A Randomized Framework for Discovery of Heterogeneous
Mixtures

Mark A. Livingston, Aditya M. Palepu, Jonathan Decker, and Mikel Dermer
Naval Research Laboratory, 4555 Overlook Ave, Washington, DC, USA 20375

ABSTRACT

Mixture models are the term given to models that consist of a combination of independent functions creating
the distribution of points within a set. We present a framework for automatically discovering and evaluating
candidate models within unstructured data. Our abstraction of models enables us to seamlessly consider different
types of functions as equally possible candidates. Our framework does not require an estimate of the number of
underlying models, allows points to be probabilistically classified into multiple models or identified as outliers,
and includes a few parameters that an analyst (not typically an expert in statistical methods) may use to adjust
the output of the algorithm. We give results from our framework with synthetic data and classic data.

Keywords: Data mining, unsupervised machine learning, statistical classification, exploratory data analysis

1. INTRODUCTION

The goal of taking unstructured data as input and grouping the points according to candidate underlying models
has a long history in many fields. Data mining' uses machine learning techniques to discover models that describe
observed data. Of particular interest in visual analytics is the discovery of potential models that may describe
the underlying processes that generated the data. Typically, these mechanisms are not directly observable, but
may be inferred from measurements. Extracted models lead to insights about the events encapsulated in data.

Many issues must be resolved to extract models from unstructured data. Algorithms may need to know the
types and number of models present or permitted to be found. Most algorithms classify points on a binary
basis, rather than allow for multiple possible models to be associated with a single point. Many do not enable
fundamentally different types of functions to be compared for their applicability to the data. Algorithms must
deal with noisy points that may not fit any model very well. The data in Figure 1 lends itself to an interpretation
of a set of clusters, a potential 1D grouping, points which could belong to multiple models, and probable outliers.
Our primary goal was to design an algorithm that would automatically find candidate models so that an analyst
could determine whether they were appropriate hypotheses for a given application and data set.

Figure 1. An example of unstructured data with a manually-specified mixture model illustrates the goals of our algorithm.
The right-hand plot shows how one could discern three potential clusters, a linear relationship at left, some points between
models, and some outlier points that do not seem to fit any of the component models.

Corresponding author: mark.livingston@nrl.navy.mil; phone 202 767-0380; fax 202 404-1192

Visualization and Data Analysis 2011, edited by Pak Chung Wong, Jinah Park, Ming C. Hao, Chaomei Chen,
Katy Borner, David L. Kao, Jonathan C. Roberts, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 7868,
78680A - © 2011 SPIE-IS&T - CCC code: 0277-786X/11/$18 - doi: 10.1117/12.872660

SPIE-IS&T/ Vol. 7868 78680A-1

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

Our goals in designing an algorithm included avoiding or solving all of these issues. We wanted the algorithm
to assess the fit of a variety of model types to the data, which required that we find a fair method of comparison
between different functions. This in turn required that we design an abstraction of each function type flexible
enough to operate on the data without requiring special functions, yet rigidly conform to the interface to which
all other functions would adhere. Additionally, we desired a simple interface that would make it easy to add new
functions to the library. Because we want to develop a tool that an analyst (generally not an expert in statistical
techniques) may use to generate hypotheses about the data, we want to provide an intuitive set of controls for
controlling the generation of the hypothesized models. Finally, we did not want our algorithm to require any
other initial data beyond the unstructured input data; no initial estimates or cues as to the number of underlying
functions are required. Although it has not been a concern yet, we further believe that our algorithm will lend
itself to computational efficiencies in its implementation.

The following section provides an overview of related work from many fields which relate to the problem.
Section 3 introduces our algorithmic framework and gives some details of our current implementation. Section
4 presents some preliminary results with a variety of data sets. We conclude with discussion and plans for
improvement in Section 5.

2. RELATED WORK

Mixture models have been applied in a number of fields. A full survey of related methods is beyond the scope of
this paper; we highlight a few methods from machine learning.? Most often, mixture models consist of Gaussian
functions with independent mean and variance parameters. There are many classes of algorithms that have
been applied.? The conventional approaches assign each observation to one source function; our algorithm is an
example of what is often called a fuzzy algorithm, in that it assigns each data point to a group with a probability
that may be between 0 and 1. To determine the parameters of each component function, most approaches
employ expectation-maximization (EM). This is a very general strategy, but is subject to getting stuck in a local
optimum and requires a good initial estimate (including prior probabilities) in order to find the correct global
optimum. A particular formulation from which we draw inspiration is that of unsupervised learning, which is
done without knowledge of the classes into which the data points are to be grouped. However, many algorithms
assume that the number of classes is known, an assumption we prefer to avoid. It is also common to assume that
a good initial estimate is known, another assumption we prefer to avoid, at least as an absolute requirement.

Projection pursuit®® uses linear subspaces of dimension n — 1 in an n-dimensional domain to find a basis for

grouping data into clusters. A projection index measures the spread of the data and the tightness of clusters
to evaluate the projection axis. Such an approach often requires a reconstruction onto the original domain for
comprehension. Greedy basis pursuit® extends this approach by selecting new basis functions with a criterion for
discarding functions on which more recent selections have improved. This approach requires having a dictionary
of candidates bases to approximate the underlying function. FlexMix” allows finite mixtures of linear regression
models (Gaussian and exponential distributions) and an extendable infrastructure. However, to reduce the
parameter space, the package restricts some parameters from varying or restricts the variance. It assumes the
number of component models is known, though it allows for component removal for vanishing probabilities,
which reduces the problems caused by overfitting. Jain et al.® provide two methods for unsupervised learning
of Gaussian clusters: one a “decorrelated k-means” algorithm that minimizes an objective function of error and
decorrelation for a fixed number of clusters, and the second a “sum of parts” algorithm that uses EM not only
to learn the parameters of a mixture of Gaussians but also to factor them.

One could also conceive of the problem as a statistical classification problem.? This often requires an a priori
labeling of a training set, or at least a few labeled data points with which other points may be grouped. A number
of algorithms or conceptualizations have been used to separate or group points, such as linear and quadratic
classifiers, support vector machines, and decision trees.! Simple approaches such as a naive Bayes classifier
often work quite well, but assume that the attributes are independent, an assumption which is often violated in
real-world data sets (including those of interest in our application). Choosing an independent subset of variables
is also not a trivial matter. Linear regression attempts to fit the data to a hyperplane and works surprisingly well
in many applications. Extensions to higher-order functions also can work well (though overfitting becomes an
issue). However, there are few algorithms that enable linear and non-linear models to compete on equal footing

SPIE-IS&T/ Vol. 7868 78680A-2

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

against each other for being the “best” fit for a set of data points. Clustering using level-set methods® solves
some of these issues.

Many approaches to discovering general mixture models in theoretical computer science have also restricted
components to be Gaussians or other concave (or log-concave) functions; thus outliers do not pose a significant
problem in the analysis of the algorithm. Much research has focused on finding minimal bounds for the separation
required between such distributions.'® Some approaches do not require separation, but do require independence
between the distributions.!’ Most fix the (maximum) number of underlying models (though removal of models
may occur) and require that all points be classified into exactly one distribution. Spectral projection'? has been
applied to reduce the search space and find subspaces in which the points from one model are separated from those
of another model. Determining the right projection may require a training set.'® Computational inefficiencies or
difficulties, such as discretization of the search space for initial estimates or assumptions regarding correlations
or variances are a concern, even in the theoretical literature. Ease of implementation and applicability to real
data sets (where the assumptions on distributions are violated) are noted.'?

Another issue of great theoretical importance is the notion of identifiability of a mixture — i.e. whether
a mixture has a unique composition.!* For practical purposes, we assume that in real data sets, there are
indeed multiple possible solutions. Since we are interested in generating hypotheses that a human analyst will
evaluate, we do not concern ourselves greatly with the uniqueness of generated models (only enough to lower
the computational effort expended) and instead focus on developing an algorithm that will propose multiple,
perhaps overlapping or competing, patterns within the data. Another practical concern is that of overfitting
many parameters, which can lead to models of too high a degree to be preferred in the presence of noise or errors
in a training set. For unsupervised learning such as our algorithm, an analogous concern is the closeness of fit of
functions with different degrees, and whether they can be compared with each other on an equal basis.

3. PROPOSED ALGORITHM

We begin our description of the proposed algorithm with the abstraction of a model, including metrics by which
models may be compared to each other. This gives rise to a simple pseudocode for the algorithm, as well as a
refined design that requires improved metrics on a model for implementation. We then describe two example
models we employ in our current implementation.

3.1 Model Abstraction

We took an object-oriented approach to the design of a model. The fundamental operations we identified for a
model were the construction of a model from a list of points and the computation of a residual error associated
for a point, given the current model parameters.

Construction of a model has two modes; however, a single routine should easily handle both modes. In the
first mode, we build an instance of a model from the minimum number of points required to specify it. In the
second mode, we build a least-squares approximation from an arbitrary number of points (greater than this
minimum). As is well-known, a least-squares approximation should equal an exact solution when the number of
points is precisely that which is required. Thus this function requires one routine and that the module knows
how many points are required at a minimum. It implicitly assumes that an instance of a model has a method
of identifying points from which it is to build an approximation (or exact model). Here these same two cases
differ slightly. In the first mode, a random selection will suffice; why this is so will become clear in describing
the algorithm in the next subsection. In the second mode, points are selected on the basis of their residual error
from a previously-constructed model.

Thus we come to the computation of residual error for a point. This will naturally have a slightly different
meaning for different functions, but for many functions is merely an abstraction of a distance function with
geometric meaning in the space. We use this for our linear and elliptical cluster models. (In a previous im-
plementation, we used Gaussians—a frequent component of mixture models—with the natural residual associated
with such a function, the Z-score.) Implicitly, there is a metric for whether a particular value of the residual
is deemed sufficiently close to an instance to warrant inclusion of the point as a supporting data point. Thus
every function must have a way, given access to the input data, to build a random instance of itself, to compute

SPIE-IS&T/ Vol. 7868 78680A-3

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

residuals to its current instance, to evaluate which points are worthy of further consideration, and to build a
least-squares approximation from those points.

3.2 Algorithm

Our algorithm relies on the RANSAC!® framework for estimation of good candidate models. However, we alter
the algorithm in a key (but simple) way. We do not seek only one "best” answer (by any metric); we seek to
generate reasonable models that are candidate hypotheses for the underlying cause(s) behind the input data.
Thus we maintain an internal list of candidates (via a priority queue) rather than a single candidate. We can then
iteratively generate models at random, assess their quality, and compare them against other models previously
generated. The lowest quality candidate among the current set is discarded when a better candidate is discovered.

We make an analogous change in the stopping conditions for RANSAC. The original specification included
two criteria: a maximum number of attempts to find the best model and a minimum amount of support required.
We can maintain the first criterion directly: we limit the number of models tested. The second criterion requires
some adjustment, since we allow that multiple underlying models may be responsible for the data. Thus we
count the number of points that are supporting at least one candidate model to determine whether a sufficient
portion of the data has been modeled. It is important to note that we do not prevent a point from supporting
two completely independent models. This requires some global accounting to ensure that points are not counted
multiple times when determining how many points in the data are modeled by the candidate functions.

Algorithm: Hypothesis (Model) Identification

1. support < 0

2. candidateList « ()

newCandidate < generate random

(a)
(b) compute all points’ residuals for newCandidate
) form best-fit (least-squares) model from support set
(d) re-compute all points’ residuals
(e) compare newCandidate’s quality to candidateList
(f) if a minimum threshold of the number of models has been met
discard lowest quality among { candidateList U newCandidate }
else
add newCandidate to candidateList

(g) update count of supported points (amongst all models)

4. until minimum support attained or maximum models tried

The remaining question to complete the implementation is the comparison of the quality of one model to
another. In order to compare models of different types, we devised a metric based on the density (in whatever
number of dimensions the model is embedded). This concept applies equally well to area-based measures in 2D
as to volume-based measures in 3D, hyper-volume-based measures in 4D, and so on. The only issue is the correct
computations for the number of dimensions. Since our goal is to describe as much of the input data as possible,
we incorporate into our comparison metric the number of supporting points each model has. Small differences
in the number are supporting points (currently less than +25%) are outweighed by large (greater than £25%)
differences in the density metric, whereas density becomes the consideration when models have nearly the same
level of support.

SPIE-IS&T/ Vol. 7868 78680A-4

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

3.3 Implemented Models

As noted above, we have implemented two types of models: lines and clusters. Our motivation for these two
models came from the data on which we ultimately hope to deploy our algorithm: GIS data. One specific problem
of interest is the clustering of criminal activity. If we wish to compare whether particular streets or particular
neighborhoods are more susceptible, then we need models which can accurately characterize both linear and
area features in 2D. Extensions to 3D will enable the algorithm to apply to more general gridded data, and the
reader will note that there is little adaptation required in order to apply all the modeling discussed below in any
number of dimensions.

3.3.1 Linear Models

Lines represent the simplest function, requiring just two points to build. Thus the initial construction picks two
points at random and computes the slope and intercept. Residuals may then be computed as the distance from
this initial line. Currently, we consider points that are within a distance that represents 10% of the range of the
data in any dimension to be support for that line. A standard least-squares approximation'® may be computed
from the identified points using orthogonal regression.

3.3.2 Elliptical Models

We fit an elliptical model to detect clusters in the data. Thus in 2D, this model is an ellipse; in 3D, an ellipsoid;
in 4D, a hyper-ellipsoid, and so on, for any number of dimensions. From the initial (random) selection of points
(one more than the number of dimensions in order to be fully specified, with a check that the points have variance
in all the dimensions), we compute the sample mean and variance. Supporting points within the elliptical shape
are detected, and a new mean and variance computed to arrive at the final model.

3.3.3 Final Mixture Model

The final mixture model should also have a residual for each point against each of the component models. This
serves two purposes. First, it enables fuzzy assignment of every point in the original data to each of the models in
the final candidate set. This allows a point to support multiple models and demonstrate that either hypothesis
might explain a particular data point. Second, it enables us to identify potential outlier points that are not
explained by any of the candidate models.

3.4 Control Parameters

With the algorithm thus specified, we can quickly see the parameters through which a user may control the
performance of the algorithm. We typically enforce a minimum amount of support for a model to be considered
valid at all. This serves as a proxy for an analyst to request that more or fewer candidate models be proposed.
A large number prevents the algorithm from generating an extremely high number of models and increases the
likelihood that the models generated will be meaningful. However, raising this number too high can cause the
algorithm to miss a valid model that explains a small number of points. (An adaptive metric could be considered,
based on the current number of unlabeled points.)

We also inspect models for similarity to each other. This may be performed by inspecting the overlap
between the supporting point sets, which is portable across models embedded in different dimensions and of
different types. We have considered whether this inspection should be done as soon as a new candidate model is
proposed, which may help avoid unnecessary computations that will merely explain an already-captured portion
of the data. Currently, this merely helps rank candidate models during the search process.

The user may set a threshold to determine how well a point should fit a model in order to be considered
to support it. Again, this is an intuitive control parameter in that it directly controls the assignment of points
to models. But it not entirely intuitive, in that it also indirectly controls the shape of models. Since this
parameter will change the number of points found to fit a proposed model, it will determine from which points
a least-squares model is computed.

In our adapted RANSAC implementation, we may specify the total amount of the input data that must
support our final (mixed) model in order to stop the algorithm. The user may also set a computation time or
number of models to attempt.

SPIE-IS&T/ Vol. 7868 78680A-5

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

Figure 2. Two synthetic data sets present several challenging cases. (Left) intersections, near intersections, uneven
distribution, and nearly equidistant models. (Right) a mixture of lines with an elliptical cluster.

4. RESULTS

We conducted preliminary tests on our algorithm in two ways. We began with synthetically generated data.
Although we knew the ground truth for this data, it is not clear that even the generation of points from a specific
model automatically implies that it should be classified with that model. It could easily be that a point will
be generated by one function but closer to another on output. Since we seek only to generate hypotheses for a
human analyst, we present qualitative rather than quantitative results. These are much more meaningful in our
application. Similarly, with classic data sets for similar algorithms, we can perform quantitative analysis, but
prefer qualitative results which could steer an analyst for where to look into the details.

4.1 Synthetic Data

To test our algorithm’s robustness to complex patterns of lines and clusters, we generated two synthetic data
sets. The first set (Figure 2, left) consisted of four line models, with points scattered along the lines. Note that
one of the models (extending from the lower-right corner) has a very wide and uneven distribution along the
extent of the line. Also, this first line crosses another at approximately a 90° angle. In two other places, the
endpoint of one models comes close to intersecting another model. Our algorithm finds the four lines and groups
the points accordingly. Note that near the intersection, some of the points generated along the more horizontal
line were labeled as more likely part of the more vertical line. Given the models found, there is no guarantee
that this is incorrect. The probabilities for each model are nearly 50%. This also occurs in the region between
the two top-most line models, where the probabilities for some points are again nearly equal between the two
models, although lower than other points for each model due to the greater distance from the model.

The second synthetic data set featured a cluster and two lines (Figure 2, right); one of the lines is nearly
identical to the near-vertical line from the previous example, since the points that were used to compute it were
shared in the input data for the two examples. Again, our algorithm determines a reasonable classification of the
points into three distinct groups. In this data, the intersection of the two lines poses no confusion, since no points
are near the point of intersection. Note that the points in the bottom right are still much closer to the more
vertical line than to the more horizontal line. Thus, despite the separation from the other points assigned to the
more vertical line, they are assigned to the same group. Similarly to the case of intersecting lines, the separation
between the elliptical cluster and the near-vertical line presents some ambiguity. Few points are extremely close
to the border determined, however, and thus the separation appears quite natural.

SPIE-IS&T/ Vol. 7868 78680A-6

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

4.2 Fisher Iris Data

One of the classic data sets in pattern classification is the iris flower data set.!” The data consists of four variables
(sepal length, sepal width, petal length, and petal width) for three classes of iris: setosa, virginica, and versicolor,
with 50 instances of each class. This data set has become a standard test case for linear discriminant analysis
and other classification algorithms; thus, we wanted to run our algorithm on it. The comparison is not direct,
but it gives us some insight into the performance with real-world data.

The top of Figure 3 shows some early candidate models that were generated from the iris data overlaid on
the lower triangle of the scatterplot matrix for the data. Note that the ellipse exists in two dimensions (sepal
length and petal length); it is thus shown in only one cell of the scatterplot matrix. On the other hand, the line
model exists in three dimensions (sepal length, sepal width, and petal width). While it can be hard to tell from
these plots exactly which points support a model in all dimensions in which that model exists, this figure begins
to demonstrate the ability of our algorithm to select dimensions simultaneously while searching for candidate
models within the data.

As further candidates are generated, the list of candidates is analyzed by the density measures described
above. An advantage of our algorithm is the ability to compare models that are embedded in different dimensions
through this density measure. As the process continues (Figure 3, bottom), the line model disappears in favor of
other models. A new ellipsoid model appears in three dimensions (sepal length, petal length, and petal width),
which garners support in the virginica and versicolor classes. A line has emerged in the dimensions of sepal
width and petal width that attempts to model the setosa class.

Figure 4 shows the final candidate models. Not surprisingly, the separation of the two classes clustered
together (virginica and versicolor) is not captured as well as the isolation of the setosa class. It is interesting to
note that the three best models were all ellipses; all lines models and all models of greater than two dimensions
were judged not to fit the data as well. While there is no guarantee that this will be the result even on another
test run of the program, this observation should at least help us understand the figure. The three highest-ranking
models (solid lines) also don’t happen to exist in the same pairs of dimensions. The setosa class was modeled
by an ellipse in the sepal length and petal width dimensions. The versicolor class (green dots — if reading a
color version of the manuscript, light-grey dots if a grayscale verion, near the middle of the set) is modeled by a
narrow ellipse in the petal length and petal width dimensions. Finally, the virginica class is modeled (with less
accuracy than the other two groups) by an ellipse in the sepal length and petal length dimensions. A 3D line
model generated late in the process but ultimately discarded is shown with a dashed line in the cells for sepal
width, petal length, and petal width.

5. CONCLUSION

Our method uses an abstraction of the model that includes a generating function (which underlies all the
computations), a notion of the residual error for a point, and a measure of the quality of the support for a model
among the input data. This enables direct comparisons of qualitatively different models in different dimensions
and of different parameterizations of a single type of model. Thus there are no assumptions made about the
number or shape of the models that should be found in the data set. Previous methods have some number of
the following limitations.

1. Many methods must be told the number of underlying models. If this number is incorrect, the computations
are guaranteed to come up with inaccurate assessment of the data.

2. Points must be assigned to a single model. This limits the ability of an algorithm to handle noise or
properly classify points that are ambiguous in their location, especially when models have overlap.

3. Many algorithms operate with only a single type of model. Typically, the assumption is that the individual
models fit a normal (Gaussian) distribution. This limits the ability of the algorithm to accurately classify
points that come from other generating functions, such as linear relationships.

4. Methods work in defined dimensions, unable to compare models embedded in different numbers of dimen-
sions.

SPIE-IS&T/ Vol. 7868 78680A-7

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

5. The algorithm requires training data in order to learn what models may exist and their patterns.

6. Interaction and control of the algorithms is either extremely rigid or through algorithmic details known to
the programmer, not the expert analyst looking at the data.

7. The algorithm requires an initial estimate of the correct solution.

While many algorithms solve one or some of these problems, we believe that our algorithm is among the first
that solves all of these simultaneously. Of these, one may correctly point out that it can be a great advantage
to an approach to begin with an initial estimate. This is true; it may save computational expense and provide
a better solution when an expert (through human or automated analysis) can give hints. However, we believe
that there is benefit in being able to propose models that surprise the expert analyst. Thus we believe there
is benefit in not requiring an initial estimate. We plan to add an ability to receive an initial estimate as input
either before or during the mixture model discovery process in future work.

We require a user-settable threshold for the amount of support there should be for a model in the input data.
This parameter establishes an intuitive control for the algorithm. Similarly, we allow the user to specify the
amount of overlap between a new candidate grouping and the previously-accepted set of candidates in order to
be kept as a hypothesis. These two controls enable an analyst to indirectly control the number of hypotheses
generated and the distribution of them within the domain. Controls that derive directly from our use of the
RANSAC framework include the total amount of points that must support at least one hypothesis and the number
of hypotheses generated (equivalently, computation time allowed). Again, these are intuitive parameters. The
final control parameter is the maximum permitted residual for a point to be considered in support of a model.

There are many improvements and further tests we hope to perform on our algorithm as implemented thus
far. Our model abstraction enables our algorithm to run with a simple control structure that incorporates
any number of dimensions and (in theory) any number of model types. Of course, we would like to add more
types of functions and improvement the memory and computational efficiency of our implementation. We are
investigating geometric and numerical alternatives to the support and residual metrics we currently use; cluster
intensity functions seem to be a promising alternative.® We enable the user to specify dimensions to ignore; we
currently use this to restrict the algorithm to operating on numerical dimensions only. While any number of
dimensions is handled by the currently implementation, a good interface for an analyst to decide the number of
dimensions that would be appropriate is one possible avenue for extension. An automated method would be also
of interest. Adding the ability to handle non-numeric data types would be of interest, but the distance function
computations would need to be considered carefully in such a case.

We hope to perform additional tests with our algorithm as well. While quantitative results from our algorithm
are of some interest for comparison against similar algorithms, we feel that the benefit of our algorithm is in the
combination of features it provides and the qualitative value it can provide to an expert analyst. Thus we have
eschewed numerical tables of results in favor of visual presentations similar to what we imagine an analyst would
want to see in an overview of data and hypotheses. When coupled with a visual analytics interface that enables
the analyst to steer the algorithm in the right direction — without requiring an initial estimate or determining the
shape of the solution — we believe our algorithm will assist in the generation of hypotheses about the data and
provide measures that help an analyst compare them to each other. This would make our algorithm a valuable
tool in an analyst’s toolbox.

REFERENCES

[1] Witten, I. H. and Frank, E., [Data Mining: Practical Machine Learning Tools and Techniques], Else-
vier/Morgan Kaufmann Publishers, ond oq. (2005).

Duda, R. O., Hart, P. E., and Stork, D. G., [Pattern Classification]|, John Wiley and Sons (2001).
Theodoridis, S. and Koutroumbas, K., [Pattern Recognition], Academic Press, ond g, (2003).

Friedman, J. H. and Tukey, J. W., “A projection pursuit algorithm for exploratory data analysis,” IEEFE
Transactions on Computers C-23, 881-890 (Sept. 1974).

EEEERS)

SPIE-IS&T/ Vol. 7868 78680A-8

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

[10]
[11]
[12]

[13]

Friedman, J. H. and Stuetzle, W., “Projection pursuit regression,” Journal of the American Statistical
Association 76, 817-823 (Dec. 1981).

Huggins, P. S. and Zucker, S. W., “Greedy basis pursuit,” Tech. Rep. Technical Report TR-1359, Yale Univ.
Dept. of Computer Science (June 2006).

Griin, B. and Leisch, F., “Fitting finite mixtures of linear regression models with varying & fixed effects in
R*)” in [Compstat 2006 (Proceedings in Computational Statistics)], 853-860 (2006).

Jain, P., Meka, R., and Dhillon, I. S., “Simultaneous unsupervised learning of disparate clusterings,” Sta-
tistical Analysis and Data Mining 1, 195-210 (Nov. 2008).

Yip, A. M., Ding, C., and Chan, T. F., “Dynamic cluster formation using level set methods,” IEEFE Trans-
actions on Pattern Analysis and Machine Intelligence 28, 877-889 (June 2006).

Dasgupta, A., Hopcroft, J., Kleinberg, J., and Sandler, M., “On learning mixtures of heavy-tailed distribu-
" in [46th Annual Symposium on Foundations of Computer Science], (2005).

Feldman, J., O’Donnell, R., and Servedio, R. A., “Learning mixtures of product distributions over discrete
domains,” in [46th Annual Symposium on Foundations of Computer Science], (2005).

Kannan, R., Salmasian, H., and Vempala, S., “The spectral method for general mixture models,” in [Con-
ference on Learning Theory (Lecture Notes in Artifical Intelligence v.3559)], 444-457 (June 2005).
Achlioptas, D. and McSherry, F., “On spectral learning of mixtures of distributions,” in [Conference on
Learning Theory (Lecture Notes in Artifical Intelligence v.3559)], 458-469 (June 2005).

Tan, P.-N., Steinbach, M., and Kumar, V., [Introduction to Data Mining], Pearson/Addison-Wesley (2006).
Fischler, M. A. and Bolles, R. C., “Random sample consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography,” Communications of the ACM 24, 381-395 (June
1981).

Schneider, P. J. and Eberly, D. H., [Geometric Tools for Computer Graphics], Morgan Kaufmann Publishers
(2003).

Fisher, R. A., “The use of multiple measurements in taxonomic problems,” Annals of Fugenics 7, 179-188
(1936).

tions,’

SPIE-IS&T/ Vol. 7868 78680A-9

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

SepalLength

<— Sepal Width

|

=
-
%]
c
o]
« 4
©
=
o]
a

Petal Width

SepalLength

<— Sepal Width

|

~
+—
[s14]
c
%]
e
o
+—
o8]
o

Petal Width

o W .
i)
Laan ¥ "

5 B 7 8 2 3 4 1 2 3 4 5 B 7

Figure 3. Early (top) and intermediate (bottom) stages of candidate models generated for the Fisher iris data. Our
algorithm smoothly operates in whichever dimensions and with whatever functions are selected at random, converging
to solutions in any dimensions. All models are generated sequentially; multiple models are introduced in each image to
reduce space. For illustration, models discarded after the stages depicted are drawn with dashed lines. New models are
drawn in a new color. The elliptical model in the intermediate is a 3D model, appearing in the appropriate scatterplots.

SPIE-IS&T/ Vol. 7868 78680A-10

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

Sepal Length

’

<— Sepal Width

2l S l/

<— Petal Length

Petal Width

T T T T T T T T T T T T

5 6 7 8 2 3 4 i1 2 3 4 & & 7

Figure 4. Final models proposed, along with a 3D line candidate generated late in the process, but discarded. It is
interesting to observe that all three final models are ellipses; all line models and all models of more than two dimensions
were discarded. The virginica class (blue or dark dots higher in value along the petal length dimension) is not entirely
captured by the ellipse that supported mostly by the virginica points.

SPIE-IS&T/ Vol. 7868 78680A-11

Downloaded from SPIE Digital Library on 04 May 2011 to 132.250.22.10. Terms of Use: http://spiedl.org/terms

