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Abstract 

Unmanned Aerial Vehicles (UAVs) have become an important 
component of military aviation operations and skilled UAV 
operators are a valuable part of this component.   Currently there is a 
need for improved methods of facilitating the development of 
mission level skills among operators, including target identification 
and maintenance of navigational awareness.  Toward this aim, we 
examined the extent to which transient neurophysiological states 
could be used as an index of engagement within a visual detection 
training paradigm.  Participants learned to distinguish stationary 
indicators of directional change in movement for target tanks located 
within a complex vehicle formation background.  Fast alpha activity 
(10-13 Hz) one second before targets were presented differed as a 
function of type of error that would be made and task difficult.  
Prestimulus alpha shows promise as a candidate metric for on-line 
monitoring of learner engagement and workload.     
 

Introduction 
 
Electroencephalographic (EEG) recordings have been used 

extensively as an index of task engagement and working memory load 



(Berka et al., 2007; Gevins, Smith, McEvoy, & Yu, 1997; Kerick, Hatfield, 
& Allender, 2007).  For example, increases in frontal midline theta activity 
(5-7 Hz) and decreases in both slow (7.5-10 Hz) and fast (10-13 Hz) alpha 
activity are associated with current working memory demands in both spatial 
and verbal tasks (Gevins et al., 1997; Smith, McEvoy, & Gevins, 1999).  
Alpha activity is also affected by training and practice, with increased 
activity associated with increasing skill level on a given task (Smith et al., 
1999).  

To date, consensus has yet to be reached regarding the best approach 
for examining spectral changes in EEG recordings (see discussions in 
Klimesch, Freunberger, Sauseng, & Gruber, 2008; Makeig, Debener, Onton, 
& Delorme, 2004).  While overall changes in alpha and theta range activity 
have been shown to change with task difficulty, others have argued for 
examination of spectral changes associated with particular working memory 
processes or task locked to particular events.   

Though macro level changes in EEG activity show promise for a 
wide variety of applications, considerably less attention has been given to 
micro level changes (Huang, Jung, Delorme, & Makeig, 2008; Mazaheri, 
Nieuwenhuis, van Dijk, & Jensen, 2009).  Micro level changes have 
traditionally been examined with event-related potentials (ERPs).  While 
important in many applications, ERPs may provide an index of a relatively 
small portion of on-going neural activity (Huang et al., 2008; Klimesch et al., 
2008).  Additionally, ERP extraction techniques require the averaging of 
neuronal responses time locked to a number of discrete stimuli that may not 
be present in many real world operational environments (Huang et al., 2008).  
For these reasons, methods of examining both tonic and phasic fluctuations 
in neural activity suitable for operational use remain a goal of many 
neuroergonomics investigations.   

Simultaneous monitoring of spectral changes stemming from both 
relatively long-term or tonic changes in levels of engagement as well as more 
rapid phasic changes, such as from event related spectral perturbations 
(ERSPs), show promise for operational neuroergonomics.  For example, 
Sauseng et al. (2005) observed that event related synchronization (ERS) of 
alpha range activity distinguishes between retention and active manipulation 
of visuospatial information in working memory.  Huang et al. (2008) have 
observed tonic changes in alpha bandwidth activity coupled with phasic 
changes in multiple bandwidths during periods of high visuomotor tracking 
error.   

An approach with particular practical significance would be to utilize 
micro-level or phasic bandwidth changes to predict transient states when an 
operator might be less engaged in a particular task (i.e., overloaded or 
distracted) and thus be more likely to be error prone.  A recent approach for 
examining micro level spectral changes shows promise in this regard.  



Examination of prestimulus alpha, which is spectral activity in the alpha 
bandwidth occurring immediately prior to the onset of a stimulus, is one such 
approach.  Examination of prestimulus alpha shows promise as a means of 
predicting when alertness may have temporarily decreased to a point where 
errors are more probable (Ergenoglu et al., 2004; Mazaheri et al., 2009).   

For example, using magnetoencephalographic (MEG) recordings, 
Mazaheri and colleagues (2009) demonstrated that elevated occipital alpha 
activity prior to the onset of a visual stimulus predicted whether or not 
participants would make an error in an upcoming trial.  Using EEG, 
Ergenoglu and colleagues (2004) observed significantly elevated alpha 
activity in a 1 second prestimulus period when participants missed near 
threshold visual stimuli relative to when they were detected.  The aim of the 
current investigation was to examine the extent to which prestimulus alpha 
activity might be used to predict an operators’ current level of engagement 
and thus predict errors before they occur in a challenging visual detection 
task.  
 
Methods 

 

Participants 

 

Twenty-two participants (18-28 years, M = 23.27, SD = 2.62) with self 
reported normal or corrected to normal vision and hearing voluntarily 
participated in the study after providing informed consent.  Participants were 
further screened for far and near static visual acuity using the Snellen and  
Rosenbaum eye tests, respectively.   The majority of participants had 
completed at least some college classes.   Participants currently enrolled in 
University courses received partial credit toward a class.  Participants 
recruited from the community were provided with a small amount of 
financial compensation.   

 

EEG Recording and Analysis Procedures 

 

A Neuroscan NuAmps 40 Channel Amplifier (with Neuroscan 4.4 software) 
and a 40 channel Neuroscan QuickCap were use to collect EEG data. The 
EEG signals were band-passed filtered at 1 to 70 Hz and sampled at 500 Hz.  
The EEGLAB toolbox  (Delorme & Makeig, 2004) in conjunction with 
MATLAB v.2007b (The MathWorks, Natick, MA) were used for analysis of 
the EEG recordings. After collection, EEG was re-referenced to the average 



of the left and right mastoid processes, and low-pass filtered at 30 Hz.  The 1 
second of EEG preceding each behavioral response was subset from the 
overall recorded EEG, divided according to whether the response was a hit, 
miss, false alarm, or correct rejection. Any 1 second pre-response epoch that 
contained activity exceeding +- 75 V on the ocular channels was rejected 
due to ocular artifact contamination. The mean log spectrum for the set of 
remaining epochs of each type was calculated, and the peak dB power in 
each of three frequency bands (theta: 4-7.5 Hz, slow alpha1: 7.5-10 Hz, fast 
fast alpha2: 10-13 Hz) was identified separately for EEG preceding each type 
of behavioral response, in each of the two difficulty levels, at three electrode 
sites of interest, Fz, Cz, and Pz. 

 

 
Figure 1: Example image from the normal difficulty condition (notice 
that none of the beige tanks are moving in the opposite direction as the 
non-tank military vehicles. The target is circled in red (notice that it is 
a green tank, moving in the opposite direction as the non-tank military 
vehicles. 

Experimental task 

 

Participants performed two difficulty levels (Easy and Hard) of a visual 
search task that simulated the role of a UAV operator. In both difficulty 
conditions the target was defined as a green tank heading in the opposite 
directions of all other non-tank military vehicles (distracters). In the Easy 
condition, only the target (if present) could be heading in the opposite 
direction of all other non-tank military vehicles (see Figure 1). However, in 
the Hard condition there were also other (distractor) beige tanks that could be 



heading in the opposite direction of all other non-tank military vehicles (see 
Figure 2). The added variability of these distractor tanks made the task 
considerably more difficult, as confirmed with pilot testing.  This increased 
difficulty was intended to increase mental workload while participants 
performed the difficult visual search task.   

 

 
Figure 2: Example image from the Hard condition (notice that one of 
the beige tanks is moving in the opposite direction as the non-tank 
military vehicles. The target is circled in red (notice that it is a green 
tank, moving in the opposite as the non-tank military vehicles. 
      

The experimental task was written and displayed using Microsoft Visual 
Basic 6 software. Each condition of the task consisted of 200 static images 
displayed on a 19 inch CRT monitor (Dell M992) for 750 ms each. The 
interstimulus interval was 1.8 s.  Images were generated from a static image 
consisting of a background desert-like scene obtained from Google maps.  
Each scene contained 15 military vehicles (i.e., tanks, jeeps, and other 
vehicles) obtained from a UAV simulator. The position of the vehicles was 
randomly changed in each scene.  Of the 15 military vehicles, a green tank 
(vehicle of interest-VI) was always present.   

In both conditions, a random variable was used to generate a global 
direction on a 360 degree axis for all vehicles to face within each generated 
image. In the Easy condition it was only possible for the green tank to violate 
this directional display (via random variable) and become a target. However, 
in the Hard condition it was also possible for the beige tanks to violate this 
directional display (via random variable). To increase the difficulty of the 
task in both conditions, an additional random variable allowed for each 



individual vehicle to deviate from the global direction by 30 degrees. 
However, as apparent in figures 1 and 2, it is still possible to perceive the 
global direction in which all non-tank military vehicles are heading. Random 
variables were also used to generate the color of the non-tank military 
vehicles (green or beige) as well as their location on the screen. 

 

Procedure 

 

All Individuals were first tested to ensure that they had normal vision as 
assessed via the Rosenbaum and Snellen metrics. They were then fitted with 
the Neuroscan QuickCap and it was aligned on the head in accordance with 
the standard 10-20 system. Standard EEG saline gel was used to ensure a 
good connection between the electrodes and the scalp and all impedances 
were measured to be below 5 k ohms. Electrocortical activity was recorded 
from 15 electrode sites, including midline sites Fz, Cz and Pz, as previous 
research evidenced their effectiveness as indicators of visual working 
memory and mental workload (Gevins, 1997, 1999; Ergenoglu et al., 2004; 
Mazaheri et al., 2009). An in-cap ground located just anterior to Cz was used 
and all electrodes were referenced to an electrode placed on the left mastoid. 
However, EEG data from an electrode attached to the right mastoid (also 
referenced to the left mastoid during recording) was also recorded to allow 
for an averaged reference of the two mastoids to be computed offline for sites 
Fz, Cz and Pz. Electrooculogram activity was also recorded with two 
electrodes, one placed above and below the left eye, in order to detect ocular 
artifacts.  

 Participants were then briefed with task instructions and were shown 
examples of the experimental task and were provided with a short practice 
session.  Following this, individuals completed the two difficulty levels of 
the task in a counterbalanced order as behavioral and EEG data were 
recorded. The behavioral data consisted of participants’ response accuracy 
and response time (RT). Responses were categorized within a signal 
detection framework of Hits (detecting the presence of a orientation change 
in the VI where there was one), a Miss (failing to detect the orientation 
change of the VI when there was one), a False alarm (reporting an orientation 
change of the VI when there was not one) and a Correct Rejection (not 
reporting an orientation change when in fact there was not one).  Participants 
indicated their response by clicking the mouse when they believed a target 
was present 

 

 



Results and Discussion 

 
Behavioral Data 
 
The number of hits, misses, false alarms, and correct rejections were 
calculated for each participant in each condition.  Next, d’ and scores were 
calculated.  This calculation revealed that 4 participants had d’ scores of less 
than .6 in the Easy condition.  These participants were eliminated from all 
subsequent data analysis.   Analysis of the behavioral data for the remaining 
18 participants confirmed our difficulty manipulations.  Examination of the 
proportion of hits revealed that participants made significantly fewer hits in 
the hard detection condition (M = .51, SD = .16) relative to the easy 
detection condition (M = .74 SD = .13), t(17) = 7.63, p <.001 .  Likewise, 
false alarms (indicating a directional orientation difference for the target tank 
when one was not present) occurred significantly more often in the hard 
detection condition (M = .27, SD = .15), relative to the easy detection 
condition (M = .16, SD = .08), t(17) = -4.3, p <.001.  Average d’ scores also 
differed significantly between the easy and difficult conditions, t(17) = 7.16, 
p <.001, with means of 1.76 and .66, respectively.  Average  scores were 
.82 and .85, respectively.     
 
Prestimulus EEG Analyses 
 

A 2 (task difficulty- easy and hard) x 2 (target presence-yes or no) by 
2 (accuracy -correct or incorrect) repeated measures MANOVA was 
implemented to examine relative power in the theta, slow alpha, and fast 
alpha bandwidths for the one second period proceeding each stimulus 
presentation.   Separate MANOVAs were analyzed for each electrode.  Due 
to space limitations only analysis of Pz is presented here, though it should be 
noted that similar patterns were observed at electrode sites Fz and Cz.  At Pz, 
a significant multivariate three-way interaction was observed between task 
difficulty, target presence, and accuracy, F(3,15) = 5.12, p = .01, partial 
Univariate analyses revealed that both slow Alpha1, F(1,17) = 4.6, p 
= .04, partial and fast Alpha2 F(1,17) = 5.13, p = .03, partial 
contributed to the significant multivariate effect.  The three-way 
interaction is depicted graphically in Figure 3 for slow alpha and Figure 4 for 
fast alpha.   

  



 
Figure 3:  Slow Alpha1 at Pz as a function of Target Presence, Accuracy, and 
Difficulty Level.  Error bars reflect the standard error of the mean. 
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Figure 4:  Fast Alpha2 at Pz as a function of Target 
Presence, Accuracy, and Difficulty Level.  Error bars 
reflect the standard error of the mean. 
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Prestimulus alpha activity, and particularly fast alpha (10-13 Hz), 
differed significantly between the types of errors made in the Easy and Hard 
condition.  In the Hard condition, fast alpha activity increased in the one 
second period immediately prior to a miss, relative to correct detections and  
also relative to false alarms.  A reverse pattern was observed in the Easy 
condition.  In the Easy condition, fast alpha did not differ between correct 
and incorrect trials when the target was present, but decreased significantly 
for false alarms.  The largest differences in prestimulus alpha activity 
observed for both slow and fast alpha occurred between False Alarms in the 
Easy and Hard conditions.  Both fast and slow alpha increased for False 
Alarms in the Hard condition, but decreased for these same target absent 
error types in the Easy condition.   

 
POTENTIAL APPLICATION 

 
The current results demonstrate potential for using on-line monitoring of 
phasic changes in alpha bandwidth activity as an index of when an operator 
may be more error prone or when a learner may be reaching a state where he 
or she is less likely to benefit from an instructional strategy.  The prestimulus 
alpha activity examined in the present experiment reflected both task 
difficulty and the type of error likely to be made.  For example, if alpha 
levels increased significantly and participants were making a significant 
number of False alarms, the present results suggest that there would be a 
greater than average chance the participant found that task particularly 
difficult.  However, this same pattern of False alarm errors coupled with 
decreased alpha activity could indicate that the participant had become less 
engaged in the task or that perhaps the task was not challenging enough.  
Observation of a reverse pattern coupled with miss-type errors could be used 
to confirm this interpretation of the data.    
 This information could potentially be used in conjunction with other 
algorithms to improve the diagnostic capabilities of an adaptive training 
paradigm.  On-line monitoring of phasic changes in alpha bandwidth activity 
coupled with performance metrics could be used to provide an indication of 
when a pedagogical change was needed.  If alpha activity was out of range 
(either above or below tonic limits) no further learning would be expected to 
occur.  Using this information in conjunction with the pattern of behavioral 
performance observed could be used to distinguish whether to make the 
learning environment more or less challenging.   Further research into the 
applicability of these results for determining individual differences in 
learning styles and for use in a neurophysiologically based adaptive training 
program are currently underway.     
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