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ABSTRACT 

Low-visibility conditions for navigation of vehicles 
are a frequent occurrence.  Driving at night, in 
blizzards, in sand storms, or in fog form an obvious 
set of challenging conditions.  Remote operation of 
unmanned vehicles through a camera image provides 
a similar difficulty.  Gathering intelligence from 
satellite imagery can similarly benefit from 
improved visibility.  Advanced image processing 
techniques (e.g., contrast enhancement or tone 
mapping) purport to improve the perceptual quality 
of images that lack the contrast or color depth 
perceived by the human visual system (HVS).  
Applying such an algorithm intelligently to these 
low-visibility conditions gives us the ability to 
provide a perceptually usable assisted-vision system.   

One premiere method for perceptual enhancement 
emerged from Retinex theory (Land, 1977; McCann, 
2004).  The key observation was that perceived color 
and intensity of a region in an image depend on not 
only inherent color and intensity, but also color and 
intensity of surrounding regions and on lighting.  
This property of the HVS serves as the basis for 
Retinex theory and numerous applications of it that 
process digital images to adjust color and intensity 
for the perceptual advantage of a human observer.   

Original Retinex-based algorithms assumed that an 
image was underexposed; extensions have enabled 
contrast enhancement in overexposed images to be 
darkened for human perception.  We contribute 
flexibility to Retinex processing by automatically 
determining multiple intensity levels from which 
brightening and darkening of imagery may be 
performed.  We identify spatial areas in each color 
channel with similar intensity and therefore low 
local contrast.  Pixels close to these intensity levels 
are treated with extra emphasis to reveal detail that 
may have previously been hidden to the eye.  Each 
identified level is weighted against the others based 
on the prevalence.  We show that our adaptation 
improves local contrast in a varied set of test cases 
which would benefit from perceptual enhancement. 

 

 
Figure 1:  A low-visibility image and our enhanced version 

INTRODUCTION 

Situations in which human performance is limited by 
low visibility are easy to conceive.  Figure 1 shows 
an obvious example of driving on a rural road during 
a snow storm.  Improved visibility of satellite 
imagery and live video from unmanned vehicles 
(notably undersea vehicles) further illustrate 
challenges of low visibility in video imagery.  An 
ideal algorithm to process images requires no 
information about the sensor from which the image 
was acquired.  This enables the algorithm to work 
for the widest variety of images and sensors.  The 
result has obvious implications for both consumer 
vehicles and military situation awareness, as it 
greatly increases the distance the drive could 
effectively see.  This ideal algorithm would further 
work automatically on a wide variety of low-
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visibility images without the need for “tuning” 
parameters (Funt et al., 2002).  In this paper, we 
shall describe our efforts to build such an algorithm 
using Retinex theory as a basis.  We show examples 
of successful application of our algorithm, cases that 
our algorithm fails to satisfactorily improve an 
image, and numerical performance of our algorithm. 

Retinex theory is the name given to the complex 
processing done in the retina and cortex within the 
human visual system.  According to this theory 
(Land, 1977; McCann, 2004), humans perceive color 
through a process of spatial comparisons.  The visual 
system compares lightness within the three bands 
corresponding to short-, medium-, and long-wave 
photoreceptors (commonly referred to respectively 
as blue, green, and red cones).  The spatial 
comparison of these three lightness values 
determines the color of a given region. 

These observations provide a basis for enhancing the 
perceptual quality of images.  A classic example 
from Land and McCann (1971) illustrates the 
difficulty of the problem that the human visual 
system is asked to solve.  Take the example of a 
black cat in sunlight and a white cat in the shade; 
they could send the same amount of (achromatic) 
light to the eye.  The surrounding context helps the 
visual system separate the lighting and the native 
color of the objects.  This observation is the basis for 
optical illusions, such as the checker shadow 
illusion1, in which the context fools the eye into 
incorrectly perceiving identical colors as different. 

These same observations have practical use as the 
basis for algorithms to improve visibility in adverse 
conditions (Rahman et al., 2004), such as fog and 
other forms of atmospheric haze, night-vision 
imagery, and underwater imagery, as well as particle 
interference such as blizzards (as seen in Figure 1), 
sand storms, or rain.  In comparison to frequency-
domain filters, Retinex benefits from operating on 
pixel values rather than global basis functions.  
Compared to tools such as histogram equalization, 
Retinex-based processing can more strongly enhance 
local contrast, since it operates explicitly on the ratio 
of logarithms of those pixel values.  These operators 
were found by Land, McCann, and their colleagues 
to accurately predict the visibility to the human eye. 

We describe some strategies and advantages for 
Retinex implementations, present our formulation to 
overcome some of these deficiencies, apply an 
objective measure of contrast to analyze the results, 

                                                            
1 http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

and show resulting images.  We conclude with a 
discussion of future capabilities that would increase 
the value of our image enhancement algorithm. 

RETINEX FORMULATIONS 

Reading Land’s description of Retinex (Land, 1977), 
one would understand Retinex as a path-based 
algorithm.  Land found that a measureable, physical 
correlate for lightness was scaled integrated 
reflectance.  This integration (of log-values) occurs 
over multiple paths by which one might approach a 
region.  These integrated values are averaged over 
each path and for each color receptor (cone).  Thus 
the relationship between a region i and the 
surrounding areas j can be summarized by the 
equations and schematics in Figure 2. 

 

Figure 2: Retinex path formulation (Land, 1986) 

Ng and Wang (2011) insightfully summarize 
attempts to improve on this model.  We build on 
their review to describe the background from which 
we began our research.   

A variety of paths have been applied to approach a 
region, including linear, spiral, and Brownian 
motions.  Such path-based formulations introduce 
parameters that need to be “tuned” in order to 
optimize the performance of the algorithm; this 
results in high computational complexity.  Recursive 
methods replace the paths with a recursive matrix 
calculation.  This yields improved efficiency.  
However, the unknown number of levels required in 
the recursion significantly influences the quality of 
the results.  This again limits the computational 
efficiency of the approach. 

The surrounding intensity (per channel or in 
luminance) of a region may also be captured through 
functional forms.  A Gaussian kernel is a frequently-
used operator in image processing; it performs better 
than other functions for this purpose as well.  A 
kernel that uses not intensity but contrast comes 
closest to the results of our work, in that it can 
enhance from both lesser and greater intensity and 
thus enhance both under- and over-exposed imagery. 

A variational formulation of Retinex models the 
perceptual principles with an energy function, 
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solving for the optimal solution for some 
combination of reflectance and illumination.  A 
variational model can allow for more flexible local 
control but also loses computational efficiency from 
the optimization.  In addition, the customary issues 
with non-linear optimization (instability growing 
with the number of parameters, unclear rate of 
convergence, local minima) may limit the 
performance of such algorithms.  Similar approaches 
include solving partial differential equations or 
Poisson equations.  The latter assumes that 
illumination changes smoothly, while reflectance 
remains piece-wise constant.  These assumptions are 
required for regularization (reducing over-fitting by 
imposing further constraints on the solution).   

Our primary goal was to increase the flexibility of 
Retinex-based processing by designing an algorithm 
that could determine which regions or pixels to 
lighten and which to darken in an image, then 
simultaneously process these pixels.  Our approach 
to the algorithm builds on the use of functional 
forms; we maintain the use of convolution with a 
Gaussian function to achieve this multi-centered 
extension to Retinex-based processing. 

ADAPTED RETINEX ALGORITHM 

Our processing pipeline consists of a pre-processing 
phase, conduct of our Retinex-based enhancement 
algorithm, and a post-processing phase.  In this 
section, we describe each of these phases. 

Pre-processing 

Our innovation in the pre-processing stage consists 
of identifying “key” image intensities that will drive 
the adaptation of the remaining image intensities.  
We define these “centering” points for the Retinex-
based algorithm as the intensities that have the 
greatest number of contiguous occurrences in the 
image.  An image with both a dark shadow and a 
cloud would have both dark and light centers from 
these phenomena (respectively).   

In order to calculate these centers, an application 
specific method was created which processes each 
color channel individually.  It starts at every 
unmarked pixel and conducts a radial, breadth-first 
search in every direction.  Each visited pixel is 
marked as having a comparable intensity if the pixel 
is unmarked and the difference in its intensity and 
the mean luminance of previously visited pixels was 
less than the standard deviation of intensities in that 
color channel divided by four.  The result is many 
groups of contiguous pixels that have similar 

intensities.  The algorithm merges groups that may 
not be tangential but have a similar intensity.  Next, 
the method eliminates groups from the list of centers 
if their number of pixels is less than 10% of the 
image.  This insures that only important groups are 
selected as centers.  The influence R of each center 
is created.  This coefficient is determined by the 
number of pixels each center marked where a larger 
number of pixels corresponds to a larger influence, 
and the sum of all the influence coefficients is 0.75.  
Finally, the method adds the mean intensity of that 
channel to the center list to negate any effects of a 
poorly chosen center or lack of a center.  The 
influence of this center is automatically 0.25.  The 
processing described in the next section will run 
with each center, scale the output relative to that 
center’s importance, and sum the scaled outputs to 
compute the final pixel value. 

We note one other pre-processing step that we take 
for purely practical implementation reasons: we pad 
the image to avoid interference from the cyclic 
properties of the Fourier transform, which we use to 
implement the convolution operator. 

Adapted Retinex Processing 

When expressed in its original form, Retinex-based 
processing exclusively would brighten an under-
exposed image, but kernels that focus on contrast 
rather than lightness can enhance both over- and 
under-exposed images (Bertalmío et al., 2009).  We 
introduce the same flexibility in our algorithm by 
selecting the “center” point from which the lightness 
values would be pushed away.  Mathematically, this 
means our first step was to convert the multi-scale 
Retinex formulation (Rahman et al., 2004) from its 
original basis in Equation 1 to a basis that would 
enable this centering mechanism. 

 

Equation 1: Multi-scale Retinex formulation 

Equation 1operates on each color channel i (taking 
the values of red, green, and blue) and at three kernel 
sizes k (known as in Multi-scale Retinex as small, 
medium, and large).  The familiar logarithm of ratios 
of pixel intensity to the average local intensity 
(embodied in the convolution operator, *) yields the 
Retinex-based adjustment of image intensities.  The 
typical enhancement created by this formulation is 
shown in Figure 3.  Input pixel intensity (horizontal 
axis) is mapped by the logarithm function (vertical), 
producing the image brightening described above. 
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Figure 3: Shape of enhancement function of Multi-
scale Retinex algorithm 

First, we express the Multi-scale Retinex equation in 
a new form, shown in Equation 2.   

 

Equation 2: Re-expression of Multi-scale Retinex 

When expressed in this form, the equation can be 
adapted in several key ways.  First, it accounts for 
the difference between the pixel and its background, 
expressed as the numerator in the fraction.  When 
the Multi-scale Retinex algorithm was re-expressed, 
it was assumed that the difference between the 
background and the pixel was positive.  This 
difference must always be positive to always be in 
the domain of the natural logarithm function; thus, 
an absolute value is added.  However, the sign of 
this difference determines the reflection of the 
function along the horizontal axis in Figure 3.  The 
sign of the difference is therefore extracted out of 
the natural logarithm and made the coefficient of the 
natural logarithm term.  Note that this slightly alters 
the numerical behavior of the algorithm from its 
original form; however, this alteration makes the 
equation more stable and fair.  Now that the domain 
issues are resolved, the denominator of the fraction 
can be made the absolute value of the difference 
between the pixel and the value of a vertical 
asymptote to center the function on that vertical 
asymptote.  A bth root operation limits and adjusts 
the asymptotic behavior; a constant D ensures that 
all pixels are in the domain.  Finally, we sum the 
output for each center, scaled by the importance 
coefficient R for that center.  The resulting 
formulation appears in Equation 3; a potential two-
center enhancement function appears in Figure 4. 

 

 
Figure 4: A potential two-center enhancement 
function using our adapted Retinex algorithm and 
compared to Figure 3.  Here, two vertical 
asymptotes (“centers”) have been selected, and 
neither is at the darkest or lightest input intensity.  
Note that the difference in output range is due 
merely to parameters used to draw these graphs. 

Post-processing 

The output of the natural logarithm function must be 
scaled back to the digital image range of [0,255].  
We scale to a wider range of [-40,295] and then 
clamp the values to [0,255] in order to reduce the 
effect of outlier pixels (e.g. typical CCD noise) and 
focus the output on the newly contrasting image 
intensities.  This does not sufficiently protect the 
algorithm from enhancing noise and compression 
artifacts.  Thus we introduce a smoothing algorithm 
that works in concert with the centering described 
above. 

Any pixels that were not selected as a center in any 
color channel have their values fixed during this 
smoothing step.  This prevents useful information in 
the original image from being blurred.  Next, a 
similar selection of “centers” is calculated by 
considering the distance in each color channel and 
the Euclidean distance in color space.  This criterion 
targets pixels that had an intensity change but no 
significant color change; we found such pixels often 
corresponded to compression artifacts and noise.  
Pixels not selected have their values fixed with no 
smoothing applied.  The remaining pixels are 
converted to the YIQ color space (channels roughly 
correspond to intensity Y and two chrominance 
values, I and Q).  We blur the intensity channel with 
a wide Gaussian filter.  The resulting YIQ image is 
converted back to the RGB color space for output. 

 

 

   
Equation 3: Formulation of the adapted Retinex-based processing algorithm 
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We noted above the tendency of many Retinex-
based algorithms to operate exclusively by 
selectively brightening the image.  This may lead an 
implementation to produce an over-enhanced image 
(Ng and Wang, 2011), which not only underscores 
the difficulty of applying Retinex (and the incredible 
capabilities of the human visual system to adapt) but 
also reinforces the notion that tuning parameters is a 
necessary condition for successful application of a 
Retinex-based algorithm.  One solution to this 
problem has been to apply a post-processing step 
akin to gamma correction or a similar global 
operator to reduce the overall image brightness.   

As with the Multi-scale Retinex algorithm, we find 
that some of the color quality of the resulting image 
may be lost.  We apply a color restoration, but must 
also adapt it to the multi-center algorithm.  In Multi-
scale Retinex, color restoration always implied a 
darkening of the image, on the assumption that 
(since the algorithm would always brighten an 
image) the loss of color was due to an “over-shoot” 
in the brightening effect.  Its color correction is of 
the form of Equation 4. 

 

Equation 4: Multi-scale Retinex color restoration 

Instead of using the logarithmic ratio of each color 
channel with the sum of the channels, we scale by 
the ratio of each channel to the average of the N 
channels, using Equation 5.  This ratio is then 
averaged with the value 1 to prevent overcorrection. 

 

Equation 5: Color restoration for adapted Retinex 

RESULTS 

We measure our results by applying measures of 
contrast, despite the questionable perceptual 
applicability of standard definitions of contrast (Peli, 
1997).  We began with the definition of local band-
limited contrast (Peli, 1990) to measure the changes 
applied by our algorithm to images; we adapt this 
measure to compare differences between a pixel and 
its background (surrounding context).  This differs 
from the ratio used in local band-limited contrast, 
which is typical of contrast calculations.  We need a 
definition that allows us to compare cases in which 
the surround is darker than a pixel directly to cases 
in which the pixel is darker than its context.   

Mean Local Band-limited Contrast of Target 
Image (Figure) Orig HE MSR AR 
Landscape (5) 4.71 33.75  8.89 45.02 
Skyline (6) 1.23  7.94  5.63 28.43 
Snowy Road (7) 5.88 25.42 12.26 34.20 
Sandstorm (9) 13.69 23.47  8.34 47.96 
Underwater (10) 13.11 33.27  8.47 49.72 
Night Vision (12) 32.68 44.46 17.46 58.34 
Table 1: Numerical comparison of our algorithm to 
other approaches; Orig = metric computed on 
original image, HE = metric computed on image 
processed by histogram equalization, MSR = metric 
computed on image processed by Multi-scale 
Retinex algorithm, and AR = metric on image 
processed by our adapted Retinex processing. 

We compare the metric results on the original image 
(Orig), the image produced by histogram 
equalization (HE), the image processed with the 
Multi-scale Retinex (MSR) algorithm (Rahman et 
al., 2004), and our adapted Retinex-based processing 
(AR).  As seen in Table 1, our algorithm consistently 
increases the contrast measure to a greater extent 
than HE and MSR do.   

The human visual system detects spatial differences 
in intensity; thus, one could argue from these 
numbers that there will be more information 
available in the image from adapted Retinex 
processing.  How useful this information is for a 
particular task is a measurement that must be made 
either through subjective assessment or an objective 
task performance user study (Moroney and Tastl, 
2004); finding a emergency suitable landing strip as 
a pilot could be such a task (Woodell et al., 2006).   

We compute our comparison metric in a manually 
specified area of interest.  We could specify the 
entire image; in one case below, this is precisely 
what we do.  In some examples, we specify a portion 
of the scene as the area of interest, denoted by red 
rectangles in Figures 5-7.  This introduces the only 
subjective aspect to our contrast-based comparison.  
Looking through the images, we get a sense of the 
subjective performance of the algorithm.  On the 
Landscape image (Figure 5), AR performed notably 
better than MSR in removing the atmospheric haze, 
drawing out building details, unmasking the water 
tower near the upper left.  Similarly, on the Skyline 
image (Figure 6), all three processing algorithms 
increase the visibility of the buildings in the target 
region, with AR resulting in greater noise than HE 
or MRS.  In the Snowy Road scene (Figure 7), the 
detail on the back of the truck and the utility pole in 
the distance emerge only with AR processing. 
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Figure 5: Images of the Landscape scene; Top left: original image, Top right: histogram equalization, Bottom left: 
Multi-scale Retinex, Bottom right: adapted Retinex processing.  The red rectangle denotes the area of interest, 
which in this case is the entire image.  In the adapted Retinex image, note the success of haze removal, the level 
of detail on the buildings, and the appearance of the water tower near the upper left. 

 

 
Figure 6: Images of the Skyline scene; Top left: original image, Top right: histogram equalization, Bottom left: 
Multi-scale Retinex, Bottom right: adapted Retinex processing.  The red rectangle denotes the area of interest for 
objective evaluation.  Note the greater detail in the region of interest, as well as the foreground.  Adapted Retinex 
processing removed more haze, albeit with a perceptible increase of the noise in the resulting image. 
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Figure 7: Images of Snowy Road scene; Top left: original image, Top right: histogram equalization, Bottom left: 
Multi-scale Retinex, Bottom right: adapted Retinex processing.  The red rectangle denotes the area of interest.  
Note that histogram equalization appears to reduce detail on the back of the truck.  Adapted Retinex processing 
increases the contrast and makes the utility pole in the background much more salient. 

   

 
 

Figure 9: Our 
algorithm cleans 
up a sandstorm 
from this image.  
The minor color 
banding artifacts 
(visible in the 
sky) seem to be 
a small price for 
the increase in 
visibility.  The 
red rectangle 
denotes the area 
for objective 
evaluation.   

Figure  8:  A  playground  scene 

with  good  initial  visibility  has 

its  contrast  increased  by 

adapted  Retinex  processing 

(right) without masking details 

visible  in  the  original  image 

(left).   
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Figure 10: Failure on underwater imagery: four white 
fish (two at top center, one at bottom center, and 
one at left center) are barely any more visible in the 
result (bottom) than in the original (top) 

Another interesting test of AR processing is to see 
how it performs on an image that already has good 
visibility.  Figure 8 (left) shows such an image of a 
playground scene.  AR processing (right) results in 
brighter colors and a darkening of portions of the 
sky to increase the contrast between the clouds and 
the clear streaks of the sky.  While the saturation of 
the colors is stark, the AR processing has not hidden 
any interesting details from the original image.  
Sandstorms provide another interesting test case on 
which AR processing performs well (Figure 9). 

One unsuccessful test was on the class of underwater 
images.  These images have scattering effects that 
may be mitigated by wavelet decomposition and 
estimation of optical properties of water (Hou et al., 
2007).  AR processing can maintain the color of 
some fish and correct the distorted film processing 
of the sunlight, but Figure 10 shows a failure on four 
white fish.  Also, the noise in this image and other 
underwater images resulting from AR processing is 
too high for aesthetic purposes and perhaps for 
objective tasks as well.  Noise filters designed for 
underwater images did not improve the overall 
results as either a pre-process or a post-process.   

 

Figure 11: A successful example of adapted Retinex 
processing on a traditional brightening task 

 

Figure 12: Applying the AR processing to night 
vision imagery enables the background, hidden in 
the original (left) to be seen after processing (right) 

CONCLUSIONS 

Our Retinex-inspired processing performs well on 
the task of brightening a dark image (Figure 11).  An 
extreme example is seen in applying the algorithm to 
enhancing night-vision imagery (Figure 12).  Note 
how the distant structures, invisible in the original, 
are clear in the processed image, albeit with an 
artifact introduced in the sky.   The result also shows 
reduced over-exposure of the people.   

We can identify avenues for further work.  Success 
with adapted Retinex processing depends on the 
amount of noise in the input image.  We have tested 
using median filters and adjusting the Gaussian 
filtering.  A more powerful and general method of 
managing noise would further improve the 
algorithm’s performance and reduce the need for 
pre- or post-processing.  A completely automated 
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algorithm may not be necessary or even desirable for 
a particular task, but it still represents a worthy goal 
for general use of adapted Retinex processing.   

As noted above, subjective testing in the context of a 
particular application or task is the true measure of 
the usefulness of the adapted Retinex processing.  
We make use of graphics hardware acceleration of 
the Fourier transform to increase the computational 
performance of our algorithm; further parallelization 
of the code could lead to real-time performance. 
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