data equivalent to making
multiple passes over a fixed object from different angles,
several runs were made over the ROV with its orientation
in the - plane (the cross-track-along-track plane) changed
by a nominal value of 30for each run. For moving the ROV
between runs, upon the completion of a run, divers lifted the
ROV and replaced it on a pallet along lines at 30intervals
about a center point.

We have processed the four runs, described in the previous
section, to determine what can be gained by using multi-
ple passes. Not surprisingly, the recorded positions of the
ROV’s proved to be inexact. Fig. 8 shows the ROV using
data from all four runs without performing any registration
corrections—clearly, correction for the misalignment of passes
is needed!
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Suppose, in two different passes, we obtain two views of the
same scene (views and ), which partially overlap. View

is shifted and rotated with respect to by an unknown
amount because of the lack of precise position information
for the sensor platform (or for the object, in our experiment).
The registration process requires computing translational and
rotational adjustments so that the overlapping portions of
and properly align. Note that these are 3-D range images,
hence the scale is known.

A common approach in scene matching is to detect corre-
sponding features and then match them. However, the low data
resolutions do not provide distinguishing features. Another
approach, perhaps better suited to this data, is to enclose the
object in in a box; use the box as the template and find
its best match in scene by minimizing a distance measure
such as

where is a translation followed by a rotation, and the integral
is over the template volume. Here and denote the
gray-level values of the two scenes. The action ofon the
template is nonlinear, hence, minimizing with respect to
transformation parameters has to be carried out through an
iterative downhill search, which may fail to find the correct
answer. Or, one may attempt an exhaustive search by trying all
translations and rotations. Both techniques are computationally
expensive. We have found that matching moments instead to
register the scenes yields satisfactory results. Below we give
a description.

A. Matching Moments

The use of moments for 2-D image representation and
pattern recognition was first discussed by Hu [6]. Moment
invariants were extended to 3-D by Sadjadi and Hall [18] and
have been further refined by Lo and Don [13]. The moments
of a 3-D scene are defined as

(3)

In these experiments, the ROV is the dominant object and
appears unoccluded in every pass. By thresholding, we may
segment it from the background with reasonable accuracy. The
scene after thresholding becomes a binary image. The zeroth
moment is thus a normalizing factor and is a measure
of the volume of the object. The normalized first moments

(4)

are the coordinates of the object centroid. The difference in
the centroids of and uniquely determines the translation
of scene .

We also need the normalized central moments defined as

(5)

The eigenvectors of the matrix of second order central mo-
ments

(6)

are the orientations of the principal axes of the object. The
largest eigenvalue corresponds to the longest axis, etc. By
matching the corresponding principal axes of the object in
scenes and , we can determine how much scenemust
be rotated. The rotation matrix,, may be constructed from

(7)

where and (superscript stands for
transpose) are the eigenvectors of the matricesand
with corresponding eigenvalues, i.e.,

(8)

Under ideal conditions, the eigenvalues .
The rotation matrix has an eightfold ambiguity, due to the

ambiguity in the positive directions of the principal axes
and relative to each other. If we require and

to form right-handed coordinate systems such that
and , then the ambiguity is

only fourfold. This ambiguity can be resolved by matching
third-order moments in the following manner. First, we form
vectors and from the third-order moments

(9)

Then we calculate by rotating , i.e., where
is the rotation matrix candidate transformingto , and

compare it to . That which is identical (or closest) to
is obtained with the correct rotation matrix.

We note that if the scene is composed of several objects,
registration by moment matching can still be solved in closed
form by using the 3-D line matching technique presented in
[9].

B. Results

In practice, the data is discrete, so the integrals become sums
over voxels above a selected threshold. For a wide range of
thresholds, both the centroids and principal axes were stable.
As an example, in Table I we present the centroid location and
the axes orientations as a function of the intensity threshold for
run two. The centroid varies by about 1 cm and the principal
axes by less than 3, for thresholds ranging from 300 to
900. Other runs yield similar results. This demonstrates the
reliability of the process.

Table II contains translational and rotational corrections for
the four runs. In this table we assume run four position is
correct, and list the required adjustments to register the other
runs. We see that cross-track positional estimates were in
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TABLE I
ROV’s ESTIMATED POSITION IN RUN TWO FORDIFFERENT INTENSITY

THRESHOLDS; THE MAXIMUM INTENSITY IS 4200.(xc; yc; zc) ARE THE

CENTROID COORDINATES.� IS THE ANGLE OF THE ROV’s LONG AXIS WITH

THE LENS TRACK, AND � IS ITS ANGLE WITH THE TANK BOTTOM PLANE

TABLE II
TRANSLATION AND ANGULAR ADJUSTMENTSFOUND USING THE

REGISTRATION ALGORITHMS. ROTATION ANGLES WERE NOMINALLY 90,
60, 30,AND 0�. CORRECTIONSARE SHOWN RELATIVE TO RUN FOUR

error by a few cm, along track estimates by nearly 1 m, and
rotational estimates by nearly 10. The rather large along-track
corrections are primarily due to inaccuracies in recording the
time the moving lens started collecting data. Rotational angles
involving depth (i.e., roll and tilt angles), as well as vertical
translations, were very small (as one would expect since the
ROV was resting on the pallet). We do not list these very
small ( and cm) angles and shifts in Table II. The
small depth rotational angles and translations provided further
evidence of the stability of the process.

Fig. 9 shows the ROV using registered data from the four
runs. A comparison with Fig. 4 shows that the appearance of
coarser features has improved, and that small features such
as the strobe lights and cameras in the head and the large
thruster on the side now appear in the reconstructed figure
as bumpsin the appropriate locations. Note that the closest
viewing distance of the ROV by the lens is about 8 m. This
means that a conical receive beam has a circular footprint with
diameter of 20 cm on the ROV, which is as large as the radius
of the ROV’s head. Hence, it is remarkable that the ROV can
be reconstructed with the degree of detail seen in Fig. 9.

VI. CONCLUDING REMARKS

We have presented techniques for scene reconstruction,
filtering, pass registration, and visualization of backscatter data
obtained by an acoustic lens mounted on a moving platform.
The resulting 3-D underwater images show a remarkable de-
gree of detail, even though the lens resolution is fairly low (25
cm at a distance of 10 m) compared to the imaged objects. The

images presented here are taken under controlled conditions
where the lens position and pose is known accurately at all
times during a pass, thus these images show the limits of what
can be achieved with a moving lens.

The fundamental limitation of underwater imaging with the
acoustic lens, and other 3-D imaging sonars, is the sparse,
low-resolution data, compared to TV images. The low sensor
resolution can be partially overcome by obtaining a denser
data set. This is done by moving the sensor over the scene
to obtain many overlapping views, as well as by combining
data from several passes over the object. In most practical
situations, however, where the imaging system is held by a
diver or is subject to unknown motions, the sensor position
may not be known accurately enough. Also, pass registration
is a nontrivial problem in a controlled experiment in a tow tank
and will be even more difficult in the ocean. These factors
can introduce noise, distort objects, and further blur small
scale features. Clearly, higher resolution imaging sonars are
needed. Lens-based acoustic imaging system prototypes with
centimeter resolutions are currently being developed [7], [8].
The image acquisition of these systems, however, are not yet
real time. The image processing and visualization techniques
discussed here are applicable to newer lens prototypes.

An effect that is present in acoustic imaging (more so
than in optical imaging) is interreflection of acoustic waves
between objects, or between objects and the bottom. These
interreflections produce noise and false surfaces. Detection
and removal of these surfaces with standard image processing
techniques does not appear to be possible. We are developing
techniques, similar to the recent works in optical imaging
[15], for detection of false surfaces due to interreflection. This
will allow a cleaner reconstruction of scenes from acoustic
backscatter.

ACKNOWLEDGMENT

The authors thank colleagues at the Naval Research Labora-
tories, E. Carey and C. Jones for organizing the experiments,
and Behrooz Kamgar-Parsi for many helpful discussions.

REFERENCES

[1] R. Avila et al., “VolVis: A diversified volume visualization system,”
in Proc. IEEE Visualization’94 Conf., Washington, DC, Oct. 1994, pp.
31–38.

[2] E. O. Belcher, D. Steiger, and L. J. Rosenblum, “A forward looking
active acoustic lens,” Tech. Rep. APL-UW TR 9113, Appl. Phys. Lab.,
Univ. Washington, Seattle, WA, May 1991.

[3] R. M. Bolle and B. C. Vemuri, “On three-dimensional surface recon-
struction methods,”IEEE Trans. Pattern Anal. Machine Intell., vol. 13,
pp. 1–13, 1991.

[4] D. L. Folds, “Status of ultrasonic lens development,” inUnderwater
Acoustic and Signal Processing, Proc. NATO Adv. Study Inst., Copen-
hagen, Denmark, Aug. 1980, pp. 263–279.

[5] H. Fuchs, M. Levoy, and S. M. Pizer, “Interactive visualization of 3D
medical data,”Computer, pp. 46–51, Aug. 1989.

[6] M. K. Hu, “Visual pattern recognition by moment invariants,”IEEE
Trans. Inform. Theory, vol. IT-8, pp. 179–187, 1962.

[7] B. Johnsonet al., “3-D acoustic imaging with a thin lens,” inProc.
IEEE Oceans’93 Conf., Victoria, B.C., vol. 3, pp. 444–449.

[8] B. Kamgar-Parsi, B. Johnson, D. L. Folds, and E. O. Belcher, “High-
resolution underwater acoustic imaging with lens-based systems,”Int.
J. Imag. Syst. Technol., vol. 8, pp 377–385, 1997

[9] B. Kamgar-Parsi and B. Kamgar-Parsi, “Matching sets of 3-D line
segments,” Tech. Rep. AIT-95-007, Inform. Technol. Div., Naval Res.

Authorized licensed use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore.  Restrictions apply. 



KAMGAR-PARSI et al.: UNDERWATER IMAGING 99

Lab., Washington, DC, 1995. Also,IEEE Trans. Pattern Anal. Machine
Intell., vol. 19, pp. 1090–1099, 1997.

[10] B. Kamgar-Parsiet al., “Toward an automated system for a correctly
registered bathymetric chart,”IEEE J. Oceanic Eng.,vol. 14, pp.
314–325, 1989.

[11] A. Kaufman,Volume Visualization. Los Alamitos, CA: IEEE Comput.
Soc., 1990.

[12] D. Lee, “Coping with discontinuities in computer vision: Their detection,
classification, and measurement,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 12, pp. 321–344, 1990.

[13] C.-H. Lo and H.-S. Don, “3-D moment forms: Their construction and
application to object identification and positioning,”IEEE Trans. Pattern
Anal. Machine Intell., vol. 11, pp. 1053–1064, 1989.

[14] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D
surface construction algorithm,”Comput. Graph., vol. 21, pp. 163–169,
1987.

[15] S. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,”Int.
J. Comput. Vis., vol. 6, pp. 173–195, 1991.

[16] L. Rosenblum and B. Kamgar-Parsi, “3D reconstruction of small under-
water objects using high-resolution sonar data,” inProc. IEEE Symp.
Autonomous Underwater Vehicle Technology, Washington, DC, June
1992, pp. 228–235.

[17] A. Rosenfeld and A. C. Kak,Digital Picture Processing. New York:
Academic, 1982.

[18] F. A. Sadjadi and E. L. Hall, “Three-dimensional moment invariants,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 2, pp. 127–136, 1980.

[19] W. K. Stewart, “Three-dimensional modeling of seafloor backscatter
from sidescan sonar for autonomous classification and navigation,” Tech.
Rep. 7120, Woods Hole Oceanograph. Inst., Woods Hole, MA, Jan.
1990.

[20] R. Szeliski, D. Tonnesen, and D. Terzopoulos, “Modeling surfaces
of arbitrary topology with dynamic particles,” inProc. IEEE Conf.
Computer Vision and Pattern Recognition, New York, June 1993, pp.
82–87.

[21] R. J. Urick,Principles of Underwater Sound. New York: McGraw-Hill,
1983.

Behzad Kamgar-Parsi (M’89) received the Ph.D.
degree in theoretical physics from the University of
Maryland, College Park.

He joined the Naval Research Laboratory (NRL),
Washington, DC, in 1990, where he is currently a
Research Scientist in the Information Technology
Division. Before joining NRL, he was a Research
Scientist at the Computer Vision Laboratory, Uni-
versity of Maryland, and a Post-doctoral Fellow at
Rockefeller University, New York, NY. His areas of
interest include image processing, computer vision,

and neural networks.
Dr. Kamgar-Parsi has served on program committees of conferences on

neural networks, visualization, and computer vision. He is a member of the
IEEE Computer Society, APS, and Sigma Xi.

Lawrence J. Rosenblum(M’90–SM’94) received
the Ph.D. degree in number theory from The Ohio
State University, Columbus.

He is Director of VR Systems and Research in the
Information Technology Division, Naval Research
Laboratory, Washington, DC, and Program Officer
for Visualization and Computer Graphics at the
Office of Naval Research. His research interests
include VR, scientific visualization, and human-
computer interfaces.

Dr. Rosenblum is on the editorial board of
IEEE COMPUTER GRAPHICS AND APPLICATIONS, the IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS, and the Journal of the Virtual
Reality Society. He is a previous Chairman and current Director of the IEEE
Technical Committee on Computer Graphics. He is a member of the IEEE
Computer Society, ACM, Siggraph, and the American Geophysical Society.

Edward O. Belcher (M’90) received the Ph.D.
degree in electrical engineering from the University
of Washington, Seattle.

He is a Principal Engineer at the Applied Physics
Laboratory, University of Washington. His current
research is in the development of both liquid-filled
and solid, thin, acoustic lens technology that can be
applied to a variety of multibeam sonar systems. He
recently lead a team that developed a 36-lb diver-
held sonar with a sector scan containing 64 0.5�

beams. Earlier projects have included underwater
telemetry, enhancement of speech from deep-see divers in an oxygen-helium
environment, quantification of fish in rivers, and characterization of bubbles
in the bloodstreams of divers as they decompress. He has also taught in
the Departments of Electrical Engineering and Speech and Hearing Sciences,
University of Washington, Seattle.

Authorized licensed use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore.  Restrictions apply. 


