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Fig. 1. Multi-variate visualization techniques we evaluated in our study, from left to right: Brush Strokes, Data-Driven Spots, Oriented
Slivers, Color Blending, and Dimensional Stacking. These images depict a tri-county area in central Ohio. The encoded information
is generated from a synthetic data set generated for the purposes of the study. See Section 3 for a explanation of the encoding.

Abstract—Multi-valued data sets are increasingly common, with the number of dimensions growing. A number of multi-variate
visualization techniques have been presented to display such data. However, evaluating the utility of such techniques for general
data sets remains difficult. Thus most techniques are studied on only one data set. Another criticism that could be levied against
previous evaluations of multi-variate visualizations is that the task doesn’t require the presence of multiple variables. At the same
time, the taxonomy of tasks that users may perform visually is extensive. We designed a task, trend localization, that required
comparison of multiple data values in a multi-variate visualization. We then conducted a user study with this task, evaluating five multi-
variate visualization techniques from the literature (Brush Strokes, Data-Driven Spots, Oriented Slivers, Color Blending, Dimensional
Stacking) and juxtaposed grayscale maps. We report the results and discuss the implications for both the techniques and the task.

Index Terms—User study, multi-variate visualization, visual task design, visual analytics.

1 INTRODUCTION

Multi-valued data sets are increasingly common in a diverse set of ap-
plications. Improved sensors acquire new or more fine-grained mea-
surements. Meta-data such as uncertainty about such measurements
constitute another data channel which may be helpful in conducting
analysis of the data. Even initial data analysis techniques may pro-
duce synthesized measurements to include in the analysis.

Thus an increasingly common problem is that there is not sufficient
time to analyze all the acquired data in the time available to make a
decision. One classic response to this difficulty is the use of statistical
graphics to paint the “big picture” of the data. While such summaries
undoubtedly yield basic insights, more complex patterns and trends do
not easily emerge from simple techniques. For example, geographic
information systems (GIS) produce data that has a spatial component.
A table of summary statistics and a scatterplot are unlikely to yield in-
sight to geographic patterns in the way that a map-based visualization
could [3]. Such summaries, however, do reduce the risk of overwhelm-
ing the analyst’s capacity to understand the data presentation.

Another response to the explosion of variables in data sets has been
the creation of multi-variate visualization techniques, in which a col-
lection of variables may be viewed simultaneously. In these tech-
niques, the details of any particular variable may be visible. Poten-
tial problems with integrated presentation of multiple values include
that the analyst could be overwhelmed by the volume of data and that
the number of usable perceptual channels is exceeded. The potential
to discover combinations of perceptual cues that enable simultaneous

• Mark A. Livingston is with the Naval Research Laboratory, E-mail:
mark.livingston@nrl.navy.mil.

• Jonathan W. Decker is with the Naval Research Laboratory, E-mail:
jonathan.decker@nrl.navy.mil.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

understanding of multiple data layers (i.e. variables encoded with a vi-
sualization technique) helps to fuel exploration and innovation of such
integrated techniques. One long-term goal in our work is to determine
how many variables can be present in a visualization and still allow
users to discover new insights in the data. We hope that these rela-
tionships need not be explicitly represented, thus avoiding the need to
fully understand the data in order to present it in the best manner for a
task that may or may not be itself fully understood a priori.

Thus a number of multi-variate visualization techniques have been
devised to display such data. However, evaluation of the utility of such
techniques for general data sets remains difficult. Thus most tech-
niques are studied on only one data set and task. Another criticism
that may be offered for some evaluations of multi-variate visualiza-
tions is that the task doesn’t require the presence of multiple variables;
the analyst would be best served by focusing only on one variable at a
time. At the same time, the taxonomy of tasks that users may perform
visually is extensive. We designed a task in the category of visual
comparison of multiple data values in a multi-variate visualization.
Specifically, we asked users to localize trends among the data layers.
We synthesized five years of demographic surveys (e.g. percentage
of residents under age 18); each year became a layer of data. We
conducted a user study with this task, evaluating five multi-variate vi-
sualization techniques from the literature (Brush Strokes, Data-Driven
Spots, Oriented Slivers, Color Blending, and Dimensional Stacking)
and side-by-side grayscale maps. After reviewing (Section 2) multi-
variate visualization techniques and evaluations of them, we describe
the parametrization we used for the techniques (Section 3), detail our
study design (Section 4), report the results (Section 5), and discuss the
implications for the techniques, the task, and the field (Section 6).

2 PREVIOUS WORK

Our work focuses on the evaluation of multi-variate visualization tech-
niques; however, it is natural in the course of using such techniques to
adapt them slightly in order that comparisons might be more fair to the
techniques. Thus we review multi-variate visualization techniques as

2053

        1077-2626/11/$26.00 © 2011 IEEE       Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 12, DECEMBER 2011



well as evaluations of them. We note adaptations of the techniques for
our user study in Section 3.

2.1 Multi-variate Visualizations
2.1.1 Brush Strokes
This technique creates a texture inspired by impressionist paintings;
the multiple attributes of the Brush Strokes vary throughout the image
to denote the data values [11, 12]. Strokes are randomly placed over
the surface; they vary in the intensity and hue of their surface color,
in orientation, and in their width and length (Figure 1, left). One dif-
ficulty presented by this method is that the parameters will not have
the same resolution; for example, the intensity and hue will have more
available output levels – both on the display device and in human per-
ception – than the width of a stroke. In addition, we find that increasing
stroke width can manifest itself as blurring in the image.

2.1.2 Data-Driven Spots (DDS)
This method encodes each data layer with Gaussian kernels (“spots”)
on a randomly jittered grid [2]. The spots for each layer differ in size
and color; spot intensity encodes the data value (Figure 1, second from
left). This technique may take advantage of other perceptual chan-
nels; layers may be animated by moving the spots across the surface,
changing their intensity with the underlying data value. This feature
(which may also apply to other visual representations) can synthesize
greater resolution of the visualization than the initial sampling den-
sity, although it may conflict with the notion of designing a precise
jitter pattern.

2.1.3 Oriented Slivers
Similar in concept to DDS, one may place a pattern of short, grayscale
lines (“slivers”) at randomly jittered grid positions [24]. The orienta-
tion of these slivers denotes which data layer is represented, and the
intensity denotes the data value in that layer. Thus a data layer could
be seen on the surface of one oriented set of slivers (Figure 1, mid-
dle). One critical design issue is the density of the slivers. Few slivers
implies a sparse sampling of the data, which may be inappropriate for
high-frequency data. Too many slivers can cause the slivers to overlap
and become indistinct with regard to intensity (data value) and even
orientation (data layer). Other parameters, such as sliver width and
length, may cause similar perceptual problems. One advantage of this
technique is that it can convey multi-dimensional data while occupy-
ing relatively few perceptual channels.

2.1.4 Color Blending
This classic technique assigns one source color for each layer of
data. The composite data visualization shows the weighted sum of
the source colors, with the weight derived from the data values. In
this way, the dominant hue of the pixel or region in the visualization
indicates the greatest component value among the values at that loca-
tion (Figure 1, second from right). This technique has the advantage
of using each pixel as an independent visual identifier for the underly-
ing data (as opposed to the other techniques we describe, in which a
multi-pixel region is required to show a single domain point’s values).
However, as we can display (with most modern displays) and perceive
only three color channels, this technique is limited in its effectiveness
for data sets with more than three values.

2.1.5 Dimensional Stacking
Early multi-variate visualizations used simple shapes or shape pat-
terns [1, 14, 15], such as small, adjacent blocks or sectors of a circle
(Figure 1, right). Each shape represents one value in the data; a cluster
of such shapes represented a multi-valued sample point. The individ-
ual values were typically depicted through the intensity (in a grayscale
implementation) or hue (in a color implementation). One critical de-
sign decision is how to convey the resolution of the data. The data
range is often divided into bins, with each gray level or hue assigned
to a particular bin. Given the limited resolution of human perception
of intensity and color, this technique may be more valuable for show-
ing gross differences than for fine details. This technique exhibits a

problem in that a finite region is required to show the multiple data
values at a single point of the domain.

2.2 Evaluations
Numerous authors have contributed to the body of anecdotal, theoreti-
cal, and quantitative evidence for the design quality of a multi-variate
visualization. We concentrate our review of this body of work on the
last two contributions.

One may begin by analyzing capabilities of human perception to de-
rive design guidelines that may be applied to visualization tasks [23].
Among the type of tasks described were the “perception of emergent
properties” made evident by a visual presentation of the data. With
the advent of the conceptual framework of visual analytics [20] and
its emphasis on analytical reasoning through visual interfaces, the im-
portance of clarity of presentation for complex data sets was further
stressed. These concepts are fundamental to our approach. More di-
rectly informing our work are approaches that begin with understand-
ing the data and then examine visual properties. Healey et al. [8] iden-
tified four pieces of information by which a user and visualization sys-
tem may architect a visualization: the importance of each attribute,
the spatial frequency, whether it is continuous or discrete, and the
task (if any) the user wishes to perform on the attribute. The authors
then discussed how this information may be used in combination with
understanding of human perception, mixed-initiative interaction, and
automated search strategies to create a mapping from data attributes
to visual features. Features employed included luminance, hue, size
(height of bars), density, orientation, and regularity to a grid. Earlier,
Zhou and Feiner [25] characterized data in order that an automated
method might craft visualizations. The dimensions in the taxonomy
were type (divisible or atomic), domain (semantic, e.g. physical or
abstract), attributes (e.g. shape), relations (connections between data),
role (with respect to user goals), and sense (user visual preferences).
These taxonomies sparked our thinking about what aspects of the data
created difficulties for given visualization techniques.

Urness et al. [21] applied overlay and embossing to composite tex-
tures which encoded multiple 2D vector fields. By adding colors and
altering texture properties, such as line thickness or orientation, in line-
integral convolution, they created effective visualizations for multiple
flow fields, as assessed by domain experts. Laidlaw et al. [12] visu-
alized seven-layer diffusion tensor images using ellipsoid glyphs and
Brush Strokes. They showed significant differences between healthy
and unhealthy spinal cords in mice. The glyphs were effective at show-
ing tensor structure everywhere within the images, whereas layered
Brush Strokes encoded field values and enabled users to understand
relationships between layers. The difficulty in this method was the po-
tential for cluttered images. This was not a serious problem because
their application displayed a number of dependent variables (data lay-
ers).

Several user studies have examined the utility of individual tech-
niques. Healey et al. [7] found that height and density of vertical bars
over a 2D domain could be easily identified, but that certain combi-
nations with background elements (such as salience or regularity of
samples in a dense field) made it hard to understand the data. They
validated their results on weather data. The introduction of Brush
Strokes [9] (specifically, color, texture, and feature hierarchies among
luminance, hue, and texture) enabled verification that guidelines for
perception during visualization [23] applied to non-photorealistic vi-
sualizations as well. The authors also noted the aesthetic quality of
such visualizations.

Oriented Slivers [24] enabled users to perceptually separate layers
within a data set. To get the best performance on identifying the pres-
ence of a constant rectangular target in a constant background field,
they found a minimum separation of 15◦ between layers necessary.
Data-Driven Spots [2] enabled users to discern boundaries amongst as
many as eight layers of data. Joshi [10] visualized time-varying fluid
data using art-inspired techniques such as pointillism, speed lines,
opacity, silhouettes, and boundary enhancement for weather and other
data. Users were able to track a feature over time more accurately and
expressed preferences for the illustration-inspired techniques.
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Other studies have compared multiple, diverse visualization tech-
niques. Laidlaw et al. [13] compared six techniques for 2D vector data,
asking users to locate critical points, identify types of critical points,
and advect a particle. Users performed better when the visualization
explicitly represented the solution to the tasks – i.e. showed the sign
of vectors in the field, represented integral curves, and showed criti-
cal point locations. Experts and non-experts did not show significant
differences. Hagh-Shenas et al. [5] compared Color Blending (Sec-
tion 2.1.4) and Color Weaving. Color Weaving refers to the pointillism
techniques, such as DDS, discussed earlier. The name comes from
the flow field color method [22], which works on the same concept
of separating colored elements so that multiple, overlapping features
can be identified in the same spatial region. Maintaining the original
colors as in Color Weaving outperformed Color Blending [5]; this dif-
ference increased with the number of data layers. Color selection for
the various scales was a critical issue in the blending methods. Tang et
al. [19] developed multi-layer texture synthesis for weather data visu-
alization, varying scale, brightness, orientation, and regularity. Users
in their study performed as well with this technique as with one us-
ing the Brush Strokes technique proposed by Healey et al. [9]. In our
own previous study [16], we found that the parameterized patterns of
Data-Driven Spots and Oriented Slivers helped users perform a crit-
ical (maximum) point detection more accurately and faster than the
glyph representations of Brush Strokes and Stick Figures [18]. We
also found that some techniques were sensitive to the brightness and
contrast settings of the monitor.

3 TECHNIQUES

The following section summarizes how we applied a technique to our
data and gives descriptions and hints on the trend localization task that
our subjects read. The core of the task was to find the county (region)
exhibiting the greatest increase or greatest decrease in a variable within
a five-year time span. A technique legend (if applicable) was provided
to the subjects along with each question for reference. Compare the
description and key to the cropped images provided in Figure 1 in
addition to the Figures in this section.

3.1 Study Encodings

Juxtaposed Maps Our baseline technique used a series of
grayscale maps, each of which corresponded to a single data layer.
To localize the trend, the subject had to scan the maps. The intensity
(brightness) of the gray value indicated the data value; brighter pix-
els indicated higher values. So if the county’s brightness increased
across the maps, the trend was increasing. If the county’s brightness
decreased, the trend was decreasing. Subjects selected their answers
by clicking on a sixth, empty map at the lower right of the array of
maps (Figure 6).

Brush Strokes The legend (Figure 2) illustrated the mapping of
the properties of Brush Strokes. Since we felt that the final values
were most helpful, we mapped hue and intensity to the fourth and fifth
data values. Notice that characteristics such as length and width were
more subtle than hue and intensity; the range of (horizontal) stroke
width was six to twelve pixels (equal1 to 0.51◦–1.02◦) and of stroke
length, 25 to 49 pixels (2.13◦–4.16◦). Thus users may have found the
initial value harder to interpret than the final value; this could be ex-
acerbated by county boundaries cutting off strokes. Stroke orientation
(third value) was horizontal for zero; a stroke tilted 135◦ clockwise
from horizontal (slanting down to the left) represented the maximum
value for any county in the current map. Strokes that were dim and
blue, but long and wide, indicated decreasing trends. Strokes that were
bright and gold, but short and narrow, indicated increasing trends. But
since a value could start in the middle and either increase or decrease
from there, such trends would have a slightly different pattern. (See
Figure 1, left.)

1All angular sizes of features are given using the hardware configuration
described in Section 4.

Fig. 2. The legend for the Brush Strokes indicated the styles that
mapped to the range of data values.

Data-Driven Spots For DDS, we created a set of jitter patterns
that avoided the possibility of spots from different layers overlapping
each other (Figure 3). Our implementation in other respects is no more
restrictive or permissive than the original specification. The standard
deviation of the Gaussian kernels were 25 (red, initial), 25, 17, 17,
and 13 (green, final) pixels, for the five data layers (2.13◦, 1.45◦, and
1.11◦, respectively). The technique legend (Figure 4(a)) mapped the
size and color of spots to years. The spots were dim if the value was
low, while the spots were bright if the value was high. So if the red
spots were the brightest, followed by the brown, purple, blue, and
then green, the trend was decreasing. Conversely, if red spots were
dimmest, but the brown, purple, blue, and green got progressively
brighter, then the trend was increasing.

Oriented Slivers With Oriented Slivers, we did not prevent over-
lap of slivers from different years; thus, our implementation is neither
more restrictive nor more permissive than the original guidelines for
the technique. In this study, the initial year (2005) was specified by the
vertical sliver. Each subsequent year was represented by a sliver ro-
tated slightly more clockwise than the previous year (Figure 4(b)). The
slivers were three pixels wide and twenty pixels long (0.26◦× 1.70◦)
in the vertical orientation; any change from this is due to anti-aliasing
or county boundaries. If the slivers for a particular county got pro-
gressively brighter, then the county’s value was increasing. If they got
progressively dimmer, then the county’s value was decreasing.

Color Blending We used the same color set for Color Blending
as for DDS (Figure 4(d)). The colors are blended by the vector

wi · vi ; w = {0.1111,0.1111,0.1111,0.2222,0.4445}, v = data.

The colors {red, orange, purple, blue, green} are specified in CIELab
by L = 50, b = 50, and a = {−95,−45,0,45,95}. The weights wivi
were renormalized so that the L and b parameters were unchanged. In
each region, the dominant color corresponded to the highest value at
those pixels. Thus, if the tint were more towards the red and brown
and less towards the blue and green, then the trend was decreasing. If
the tint were more towards green and less towards red, then the trend
was increasing (Figure 1, second from right).

Dimensional Stacking We selected a color version of Dimen-
sional Stacking with five bins; thus we could use the same color set
as for DDS and Color Blending, although it was now mapped (Fig-
ure 4(c)) to data value (bin) rather than data layer (year). Each bin
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(a) The Data-Driven Spots legend
indicated the spots’ size and color
for the data layers.

(b) The Oriented Slivers leg-
end indicated the orientations as-
signed to each data layer.

(c) The Dimensional Stacking
legend indicated the colors used to
denote the value in each data layer

Fig. 4. Four of the technique keys used
in the study.

(d) The Color Blending legend indicated the
colors that were used for each data layer.

Fig. 3. An example of Data-Driven Spots centered on a region in central
Ohio. Dot intensity patterns indicated trends in the DDS technique.

contained 20% of the values over the five-valued data for a trial; red
for the lowest values, then brown, purple, blue, and finally green for
the highest values. Our blocks were 9×11 pixels (0.77◦×0.94◦), and
the set was arranged horizontally. So if the blocks progressed from red
at the left through brown, purple, blue and then green at the right, the
trend was increasing. If the blocks progressed from green at the left
to red at the right, the trend was decreasing. But since the absolute
values were not the focus of the task, but rather the trend, a strong in-
creasing trend could have started at brown or purple and finished with
green. Likewise, a strong decreasing trend may have started with blue
or purple and finished with red. If the blocks did not change colors,
then there was no strong trend in either direction (Figure 1, right).

3.2 Implementation and Design
Each of the techniques evaluated in this study was created using a cus-
tom, modular application which executed a sequence of layer filters
and operations. This program was designed to allow us to quickly im-
plement a variety of methods. It benefits these techniques to provide an
interface for interactive parametrization [4]. However, the aforemen-
tioned application only accepts flat-file parameter strings, and time
was not allocated to optimize these techniques to render at interactive
rates. Therefore, devising the specific parameter set for each tech-
nique for the given application was a tedious endeavor. We highly
recommend that any interested party looking to use these or similar
techniques in their work consider taking the time to create interactive
interfaces to allow their designers to modify the specific look of a tech-
nique and see the effect of their changes interactively.

We made several specific modifications to the techniques in order to
aid user comprehension of the encoded information. Most noticeably,
we centered a single Dimensional Stacking glyph in each county. In
the original incarnation, glyphs were sampled over the entire surface
of the combined layers. Since we knew that our data only varied be-
tween counties, we felt that texturing the entire area of each county
would only detract from the information on display. Furthermore,
image generation and compression artifacts existed along boundaries,
which would have created observable misinformation in glyphs situ-
ated over county borders. Once we made this alteration in the formula
for Dimensional Stacking, we noticed that this technique suddenly had
a slight advantage over the other techniques which involved a varying
pattern over the surface of the map. The set of affected techniques
includes Data-Driven Spots, Oriented Slivers, and Brush Strokes. To
level the playing field, we introduced black borders between the re-
gions of interest. We feel this provided a visual experience compat-
ible with using a single glyph to represent each county, allowing us
to safely compare these techniques to our implementation of Dimen-
sional Stacking.

In addition, a Dimensional Stacking glyph is usually a compact
shape, with a grid of squares instead of a single sequence. This
is because the glyph would represent a specific grid cell of a high-
dimensional data set. Once we had decided to display only one glyph
for each county, there was no longer any reason for the glyph to remain
square. This is beneficial to the technique, since it helps clarify which
cell corresponds to which layer.

2056 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 12, DECEMBER 2011



Fig. 4. An example of Oriented Slivers centered a region of Ohio shows
the bright spots at the overlap of slivers.

Dimensional Stacking was limited in precision, since it was en-
coded using only five color values. There were some cases where an
identical stack was represented with exactly the same set of blocks as
the target, despite having a different trend size. This forced users to
choose between two (or more) equally likely candidates.

We combined the layers of Oriented Slivers using weighted-sum
blending with equal weights, which created some bright regions where
the individual slivers within the patterns overlap (Figure 4). In many
cases these points of overlap were the brightest features within the
pattern, which could make it hard to read the layers. Blending by
maximum intensity projection might mitigate this artifact.

The Ohio and Indiana county boundaries used in our study were
obtained from the US Census website. We converted the ArcView
Shapefiles to Scalable Vector Graphics (SVG). These SVG files were
then used to raster grayscale maps from our synthetic data. They were
also used to create dynamic boundaries which enabled our subjects to
select their answer during the survey.

4 EXPERIMENTAL DESIGN

We generated images for the study using an off-line application dis-
cussed in Section 3.2, then presented these images to the subjects in a
browser-based survey on two identically-configured workstations in a
controlled laboratory setting. Previously, we found that the brightness,
contrast, and gamma settings affected performance [16]. Both work-
stations resided in the same room lit with standard fluorescent lights.
Both workstations ran Windows XP (Service Pack 3) and the Google
Chrome Web Browser (v10.648.204). We used 30in monitors (Dell
3008WFP) running at their native resolution of 2560× 1600 using
default factory settings: Brightest: 75, Contrast: 50, Sharpness: 50,
Gamma ”PC,” Color Settings Mode ”Graphics,” Preset Mode ”Desk-
top.” The following sub-sections give specific details of our study de-
sign. We did not mandate a precise viewing distance; the desktop
yielded a viewing distance of 67cm for a typical seated position (yield-
ing pixel pitch of 0.25mm).

4.1 Trend Localization Task

We surveyed literature on visualization tasks, looking for a task that
would require users to use multiple layers of data. One criticism we
offered of our own previous study was that one data layer was the tar-
get layer, whereas all other layers of data present were merely distrac-
tors. The subjects would have been better served if those non-target

Fig. 5. The maps for Indiana and Ohio that were used in the study.

layers were removed from the visualization. We desired a task for
which multiple layers would be required for the users’ success.

We found in studying use cases for micromaps [3] the task of dis-
covering a trend in the data. This fits in the taxonomy of Zhou and
Feiner [25] in the category of comparison of layers; it requires find-
ing the difference between at least two layers and was used by Joshi
in studying pointillism-based techniques [10]. A long-term goal of
our research is to determine the utility of multi-variate visualization
techniques in mitigating the difficulty of seeing relationships in high-
dimensional data. Thus we decided to present five layers of data, an
amount that seemed tractable in our previous study. However, we
made the trend identifiable through only the first and last layers. That
is, the difference between the first and last layers was set based on a
region’s status as a target, distractor, or noise. Then the intermedi-
ate layers were computed with linear interpolation of the initial and
final values. Note that this does not imply that the greatest value
indicated the correct answer for the greatest increase (and similarly,
the lowest value did not necessarily belong to the greatest decrease).
While this did occur, it was not always the case. This strategy in one
sense made the task easier than that used by Joshi, who asked users
to recognize five types of trends: increasing, decreasing, constant,
increasing-then-decreasing, or decreasing-then-increasing. However,
our task was more difficult in a different sense. We asked users to
find the greatest increase or decrease across a visualization; thus users
needed to compare different spatial locations, which was not a feature
in Joshi’s task.

We opted to simulate data as plausible responses to demographic
questions. Due to the near similarity in county size, we opted to por-
tray these as statistics collected from Indiana and Ohio counties (Fig-
ure 5). The narrow range of sizes used for the target reduced the pos-
sibility that the target size was an uncontrolled factor in the subjects’
performance. We wanted subjects to be engaged in the questions but
not to have preconceived notions of the answers. Thus questions in-
cluded items such as the percentages (expressed in the range [0..1])
of people who thought a dishwasher, microwave, cell phone, or some
other consumer electronics item was a necessity, and more traditional
demographics such as the percentage of residents who were born in
the county or were under age 18.

We created the initial year’s data with a random number generator,
keeping the numbers close enough to the center that any trend could
be applied to any county, i.e. a range of [0.3,0.7]. The final year’s
data was then generated for all counties according to the categories
of target, distractors, and noise. Finally, the internal years’ data were
interpolated linearly from the initial and final years.

The target trend was size always 0.3 (on a scale of 0.0 to 1.0); for
both the increasing and decreasing targets, a set of up to five distractors
was selected to have a trend size of 0.2, another set of up to ten was
selected to have a trend size of 0.1, and yet another set of up to twenty
was selected to have a trend size of 0.05. The remaining counties were
in the category of “noise,” having a range of values between -0.03 and
0.03. The range of county sizes used for targets and distractors was
375–475 mi2, which yielded 100 candidates for targets and distrac-
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Fig. 6. The screen layout showed subjects the technique legend for
multi-variate techniques, the visualization, question, and a “Next” button.
This image shows Juxtaposed Maps, which did not need a legend.

tors out of the 180 total counties. The display selected a target and
distractors, then showed the subject the state with the correct target.

4.2 Subject Procedures
We instructed users to identify the county in the presented map with
the greatest increase or greatest decrease. After these general instruc-
tions, the trials were presented in blocks by technique. Each block
was structured as follows. First, instructions specific to the technique
were given. These instructions included hints for cues that would indi-
cate trends in the upcoming technique (Section 3.1). Next, two tutorial
questions were presented (consecutively). Upon the user indicating a
response to the tutorial question, the control program immediately in-
dicated the correct answer (whether the user response was correct or
not). Finally, the users began the data trials for the technique. Twenty
questions were presented for each technique; ten asked the user to find
an increasing trend and ten asked for a decreasing trend. In the data
trials, no feedback was given regarding the correct answer. However,
users could change their answer in data trials by simply clicking on
another county. Only when the user clicked a “Next” button did the
final answer get entered as the user’s response (Figure 6). The order
of the visualization techniques was counterbalanced with a 6×6 Latin
square. The trend type was counterbalanced by alternation, with half
the subjects beginning with each type.

Eighteen subjects (twelve male, six female) completed ten ques-
tions of each trend type for each of the six techniques, for a total of
10*2*6*18=2160 trials. Subjects ranged in age from 26 to 66 (mean
of 42). All reported being moderate or heavy computer users. One
subject reported red-green color blindness, but we allowed this user to
complete the study. This subject’s performance on the four methods
that used color ranked in the top half of the subject pool on the two
techniques that depended most on red-green color perception (Color
Blending and Dimensional Stacking), and in the top third of the pool
for Brush Strokes (which required blue-yellow color perception), but
in the bottom half with Data-Driven Spots, which in our implementa-
tion relied entirely on color perception to differentiate the layers. Thus
we did not remove this subject from the study. No other users reported
any color blindness, although we did not test users.

4.3 Independent Variables
The primary independent variable was the visualization technique. We
introduced the variable Trend Type upon noticing that some techniques
seemed more conducive for indicating one trend type than the other.

4.4 Dependent Variables
We recorded the county users selected and measured error as the dif-
ference between the trend size of the target (0.3) and the trend size of
the selected county. Both types of trends could be present in both types
of questions; thus error could in theory range (disregarding sign) be-
tween 0.0 for a correct answer to 0.6 if the largest trend in the wrong

direction were selected. (Some errors of this magnitude exist in our
data; we address this below.) We also measured response times from
the onset of the stimulus until the user’s final response for each ques-
tion was selected on the screen. The time from the selection of the final
response until the user confirmed the selection and moved to the next
trial was not included. Users completed the NASA Task-load Index [6]
to measure subjective workload of each technique.

4.5 Hypotheses
Based on our previous results, we expected that Data-Driven Spots
and Oriented Slivers would lead to the best accuracy in the task; how-
ever, in pilot testing, we revised our expectation to only Data-Driven
Spots performing well. We expected Dimensional Stacking to have
the lowest accuracy due to the low resolution of the color squares to
discern fine differences in the trend sizes. We expected the baseline of
Juxtaposed Maps to perform well, as it was likely to be most familiar.

Similarly based on our past results, we expected Data-Driven Spots
to exhibit the fastest response times. In our past study, Color Blending
showed fast response times, but we concluded (given the low accu-
racy with Color Blending in our previous study) that this indicated
that users were simply abandoning the task. However, we believed
we had improved the technique’s usability and would find fast user
response times. We expected Juxtaposed Maps to lead to the slow-
est response times due to the increased scanning area it required from
users. Finally, with regard to subjective workload, we expected that
Data-Driven Spots would be judged to have the lowest workload, as it
had in our previous study. We expected Juxtaposed Maps and Dimen-
sional Stacking to have the highest workload ratings, due to the wider
scanning area and potential for identical stacks, respectively.

5 STUDY RESULTS

We analyzed the accuracy and response times with separate repeated-
measures ANOVA, using a 6 (Visual Techniques) × 2 (Trend Type)
design. We also checked for interactions between the visual tech-
niques and the trend type of increasing or decreasing. We analyzed
the subjective workload data with a 6-way ANOVA2.

Visualization technique had a main effect on error – F(5,85)=3.018,
p=0.015 (Figure 7). Subjects were more accurate with the Juxtaposed
Maps and Data-Driven Spots than with the remaining techniques, con-
firming our hypotheses for high accuracy. Dimensional Stacking per-
formed poorly, but not statistically worse than the remaining tech-
niques, so we cannot accept our hypothesis with regard to the poorest
accuracy. Visualization technique also had a main effect on response
time – F(5,85)=16.653, p=0.000; users were fastest with Color Blend-
ing, while Brush Strokes, Data-Driven Spots, and Oriented Slivers ex-
hibited nearly equivalent response times. This is clearly contrary to our
hypothesis; reasons for this appear to be explained by the results for
Trend Type, discussed below. Finally, Visualization had a main effect
on subjective workload – F(5,85)=3.661, p=0.005 (Figure 8). Users
found Color Blending, Data-Driven Spots, and Juxtaposed Maps to
have the least workload (in that order). Again, our hypothesis was
inaccurate for most of the techniques (save Data-Driven Spots).

Trend type had main effects on error – F(1,17)=26.063, p=0.000 –
and response time – F(1,17)=17.065, p=0.001 (Figure 9). Users were
both more accurate and faster in locating decreasing trends than in-
creasing trends. Visualization and Trend Type exhibited an interac-
tion for both error – F(5,85)=9.384, p=0.000 – and response time –
F(5,85)=2.775, p=0.023. Color Blending led users to notably more
accurate and faster responses with decreasing trends than increasing
trends; this would appear to account for its fast response times and
low workload rating. There was relatively little difference between
trend types for the remaining techniques (on either accuracy or re-
sponse time).

Although it was not a goal in our study design, the randomly vary-
ing number of “close” distractors in the visualization may be analyzed.

2Significance tests are given via the standard F-test with two degrees of
freedom for explained and unexplained variances; the probability (p) is that of
obtaining the F-value if the null hypothesis were true.
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Fig. 7. Visualization had a main effect on both error (red) and time
(blue). Juxtaposed Maps had the least error, but users were fastest with
Color Blending. Data-Driven Spots seemed to offer a good compromise
of the two objective measures. Error bars in this and all graphs are one
standard error.

Fig. 8. Visualization had a main effect on workload; users judged Color
Blending to have the lowest workload, followed by Data-Driven Spots.

We define these distractors as trends that were of size 0.2, one step (in
our synthesized data) below the target trend size of 0.3 (for both in-
creasing and decreasing trends). Because the number was randomized
but not counterbalanced, we used a series of Welch’s t-tests to deter-
mine statistically significant differences. (Recall from Section 4 that
[0..5] distractors of size 0.2 could be present, [0..10] of size 0.1, and
[0..20] of size 0.05.) We found that if no distractors of size 0.2 were
present (only some number of distractors of sizes 0.1 and 0.05), users
were most accurate; they were least accurate with three such “close”
distractors present. The difference between zero and three distractors
was significant – t(66)=2.488, p=0.015; we also saw trends for zero
distractors to be more accurate than one, two, or four distractors, but
not five distractors. This result is somewhat counter-intuitive. Minor
differences across the techniques did not reveal any interesting find-
ings, except that no errors were made by users in cases of zero dis-
tractors in the Juxtaposed Maps and Data-Driven Spots visualizations.
We saw a significant difference based on the proximity of such distrac-
tors; if the distractor was adjacent to the target, users did better than
if the nearest distractor was five counties away; using Welch’s t-test,
t(9)=2.448, p=0.037. Trends were noticed for other distances.

We did note the presence of some “catastrophic” errors by users,
cases in which it would appear that the user searched for the wrong
type of trend (increasing instead of decreasing, or vice-versa). There
were 37 such errors overall, or 1.7% of the 2160 data trials. There was
no apparent pattern amongst the visualization techniques, and these
outlier points were not removed for the preceding analysis. We also
tested for correlations between the time spent per trial and error, as
well as the time spent on tutorials and error. Neither analysis lended
support to the possibility that increased time spent on either tutorials
or trials improved the subjects’ performances. We found a standard
practice effect on response time, but not for error. Users generally got
faster with successive trials (but not monotonically so); there was no
significant difference in the error.

One possible explanation for errors is that subjects mistakenly as-
sumed that the extreme final value was achieved by the county with
the greatest trend (maximum final value implying greatest increase or

Fig. 9. The trend type – increasing or decreasing – had a main effect
on both the error and time. Users were faster and more accurate in
identifying the greatest decrease rather than the greatest increase.

minimum final value implying greatest decrease). This was often the
case with our simulated data, but not always. We found that this type
of error accounted for 13.1% of the errors overall, but it happened in
35.5% of the cases where the extreme value resided with a county that
did not exhibit the greatest trend. So it appears that this was a note-
worthy source of error for our users. We analyzed this error using a
binary dependent variable of occurrence and a 6 (Visualization) × 2
(Trend Type) × 10 (Repetition) repeated-measures ANOVA. Visual-
ization tended to influence the occurrence of this error, but it was due
to a low rate with Dimensional Stacking. Since other issues (discussed
below) seem to have dominated the errors users made with Dimen-
sional Stacking, we discount this as a trend. Trend type showed a main
effect – F(1,17)=17.958, p=0.001 – and an interaction with Visualiza-
tion – F(5,85)=3.153, p=0.006 on this type of error. Color Blending
was most affected by Trend Type; Brush Strokes and Oriented Sliv-
ers were also affected. The interpretation of this result appears in the
Discussion, below.

6 DISCUSSION

There are two ways in which we believe our results contribute to our
ongoing effort to understand multi-variate visualizations, how to eval-
uate techniques in a task-based context with users and how to improve
or understand individual multi-variate visualization techniques.

6.1 Evaluation of Multi-variate Visualizations

In comparing our results to previous multi-variate evaluations, we hes-
itate to draw many general conclusions because the task in our current
study differs from previous tasks. As noted above, one critique of
evaluations of multi-variate visualizations is that in many (but not all)
cases, the task could be accomplished with only one layer of data; this
was true for our previous study [16].

The most direct comparison for this study is the work of Joshi [10].
His trend recognition task at a point ranked pointillism-based tech-
niques, such as Data-Driven Spots, as yielding better accuracy than a
panorama of snapshots, akin to Juxtaposed Maps. We found no sta-
tistical difference between these two techniques for the spatial com-
parison of trends, although both led to better performance than the
remaining techniques that we tested (Figure 7). For now, we can only
presume that the difference in the task caused the different result and
note this as an issue to be investigated in future studies.

We see some common issues emerging from the collected literature
of studies. We commented previously [16] on the importance of sam-
pling density and renew that concern here. We modified the techniques
as described in Section 3 to avoid sampling in boundary regions out of
concerns that such samples could confuse the users into incorrect anal-
ysis of the data. Previous authors who used sampling as a cue [7, 19]
found similar issues with the clarity of the data presentation.

One could argue that our task is somewhat artificial in that if a user
were concerned with finding such trends, then these trends should be
explicitly represented by the data and the visualization; users will most
likely perform the task better with explicit representations [10, 13].
While this is true for patterns such as the increasing or decreasing
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trends over time we depicted, we contend that the possibility of bring-
ing unforeseen patterns to the user’s attention is worthy of investigat-
ing the impact of visualizations on such unexpected discoveries [20].
Further, we note that the direction of a trend was not inherently more
or less difficult; differences that we saw with respect to trend resulted
from Color Blending and the representation of each Trend Type. Its
green hues (increasing) were quite low in saturation relative to the red
(decreasing); thus, the error was higher for increasing trends, which
indicates the need for the color to stand out more.

We again found that Color Blending led to higher error overall than
most other techniques, as with our previous study. (This was in spite
of the accuracy with the saturated red for decreasing trends.) Other au-
thors have found pointillism techniques to out-perform Color Blend-
ing [5, 22] and noted the importance of color selection for the success
of Color Blending. We find that this also applies to the color imple-
mentation of Dimensional Stacking we devised for this experiment.
Clearly, these techniques can be improved for this and other funda-
mental tasks performed with visualization.

As we continue in our progression of user studies of multi-variate
visualizations, we gain some insights about the difficulties in conduct-
ing such evaluations and user behavior with the techniques. For ex-
ample, we asked users to identify any strategies they may have used in
the course of completing the tasks. Five users noted that they devel-
oped a notion of an “outlier” within data layers (which likely caused
the response to the saturated red in Color Blending). Three of these
users explicitly described working “backwards” by trying to identify
outliers in the final year’s data, then trying to determine the change
from the initial year’s data for that county. In this way, the users re-
duced the data on which they focused to the minimum needed in order
to answer the question. It would be fair to say that our visualizations
contained two layers of data critical to successful task completion (first
and last year) and three layers (intermediate years) of distracting data.
Thus another benefit of adopting Joshi’s task would be to require all
five data layers to be attended by the user; this would truly test the ca-
pabilities and benefits users receive from multi-variate visualizations.

One subject, perhaps more experienced in the use of statistical
graphics as well as more advanced visualizations than others, wished
that our tutorials were more extensive. Based on the user’s comments
as well as our own observations, we can offer the following critique
of the tutorials. We gave an initial screen with hints (detailed in Sec-
tion 3), but these hints were not available once the user saw the practice
questions. Further, we did not provide images with the hints so that the
user could immediately see illustrations of the potential cues. In our
previous study, we offered one tutorial question per technique. We in-
creased that to two, one of each Trend Type, but this is still clearly a
minimalist tutorial for techniques, which were completely unfamiliar
to most users. (Five subjects had participated in our previous study.)
We could examine the effects of tutorials in future studies. We noted a
standard practice effect on response time, but not on error. We saw no
correlation between time spent on tutorials and error or between error
and response time. Also, experts do not always perform better than
non-experts [13]. One could argue, however, that domain experts are
the likely users of the techniques we ultimately develop, and thus their
assessments are of greater interest [21].

One point emphasized by a subject and supported by the “catas-
trophic” errors noted above is that we should have separated the in-
creasing and decreasing trends into separate blocks. It appears that
sixteen users made such an error at least once. Separating these types
of questions would improve our study design.

6.2 Implications for Multi-variate Visualizations
We now discuss each technique in terms of its success enabling the
task we presented to the subjects and what we could have improved
about our encoding. In general, we conclude that Data-Driven Spots
performed the best overall, Dimensional Stacking was hindered by a
precision issue, and in general the tutorial sections of the survey could
have been longer and more informative.

Juxtaposed Maps This method of providing the user with a se-
ries of grayscale images was included in the study as a baseline tech-

nique. Due to the well-known concept of spatial blindness, it is dif-
ficult to mentally overlap images. However, since the information is
available, it is still possible to find the correct answer with patience. In
light of this fact, it follows that Juxtaposed Maps was the most accu-
rate technique but was among the most time-consuming (Figure 7).

Brush Strokes The Brush Strokes technique used five graphical
attributes to encode the layers. To notice the trend, the subjects needed
to follow the change of all five attributes, based on an arbitrary map-
ping, and thus needed to repeatedly consult the key (Figure 2). As
stated in Section 3, we wrote hints in the tutorial which described the
type of strokes to determine the trends in each county. While compa-
rable in speed to the other techniques, it was one of the least effective
in terms of accuracy. Subjects were able to find patterns that fit the cri-
teria, but failed to differentiate between a variety of distractors and the
correct answer. It is possible the subjects did not spend enough time
reading the key or images before answering. It may also be that the
encodings do not generally lend themselves to wide-range, continuous
values. Length and width have low resolution for this data; orientation,
while of sufficient resolution, is unconventional for most novice users;
even the heat map is not as effective as intensity for continuous data.
We experimented with using hue as the first value and intensity as the
final value for our five years (data layers), but rejected it during pilot
testing. The strokes were no smaller than the slivers, and both fared
poorly with respect to error. One may suspect that this size was insuf-
ficient, although our user data can not offer any evidence to support
this. Brush Strokes were affected negatively by a tendency to focus on
the extreme value, especially in the decreasing trend; it seems likely
that the dark blue representation of (near) minimum values lent itself
to mis-interpretation of the trend.

Data-Driven Spots We settled on a set of similarly-sized, non-
overlapping dot layers positioned on rigid grids. DDS fared quite well
among the techniques, so no distinct issue arises within the approach.
However, it is possible that a more organic approach, where the dots
vary in size and are not confined to a grid, could create images where
trends appear more salient than in the current rendering.

We noticed that subjects were faster, but not more accurate, in lo-
calizing decreasing trends. Although this was not a statistically signif-
icant result, we see a possible explanation. In Figure 3, the county in
the upper left shows an increasing trend, while the county to its right
shows a decreasing trend. This decreasing trend is much more salient,
because the larger green and blue dots are completely invisible and the
red dots are very bright. Meanwhile, the dots in the increasing county
seem very similar, but the red color is still noticeably dimmer than its
base value. This technique creates a field-of-view effect which allows
the user to parse the trend from the pattern. These types of representa-
tional issues are the insights we seek.

Oriented Slivers Oriented Slivers performed much more poorly
than we expected for this task. This technique seems more suited for
distinguishing (segmenting) overlapping features with large variation
in surface value. Here, the variation between layers was muted, and
the boundaries for every layer were the same. For this reason, it was
hard for the users to perceptually separate the individual layers. In
addition, the blending of sliver layers created bright spots at the point
of overlap. This may have misled users about some data values.

For this study, we oriented the slivers so that they spanned the full
rotational range about their central location. In the previous study,
we used cardinal directions and their divisions, which led to a fifth
layer which was difficult to differentiate from another layer (since it
had the recommended minimum separation of 15◦). As noted above,
the size of the slivers was no larger than the size of the strokes; we
have no evidence to support a claim that the size of the strokes or
slivers impeded performance, but it is a potential hypothesis for future
studies. The Oriented Slivers technique was affected by the tendency
to select the extreme value rather than the trend; it appears that the
low intensity of the sliver for the final year led users astray. This may
indicate a need for an improved intensity ramp (including, perhaps, a
minimum value).
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Fig. 10. The error rates for Dimensional Stacking do not appear to have
been adversely affected by identical stacks. As this graph shows, the
mean error in the 298 cases without a stack identical to the target (sec-
ond bar) is not significantly different from the performance on all 360
trials of Dimensional Stacking (first bar). The remaining bars show the
performance with each number of identical stacks that occurred. The
mean errors for each case are shown at the top of the bar, and the
number of such cases floats above each bar.

A possible improvement would be to implement the slivers as a sin-
gle glyph at each sample instead of a series of repeating patterns. This
would be a similar adaptation as we made for Dimensional Stacking,
centering a non-repeating representation in each county.

Color Blending Color Blending was found to be faster and more
accurate for decreasing trends over increasing trends. Our encoding
equation and color set (Section 3.1) produced a strong red color when
the trend was greatly decreasing, while it produced a less salient shade
of green when the trend was greatly increasing. This fact clearly con-
tributed to the poor performance on increasing trends. It appears to
have caused the users to select the extreme value, especially for de-
creasing trends. It is possible that we could modify the equation so
that both increasing and decreasing trends produce bright, qualitative
colors. But separating the extreme value and trend would still be a
difficult task. This underscores the difficulty of Color Blending for as
many as five values.

Dimensional Stacking The limitation of the precision in which
the values were encoded created situations where there were distrac-
tors represented with the exact same glyph as the target (called “iden-
tical stacks” in Section 3.2). Since the subject could only choose one
county, they were forced to make a random choice between the top
contenders. Our major shortcoming here was not to demonstrate this
limitation in the tutorial. However, we looked for evidence that this
ambiguity caused increased error and failed to find it. As Figure 6.2
shows, the mean error for cases in which there were no identical stacks
was not significantly different from the mean error for all trials of Di-
mensional Stacking. It could be that this problem caused slower re-
sponses and increased workload ratings, however.

Several subjects noted Dimensional Stacking mapped values to
the color spectrum in the reverse order that it is often mapped (Fig-
ure 4(c)). The colors were arranged in order from red to green as they
are in the visible color spectrum, but it transitioned from warm to cool
as the value increased; two users mentioned this during debriefing. It
is more frequently the case that cool colors are mapped to low values,
and warm colors are mapped with high values. In fact, we did just
that with the hue attribute of Brush Strokes (Figure 2). It is also well-
known that color is not a metric quantity and thus does not lend itself
well to continuous variables such as our data layers. This may have
been a factor in causing Dimensional Stacking to yield lower perfor-
mance than other the techniques (most of which use intensity to encode
data values); as noted above, this may have limited performance with
Brush Strokes as well.

With regard to the size of the blocks; they were at least as large as
the Gaussian kernels of DDS (modulo the shapes). The performance
of Dimensional Stacking seems to have been impaired by other factors,
but we note the potential (as with size of Brush Strokes and Oriented
Slivers) of this as a variable for future studies.

7 FUTURE WORK

In the discussion above, several issues were raised that will inform our
future work. We have a list of potential improvements to the individual
techniques, as well as improvements in the study design. We tried
to confine our improvements in the current study to changes within
the original definition of the respective techniques. One can certainly
imagine an extension to Dimensional Stacking, such as a heat map for
value [17], as we plan for a follow-up study. Extensions to the other
techniques, such as color encoding for Oriented Slivers, are also an
option. Our study design could be extended to explicitly include the
number of distractors and/or proximity of distractors as independent
variables.

We plan to look for insights in the data regarding performance ben-
efits of extended exposure to the techniques; we could ask users to
return for a future study and measure performance improvements in
that way as well. We could also separate users into “novice” and “ex-
pert” categories and look for differences between these groups. Al-
ternatively, we could provide feedback during the study to examine
learning effects. Finally, we hope to add to our library of tasks, find-
ing tasks that require users to focus on as many data layers as we can,
in order to test the limits of insight from multi-variate visualizations.
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