
Chapter 6

LINKING MILITARY SYSTEMS WITH
SIMULATIONS AND INTELLIGENT AGENTS
THROUGH WEB SERVICES TO SUPPORT
COURSES OF ACTION ANALYSIS

Ranjeev Mittu
U.S. Naval Research Laboratory, Information Technology Division, Advanced Information
Technology Branch, 4555 Overlook Avenue, SW, Washington, DC 20375

Abstract: The Department of Defense (DoD) has begun to invest resources to support the
development of the Global Information Grid (GIG), a plug-and-play Service
Oriented Architecture (SOA) whose goal is to enable interoperability between
network-centric entities. This chapter describes the current state-of-the-art in
web services technology and its role in the GIG. It then discusses a GIG
prototype supporting the web-service enabled interoperability between a
military system, simulation and intelligent agents for Course of Action
Analysis (CoAA). Next, this chapter addresses challenges for agents in the
GIG, as well as potential limitations in the use of web services. This chapter
concludes with a survey of competing technologies that may help overcome
the limitations and provides a brief summary, including future research areas
with regard to the GIG prototype.

Key words: Course of Action, Military Systems, Simulations, Intelligent Agents, Multi-
agent Systems, Plan Monitoring, Global Information Grid, Web Services,
Peer-to-Peer Computing, World Wide Web

1. INTRODUCTION

Web Services technology is gaining momentum and maturing rapidly
within the World Wide Web Consortium (W3C) [34], and has the potential
to provide the infrastructure necessary to support a SOA such as the GIG.
Web services are services that are made available from a business's Web

104 Chapter 6

server for Web users or other Web-connected programs. The primary
components that comprise web services include the Universal Description
and Discovery Interface (UDDI), Web Services Description Language
(WSDL) and Simple Object Access Protocol (SOAP). These three
technologies are generally used together in a coordinated fashion to support
the discovery of, and interaction with, web services. Furthermore, there are
a number of supporting technologies, such as the Business Process
Execution Language (BPEL)1 and Ontology Web Language for Services
(OWL-S) [1], which complement the primary web service components.
These supporting technologies have the potential to add additional value in
SOA environments by providing capabilities that enable the management of
services. The BPEL provides constructs for composing complex service
transactions based on the interactions and linkages between simpler services.
The OWL-S, like BPEL, also enables service composition. However, it also
provides additional constructs for describing the necessary service semantics
in order to intelligently reason about what is being offered by the service.
Both BPEL and OWL-S will be described later in the chapter.

The DoD has begun to invest resources to support the development of the
GIG [13], a plug-and-play SOA whose goal is to enable interoperability
between network-centric entities. These entities will include not only
military platforms and supporting software applications, but also intelligent
agents, which may be required to assist users/applications in managing the
information available on the GIG. The underlying technology that is
envisioned to provide the backbone of the GIG will be web services. The
GIG infrastructure will enable the dynamic interconnectivity and
interoperability between all levels of military entities, and is a shift from
more traditional military architectures such as the Defense Information
Infrastructure (DII) Common Operating Environment (COE) [8]. The DII
COE is considered a “stovepiped” architecture, as the interface points
between systems or software components are not easily reconfigurable.

There are many definitions of software agents in the literature, but a
general definition of a software agent according to [33] is “a computer
system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design
objective”. Multi-agent Systems employ groups of software agents that
cooperate with each other to accomplish a given set of tasks (see text box on
the following page)

1 Also known as Business Process Execution Language for Web Services (BPEL4WS)

6. Linking Military Systems with Simulations and Intelligent Agents 105

The intelligent agents operating within the GIG may be expected to

support users and applications in intelligently discovering and processing
information, while coordinating with similar agents as necessary to support
these processes. It is reasonable to expect that the efficiency of individual
agents (in terms of locating and filtering information in the GIG) may be
increased through cooperation and subsequent teamwork with other agents.

This remainder of this chapter will be organized as follows: Section 2
will describe the state-of-the-art in web service technology. Section 3 will
discuss the development of the GIG, and how web services will be one of the
enabling technologies that will be the foundation for the GIG. Section 4
will describe a proof-of-principle that is being developed to showcase the
interoperability between a military system, simulation and software agents to
support CoAA. The interconnectivity between each of these components is
being developed to leverage web service technology. The goal of this
prototype is to demonstrate the coupling of simulations with military
Command and Control systems to assist in the detection of critical deviations
in a plan’s execution as reported to the military system. Intelligent agents
are responsible for detecting the deviations between reported movements and
the simulated movements and alerting the user. The user then has the option
to use the services offered by the simulation to spawn multiple “what-if”
scenarios to explore CoAA. Section 5 will discuss the challenges agents
may face in the GIG. Section 6 will describe potential limitations in the use
of web service technology within the GIG, while section 7 provides a brief
survey of competing technologies that may help overcome some of the
limitations. Lastly, in section 8, we provide a brief summary.

The field of AI can be broadly categorized in terms of three sub-fields:
distributed problem solving, parallel AI and multi-agent systems. Distributed
problem solving takes a top-down approach; the problem is decomposed into
smaller problems, which are assigned to software modules that compute the
individual solutions which are then combined by some higher level process
into a global solution. The field of parallel AI deals with performance and
resource utilization in problem solving. The field of multi-agent systems
deals with a bottom-up approach, which assumes that agents will cooperate
with each other to negotiate tasks that need to be solved, while cooperating or
resolving conflicts. Invariably, there may be many definitions of what
constitutes intelligence. For example, agents able to reason about their
environment or learn through interaction with their environment, other agents
or through users might be considered intelligent.

106 Chapter 6

2. WEB SERVICES

Web service technology is rapidly gaining momentum under the auspices
of the W3C. The W3C was established in 1994 to help lead the development
of standards, specifications, guidelines, software, etc, to promote the
evolution and interoperability of the World Wide Web (WWW). Web
services technology includes three key components that are used in
conjunction with each other. These components include the UDDI, WSDL
and SOAP. It should be noted that UDDI is not the only registry standard.
For example, the ebXML [9] Registry and Repository Standard is sponsored
by the Organization for the Advanced of Structured Information Standards
(OASIS) and the United Nations Center for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport. The UDDI,
however, has emerged as the registry standard for the GIG.

The UDDI is a framework that defines XML-based registries in which
businesses can upload information about themselves and the services they
offer. An XML-based registry contains names of organizations, services
provided by those organizations, and descriptions about service capabilities.
XML registries based on the UDDI specification provide common areas
through which systems/organizations can advertise themselves and their web
services. Attributes that can be registered include the description of the
organization that agrees to provide the service as well as information about
specific points of contact (including their phone number and email
addresses). The UDDI registries also contain information about services as
well as service bindings (which are needed to connect with a service). Once
a service provider has been located in the registry, a client can then connect
to, and interact with, the service based on the services’ WSDL document
(the UDDI also stores the web address for the WSDL document)2.

The WSDL is an XML vocabulary standard for Web Services. It allows
developers to describe web services and their capabilities in a standard
manner. The WSDL helps to expose the web services of various businesses
for public access. Generally speaking, programmers develop services based
on their language of choice, while supporting software utilities generally
provide the necessary conversions to automatically generate the underlying
WSDL document. A WSDL document contains information about a web
service and the operations supported by the specific service. A web service

2 It should be noted that UDDI version 3.0 is expected to be extensible in both the UDDI

data structures as well as Application Programming Interface (API). So, for example, it will
be possible to store a much richer set of service attributes in the UDDI registry as well as
access those attributes using the subsequent API. This may make it easier to store the
additional attributes associated with OWL-S.

6. Linking Military Systems with Simulations and Intelligent Agents 107

may support multiple operations that can be invoked on that service. Each
operation is described in terms of the inputs required by the operation, the
outputs generated by the operation as well as the data types for both input
and output. Furthermore, the bindings (describing the message format and
protocols) are included in the WSDL description.

The SOAP is an XML vocabulary standard to enable programs on
separate computers to interact across any network. The SOAP is a simple
markup language for describing messages between applications. The SOAP
provides a way for developers to integrate applications and business
processes across the Web or an intranet, by providing the platform and
programming language independence needed to create the business
integration of web services. A SOAP message contains an envelope, header
and body element. The envelope element is the root element of a SOAP
message. This element defines the XML document as a SOAP message, the
namespaces used in the SOAP document as well as the type of encoding
(e.g. the data types used in the document). The optional header element
contains application specific information about the SOAP message. For
example, this element is used to describe whether the receiver of the SOAP
message must be capable of understanding any number of elements to be
communicated in the transaction. The body element contains the message.

Figure 6-1 describes the interaction between UDDI, WSDL and SOAP.
A service provider registers the necessary service attributes with a UDDI
registry including the location of the WSDL document. The client will then
look-up the organizations registered within UDDI and the services they have
agreed to provide. If a client chooses to use a specific service provided by
an organization, that client will then access the services’ WSDL document in
order to understand how to access the operations available from that service.
The communication between the client, UDDI and web service is via SOAP.

Figure 6-1. Interaction between UDDI, WSDL and SOAP

Client
Web Service

UDDI

1. Register Service (WSDL) via
SOAP message

2. Client sends a SOAP
message to look-up a
specific service and

examines the
corresponding WSDL

document

3. Based on contents of the
WSDL, the client knows

how to invoke the service
and sends the appropriate

SOAP message and
received the information
provided by the service

Web service
Client

UDDI

108 Chapter 6

2.1 Web Service Composition and Semantics

Web service languages that support the specification of service
composition and semantics are also emerging, and these have a
complementary role to WSDL. These languages provide constructs to
enable service composition (e.g., the ability to create services with complex
behaviors by linking together other services) as well as the semantic tagging
of services. The BPEL specification supports service compositions while the
OWL-S goes beyond the features offered by BPEL by providing additional
constructs for specifying service semantics. The BPEL language is being
developed under the auspices of the OASIS, and its potential benefit is that it
enables service reusability. The OWL-S is being advanced under W3C,
and its potential benefit is that it promotes a more intelligent mechanism for
discovery of services.

The BPEL specification is positioned to become the web service standard
for composition. The BPEL defines a business process that specifies the
execution of web service operations from a set of web services, the data
shared between the operations, the partners involved and also includes
various exception handling mechanisms. It permits the specification of
complex services by wiring together different activities that can, for
example, perform web service invocations, manipulate data, throw faults, or
terminate processes. These activities may be nested within structured
activities that define how they may be run (e.g., sequence, or in parallel). A
conceptual view of BPEL is seen in Figure 6-2 [37]. The BPEL derives its
features from Web Services Flow Language [35] and XLANG [36], from
IBM and Microsoft respectively.

Figure 6-2. Business Process Execution Language (BPEL)

<receive>

<receive>

<reply>

<reply>

Web service

portType

input-only operation

input-only operation

<receive>

BPEL
Process

6. Linking Military Systems with Simulations and Intelligent Agents 109

The OWL-S is an example of a semantic web service language [2] and
has evolved from the research sponsored by the Defense Advanced Research
Projects Agency (DARPA) [7]. Specifically, OWL-S has evolved from the
DARPA Agent Markup Language (DAML) [6] and DAML-Services
(DAML-S).

The goal of the DAML program (and ontology by the same name) was to
develop an XML-based language that describes semantic content to a degree
that allows agents to intelligently reason about that content. Traditional
markup languages such as the Hyper-Text Markup Language, HTML [16],
and the eXtensible Markup Language, XML [10], do not provide sufficient
constructs to describe the semantics of information to support intelligent
reasoning, being primarily delegated for human consumption. The DAML
language leverages concepts found in the Resource Description Framework
(RDF) [26] and RDF Schema [27]. The DAML-S was an extension to
DAML with the goal of describing semantic content associated with
services. The responsibility for evolving the DAML and DAML-S language
was eventually given to the W3C, and initial versions have been released
under OWL and OWL-S, respectively.

The OWL-S language is described through an ontology that specifies
three kinds of knowledge about a service (Figure 6-3). The top level of the
OWL-S ontology is the Service class, which contains several subclasses.
The ServiceProfile subclass describes what the service does (e.g., what does
the service require of the users and what it provides). This class contains
properties that describe the inputs to the service, the output by the service,
preconditions that must be valid prior to using the service, and effects the
service may have. The ServiceModel subclass defines how the service
works, and the ServiceGrounding subclass specifies how to access the
service. Within the ServiceModel class there exist constructs for defining
atomic services, specifying service compositions as well as for managing
flow control (control over how web services are invoked and/or how the
information is passed between the services).

Figure 6-3. Semantic Web Services

ServiceResource

ServiceProfile
ServiceModel

ServiceGrounding

provides

presents

DescribedBy

Supports

What the
service does How it works

How to access it

110 Chapter 6

2.2 Comparing BPEL, OWL-S and WSDL

The BPEL and OWL-S have broad and somewhat complementary
objectives. Both BPEL and OWL-S provide constructs within the language
to define complex services in terms of much simpler services, which offers
semi-automated processes such as software agents the potential to follow a
“recipe’ for interacting with such complex services based on the linkages
between the underlying services. The ServiceModel class within OWL-S
most closely relates to the business process model in BPEL, however, the
OWL-S enables the semantic tagging of services, which can help a software
agent choose between competing services. For example, within OWL-S, one
can specify the preconditions that must exist before the service can be used
and the effects of using the service. A frequently used example is that if a
user is interacting with a book buying service, then a precondition for using
this service is that the user must have good credit if purchasing via a credit
card. A second key difference between OWL-S and BPEL is that the former
is based on a class typing representation that enables reasoning systems to
more readily make higher level inferences about the service. The BPEL, on
the other hand, does not support such a representation. Business entities that
wish to collaborate with each other using BPEL are restricted by structured
XML content contained in the WSDL PortType definition.

The WSDL does not provide constructs for defining complex services in
terms of smaller compositions. However, as BPEL and OWL-S emerge,
they may leverage the existing maturity of WSDL, particularly the
representation of service bindings. In fact, the ServiceGrounding class of
OWL-S does not contain a concrete description of service bindings. This
OWL-S subclass relies on WSDL for its bindings, as can be seen in Figure
6-4 [38].

Figure 6-4. Relationship between OWL-S and WSDL

OWL-S

WSDL

Process Model DL-Based Types

Atomic Process Inputs/Outputs

Operation Message

Binding to SOAP, HTTP, etc

6. Linking Military Systems with Simulations and Intelligent Agents 111

In summary, one of the key differences between OWL-S and BPEL is
that OWL-S ServiceProfile class provides a much richer set of expressions to
support a more intelligent mechanism to interact with a complex service
(i.e., inputs, outputs, preconditions and effects). In addition, OWL-S
provides the required semantics in order to reason about a service (e.g.,
based on Description Logic, or DL). The key similarity between OWL-S
and BPEL is that both rely to some degree on WSDL. The OWL-S uses the
bindings in WSDL to relate the service to a concrete implementation, and
BPEL also uses the WSDL specification for its bindings.

The (semantic) web service languages described in this subsection have
the potential to empower applications and agents in the GIG to effectively
search and utilize services offered by network-centric entities.

3. THE GLOBAL INFORMATION GRID

The DoD is beginning to invest in the transition of architectures such as
the Defense Information Infrastructure (DII) Common Operating
Environment (COE) to the Global Information Grid (GIG), which is being
managed by the Defense Information Systems Agency.

The vision of the GIG is to provide a truly open environment in which
net-centric entities such as Command, Control, Communications, Computers
and Intelligence (C4I) systems, simulations, sensors, platforms, software
agents, etc., can share information in a seamless manner, without the
restrictions and limitations imposed by the DII COE architecture, including a
requirement placed on system developers to build within a “closed”, but
interoperable, environment. This limits interoperability across domains,
particularly in a dynamic environment in which opportunistic information is
readily available, but may not be easily discovered and accessed.

The GIG represents a fundamental shift from these stovepiped
architectures to a more open architecture, through the reliance on web-based
standards and technologies that enable syntactic interoperability. However,
syntactic interoperability alone is not by itself sufficient for meaningful
information exchange. In order to achieve meaningful interoperability, one
must also consider the information from a contextual perspective in order to
achieve semantic interoperability. Semantic web services described in the
previous section may provide useful capabilities in this regard.

Another fundamental shift within the GIG vision is from a “process-
then-post” towards a “post-then-process” philosophy, whereby an
application will be responsible for fusing and converting raw data or
information into a form which is most useful for that particular application.
For example, rather than one application requesting information that has

112 Chapter 6

been processed by a second application, which does not necessarily know
the potential uses of that processed information, the GIG vision allows the
first application to find the raw data that is most relevant and do that
processing locally so that any intermediate information is not lost.

The GIG architectural model is composed of several layers as seen in
Figure 6-5. The lowest layer deals with management and administrative
functions such as doctrine, governance, policy, standards and architectures.
The next layer above this is the transport, which includes the Defense
Information Systems Network [14], Joint Tactical Radio System [17] and
Transformation Communication Systems and technology. The purpose of
this layer is to physically transport information within the GIG. The next
layer above this is the GIG Enterprise Services (ES). The GIG ES layer is
comprised of the Core Enterprise Services (CES) and Community of Interest
(COI) services. The CES will include basic services that will be required by
most components, such as discovery services, storage services, etc. The COI
services represent those services that are most useful for a specific group of
people or applications. The next layer in the hierarchy are the applications
that will interact with the lower level services in order to obtain information
necessary for the useful functioning of those applications. The topmost layer
is comprised of various war-fighting domains that the applications support.

There are several programs with the DoD that are beginning to
implement prototype GIG components. The Net-centric Enterprise Services
(NCES) [20] Program, for example, addresses the development of the GIG
CES while the Horizontal Fusion initiative [15] addresses the means/tools to
support the interaction with the GIG services.

Figure 6-5. The Global Information Grid (GIG)

Management
Examples:
•Doctrine
•Governance
•Policy

•Standards
•Architecture
•Engineering

Transport
Examples:
•Defense Information System Network
•Joint Tactical Radio System
•Transformational Communication System

GIG Enterprise
Services

Examples:
•Electronic Mail
•Application Hosting
•Weapon-Target Pairing

Applications
Examples:
•Deployable Joint C2 Program
•Business Management Modernization
Program

Domains
Examples:
•Warfighting
•Business
•Intelligence

Management
Examples:
•Doctrine
•Governance
•Policy

•Standards
•Architecture
•Engineering

Transport
Examples:
•Defense Information System Network
•Joint Tactical Radio System
•Transformational Communication System

GIG Enterprise
Services

Examples:
•Electronic Mail
•Application Hosting
•Weapon-Target Pairing

Applications
Examples:
•Deployable Joint C2 Program
•Business Management Modernization
Program

Domains
Examples:
•Warfighting
•Business
•Intelligence

6. Linking Military Systems with Simulations and Intelligent Agents 113

Web services technology is expected to provide the underlying
mechanism through which information will be shared between the GIG
layers. At the time of this writing, the key web technologies envisioned to
become a reality in the GIG include UDDI, WSDL and SOAP and to some
degree BPEL as they are the most mature technologies. There will be an
obvious requirement for users within the GIG to discover and interact with
services (whether these be single services or composed of smaller services).
However, the WSDL specification does not support the description of
semantic relationships, thereby placing a heavy burden on the
user/application to determine the appropriateness of the web service for a
given usage. Languages such as OWL-S have the potential to make a
significant impact to support the intelligent discovery and subsequent
interaction with web services by automated software agents. The software
agents can interact with an inference engine that has been loaded with the
OWL-S ontology, to reason about specific instances corresponding to the
ontology.

4. GIG PROTOTYPE

For years, simulations have been used by analysis and planning staffs to
develop and rehearse operation plans, analyze results, and develop doctrine.
Typically, combat simulations are used most heavily during the planning
stages of an operation, prior to battlefield action. However, simulations are
increasingly being used during operations to perform CoAA (see description
in box below) and develop real-time forecasts of future conditions on the
battlefield. Recent efforts by the Defense Modeling and Simulation Office
(DMSO) to improve the interoperability of C4I systems with simulations has
provided a powerful means for rapid simulation initialization and analysis
during exercises, and made simulations more useful and responsive as the
exercises are executed. The latest DMSO effort involves technology
development to support the integration of operational systems, such as those
in the Global Command and Control System (GCCS), with simulations such
as the Joint Warfare System (JWARS) [21].

Course of Action (COA) [22]: (1) A plan that would
accomplish, or is related to, the accomplishment of a mission. (2)
The scheme adopted to accomplish a mission or task. It is a product
of the Joint Operation Planning and Execution System concept
development phase.

114 Chapter 6

The GCCS [12] is an automated information system designed to support

situational awareness and deliberate and crisis planning through the use of an
integrated set of analytic tools and flexible data transfer capabilities. GCCS
incorporates the force planning and readiness assessment applications
required by battlefield commanders to effectively plan and execute military
operations. The GCCS system correlates and fuses data from multiple
sensors and intelligence sources to provide warfighters the situational
awareness needed to be able to act and react decisively. This situational
awareness is represented in the Common Operational Picture. It also
provides an extensive suite of integrated office automation, messaging, and
collaborative applications

The Joint Warfare System (JWARS) [18] is a campaign-level model of
military operations that is currently being developed under contract by the
U.S. Office of the Secretary of Defense (OSD) for use by OSD, the Joint
Staff, the Services, and the Warfighting Commands. JWARS provides users
with a representation of joint warfare to support operational planning and
execution, force assessment studies, systems effectiveness and trade-off
analyses, as well as concept and doctrine development. The JWARS permits
studies that require a “balanced representation of Joint Warfare”, with
models that support 1) the C4ISR systems and processes that are an integral
part of US concept of operations; 2) logistics, both strategic and intra-theater
in the combat area; and 3) maneuver warfare at the operational level.

The DMSO is sponsoring the integration of JWARS, GCCS and software
agents as a proof-of-principle to demonstrate the viability of supporting the
interoperability of these three components through the application of web
service technologies, Figure 6-6.

(Continued from previous page) The recommended course of action
will include the concept of operations, evaluation of supportability
estimates of supporting organizations, and an integrated time-phased
database of combat, combat support and combat service support forces
and sustainment. Refinement of this database will be contingent on the
time available for course of action development. When approved, the
course of action becomes the basis for the development of an operational
plan or operational order.

6. Linking Military Systems with Simulations and Intelligent Agents 115

4.1 Concept of Operations

The concept of operations of this proof-of-principle evaluation is to
initialize GCCS with Unit Order of Battle (UOB) data to represent known
locations of forces prior to plan execution. The JWARS is also initialized
with the same UOB data to ensure that it is consistent with the force
structure in GCCS. Through an artificial mechanism, the GCCS will
generate real-time updates to track movements. The reason for the artificial
generation of track movements is due to the fact that the demonstration is in
a laboratory environment, and hence the system is not integrated with live
information feeds; however, this is an assumption that does not invalidate
the concept or the application of the technology. The JWARS simulation is
capable of generating “expected” movement of the same forces based on its
internal models and algorithms.

Both the actual GCCS track data as well as the corresponding JWARS
expected track movements will be made available to the software agents,
which will compare such things as deviations between real/expected track
positions, whether certain tracks enter regions of interest (or, alternatively,
fail to do so) in a given time period or time instant, actual versus expected
force ratios, etc. The failure conditions, as specified by the user, will trigger
the agents to send alerts to both GCCS and JWARS, after which JWARS can
be used to spawn additional JWARS simulations to support CoAA in order
to correct the failures in the plan.

Figure 6-6. JWARS and GCCS interoperability with Intelligent Agents in the GIG

The proof-of-principle demonstration will utilize tracks associated with
units (e.g. land and sea) from the GCCS Track Management Server (TMS)
as well as air tracks coming from the Theatre Battle Management Core

Warrior Components

Global Applications

SATCOM
Communications

Inform
ation

M
anagem

ent

Computing (Power Processing)

Foundation

N
etw

ork O
perations

GLOBAL INFORMATION GRID

Intelligent
Agents GCCS

JWARS Other
Simulations

116 Chapter 6

System (TBMCS). These tracks will be made available to the agents
through web service technology.

4.2 System Operation

The basic architecture supporting the proof-of-principle integration
between JWARS, GCCS and software agents is seen in Figure 6-7. This
architecture leverages the web service technologies UDDI, WSDL and
SOAP to enable the syntactic interoperability between each component.

The Army C4I Simulation Initialization System [3] is used to initialize
the GCCS-M TMS and TBMCS [31] C4I systems as well as the simulation
system (i.e., JWARS). The initialization information contains the current
UOB such as organizations, their command relationships, as well as
supporting equipment and facilities. A tactical system (in our case, an
exercise replay) will deliver the actual data to GCCS.

Figure 6-7. The JWARS, GCCS and Software Agent Web Service Federation

The Situation Monitor (SM) is a graphical front end which permits a
JWARS user to specify tracks of interest that need to be monitored, and any
conditions and corresponding thresholds to which the user would like to be
alerted when these conditions are met or thresholds are exceeded. The SM
invokes the subscribeFor operation of the TrackMonitorWebService, in
order to send the intelligent agents behind this service the subsequent tracks
that the user has an interest in monitoring for deviation analysis.

A small fragment of this web service’s XSD file is contained in Table 6-1
and WSDL file is contained in Table 6-2. As can be seen from the WSDL,
this operation contains a subscribeFor input message and
subscribeForResponse output message. The input message corresponds to a
TrackRegistration object described in the corresponding XSD file. The

Web
Registry

Web
Registry

Intelligent
Agent

C4I
System

C4I
System Tactical

System

Situation
Monitor

Situation
Monitor

Actual

C2IEDM
Gateway

Queries
Interests

(& Thresholds)

Alerts

Interests
(& Queries)

Actual
(Data of Interest)

Responses

Simulation
System

In
te

re
st

s
(&

 Q
ue

rie
s)

Ex
pe

ct
ed

(D
at

a
of

 In
te

re
st

)

Initialization
Data

System

C4I Data & Sim Data

C
4I

 D
at

a

6. Linking Military Systems with Simulations and Intelligent Agents 117

object consists of a list of track identification numbers, criteria for
generating alerts and thresholds to be used to detect deviations as received
by the web service. This information will be communicated to software
agents that will make requests to the C4I system and simulation to obtain the
corresponding tracks for subsequent monitoring. The software agents
receive the tracks after invoking both the C2IEDMGatewayService as well
as the JWARSWebService (the data from C4ISystemTrackService is
translated to the C2IEDM interchange format – discussed later – by the
C2IEDMGatewayService). These agents will compare both the real and
simulated tracks using the thresholds to generate alerts, which are sent back
to the SM display (again, through the invocation of operations corresponding
to the SituationMonitorWebService.) The alerts may warrant the exploration
of “what-ifs” in order to aid in the analysis and selection of alternative
courses of action.

Table 6-1. TrackMonitorWebService XSD (XML Schema Document)

<xsd:complexType name="TrackRegistration" >
 <xsd:annotation>

</xsd:annotation>
 <xsd:sequence>
 <xsd:element minOccurs="1" maxOccurs="1"
 name="wsName" type="xsd:string"/>
 <xsd:element minOccurs="1" maxOccurs="unbounded"
 name="trackIds" type="xsd:string"/>
 <xsd:element minOccurs="0" maxOccurs="unbounded"
 name="criteria" type="xsd:string"/>
 <xsd:element minOccurs="0" maxOccurs="unbounded"
 name="thresholds" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

118 Chapter 6

 Table 6-2. TrackMonitorWebService WSDL

Each of the services in Figure 6-7 will register themselves with the UDDI

registry. Each component will then do a look-up within UDDI to obtain the
WSDL file of the other services, from which the service can dynamically
resolve the location of the other services, and subsequently invoke their
operations.

The Command and Control Information Exchange Data Model
(C2IEDM) [4] gateway will map the information passed between services
onto the C2IEDM vocabulary. The C2IEDM was developed under the
auspices of the Multilateral Interoperability Programme.

Figure 6-8. The scope of the C2IEDM data model

<types>
 <xsd:schema targetNamespace=
 "http://www.TrackMonitorWebService.com/
 TrackMonitorWebService/xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd
ttp://www.TrackMonitorWebService.com/
 TrackMonitorWebService/xsd"
 schemaLocation="TrackMonitorWebService.xsd"/>
 </xsd:schema>
<xsd:element name="subscribeFor"
 type="trackMonitorSchema:TrackRegistration"/>

</xsd:schema>
</types>
 <message name="subscribeFor">
 <part name="body" element="tmws:subscribeFor"/>

<operation name="subscribeFor">
 <input message="tns:subscribeFor"/>
 <output message="tns:subscribeForResponse"/>
</operation>

Sea Land Air

C2IEDM

Deployed
Home Base

6. Linking Military Systems with Simulations and Intelligent Agents 119

The C2IEDM is a generic model that can be extended as needed to suit

evolving military requirements (e.g., serves as a “hub”; as such, it was
originally named the “Generic Hub”, and evolved to Land C2IEDM and
eventually C2IEDM to capture other areas including Air and Surface, see
Figure 6-8). The C2IEDM is comprised of a conceptual data model, logical
data model and physical data model. The conceptual data model represents
generalized concepts, while the logical data model represents further details
associated with the conceptual data model. The physical data model defines
the physical data storage schema. The main purpose of the C2IEDM is to
represent Information Exchange Requirements between C2 systems.

The proof-of-principle prototype is currently undergoing experimentation
in a laboratory environment and, through feedback from subject matter
experts, the capability will be refined. We expect to provide these unique
CoAA services to the broader GIG community through participation in
integrated experiments in the future.

5. CHALLENGES FOR AGENTS IN THE GIG

There are many challenges in realizing such an ambitious effort as the
GIG. One challenge we are faced with in our proof-of-principle
implementation is the integration of large legacy systems through web
services, which, although maturing at a fast pace, are still evolving. This, by
itself, is a tremendous challenge as we are forced to reengineer legacy
software to work within a different computing paradigm (the standards for
which are continually evolving)! It is envisioned that newer systems in the
GIG will be architected to seamlessly work with web services technology.

Having an ability to semi-automatically locate and interact with services
will be a key capability, as it will be inefficient to have users in the loop on
every transaction to search for web services. Furthermore, systems and
components in the GIG may lack the time to form complex search queries.
We envision intelligent agents to support this functionality through their
abilities to semi-autonomously coordinate with other agents and humans in
support of system requirements for information.

Another issue that will inevitably be encountered in the GIG will include
the interoperability of systems between Communities of Interest (COI). For
example, the Modeling and Simulation COI may rely upon the C2IEDM as
the common information exchange model, but this may not be appropriate or
adopted for use throughout the GIG. The challenge here will be to develop
techniques that map/translate between meta-data or ontologies that are

120 Chapter 6

expected to exist across the many COIs. What will be the role of agents in
supporting this process, or will this be primarily a manual process?

A key challenge that is certain to arise will be the ability of agents (which
understand one ontology) to communicate with other agents (having a
different ontological representations). Again, technologies that aid in
mapping or translating between ontologies will support the ability of agents
to communicate within the GIG environment, which may lead to coordinated
agent activity. The field of agent coordination and teamwork is an emerging
area of research [25, 30]. To realize the full potential of distributed multi-
agent systems, the agents will need to cooperate as part of teams to help the
operators (i.e., acting as their proxies) achieve their goals. In the context of
our proof-of-principle, teams of distributed software agents with different
goals and ontologies may need to coordinate to decompose and relate
multiple plans to determine critical points, which may be communicated to a
team of agents responsible for monitoring the critical points in the plan’s
execution.

In the GIG, agents may be required to assess the viability of dynamically
composing a service; therefore, it may be necessary to endow these agents
with advanced reasoning capabilities. However, there will be a limit in
terms of how much an agent is able to practically reason with, hence,
additional solutions may be adopted. The additional techniques may include
human-agent cooperation (i.e., mixed-initiative approaches), potentially
coupled with machine learning techniques in order to create robust, adaptive
agents.

6. POTENTIAL LIMITATION OF WEB SERVICES
FOR THE GIG

There are several challenges in applying web service technologies in a
network-centric environment such as the GIG. The web-service computing
paradigm was primarily developed to support Business-to-Business (B2B)
commerce in which services offered by businesses could be invoked using
web technology. Of course, there are still open questions in using web
services in a B2B computing world, such as, for example, payment for
services rendered. As the commercial sector is primarily driving the
development of web service technology, any solution generated from the
commercial sector may have the potential to be used in some form within the
military domain. A bigger question, however, concerns reliability. For
example, in B2B commerce, it may be acceptable for services to fail quite
often, for example, if a service is being upgraded or a computer system goes
down. A high level of failure may not be acceptable in a military

6. Linking Military Systems with Simulations and Intelligent Agents 121

environment in which the lives of humans may potentially be at stake. How
will Quality of Service be guaranteed, what criteria will be used and under
what circumstances? This may imply a tight coupling between the upper
layers and the lower layers in the GIG.

Another question regarding the use of web services is “how well is the
technology suited to the potential bottlenecks associated with the registries?”
After all, the client application must know the location of the registries in
order to be able to access them and determine what services have been
registered and how to access them. What should happen if the nodes that the
registries reside on fail, or are bombarded with a potential denial of service
attack? Possibly a larger issue to consider is “how will highly mobile
platforms and systems interact with registries?” These platforms operate at a
very high tempo and connectivity to such registries may be sporadic.

Agent technology has the potential to make a profound impact within the
GIG; however, one must also consider whether web services will provide the
necessary infrastructure for agent-to-agent coordination. For example,
agents may be required to coordinate with each other through bi-directional
messaging. This, however, may not be adequately supported through a web
services framework. For example, communication between agents does not
necessarily fit within the SOA paradigm; an agent’s communications
capability should not necessarily be categorized as a service that is provided
by that agent. Instead, the agents should be able to communicate through a
natural metaphor, utilizing web services as needed to perform their
functions.

It is apparent that web services will enable much of the interoperability in
the GIG, but may not be the silver bullet solution for every situation. Can
we assume that web services will be sufficiently mature in the future to
address these issues? There is certainly a possibility that web services may
not be the only solution, but may be required to work with a variety of
supporting technologies that offer a solution to these limitations (a quick
look through W3C’s activity reveals a heterogeneous mix of technologies
being developed which offer varying capabilities suitable for different uses).

7. SURVEY OF COMPETING TECHNOLOGIES

The field of grid computing may be considered a subcategory of
distributed computing [11], and may complement web services. There is a
subtle difference between grid computing and distributed computing.
Generally speaking, the world of grid computing deals with the large-scale
sharing or utilization of loosely coupled, distributed, heterogeneous
resources. Distributed computing, on the other hand, primarily deals with

122 Chapter 6

allocating software components on a smaller scale across a network (e.g., to
conserve computation cycles on a local machine.) Grid computing holds
the promise of taking distributed computing to a new level that enables
computing across the internet.

Grid computing, and to some degree distributed computing, may be
further characterized as either client-server or Peer-to-Peer (P2P) [23]. Web
services technology is most closely related to the client-server model. For
example, UDDI registries store information regarding available services, and
clients access those registries to determine where the service resides and how
to access it.

In a P2P computing environment, there are no centralized registries; a
subset of the directory peers maintain a local cache of available service
advertisements of peers that choose to register with that particular directory.
Any peer requiring a service may dynamically discover and interact with
these directories to locate a service offered by other peers. In fact, in a P2P
infrastructure, peers are generally dynamically discovered through the
interaction with directories that maintain service advertisements. These
advertisements allow peers to discover and utilize the services of other peers.

Although the P2P computing landscape is large, the next two subsections
will present representative examples of P2P systems. Project JXTA captures
some of the primary characteristics of P2P systems, while Neurogrid
provides a flavor of intelligent search and discovery in P2P environments.
The third subsection will describe the Control of Agent Based Systems
(CoABS) Grid. The CoABS grid is not considered a pure P2P system, but is
more closely aligned with a client-server model. The CoABS grid is
presented because it has been used extensively by the software agent
community to federate agent-based systems.

7.1 Project JXTA

Project JXTA [24] is an implementation of P2P computing that is being
advocated by Sun Microsystems. JXTA provides an open set of XML-based
protocols that allows any device on a given network to communicate and
collaborate in a P2P fashion, even when some of the peers are behind
Network Attached Devices or Firewalls. The basic concepts supported by
JXTA are the peer, peer group, network services, modules, pipes, messages,
and advertisements which are described below:

• Peer: A peer in JXTA is any device on the network that supports one or

more of the JXTA protocols. There are six protocols defined within
JXTA. Peers use these protocols to discover other peers, advertise and
discover network resources, as well as communicate and route messages.

6. Linking Military Systems with Simulations and Intelligent Agents 123

• Peer Group: A peer group is a collection of peers that have an agreed

upon set of services. Peers may exist within multiple peer groups
simultaneously; however, by default, when peers are instantiated they are
joined to the Net Peer Group (all peers are a part of the Net Peer Group).

• Network Services: Peers generally cooperate and communicate to
discover network services. There are two types of services: Peer services
and Peer Group Services. The former type of service is associated with
an individual peer while the latter service type is associated with a group
of peers, which provides the added advantage of redundancy among the
peers in the group (assuming another peer is still able to provide the
failed service).

• Modules: Modules are pieces of code written to represent any kind of
behavior, and are described by the Module Class (which supports the
capability to advertise behaviors), Module Specification (which provides
support to access a module) and Module Implementation (the actual
implementation of the module). Network services are the most common
forms of behavior that can be instantiated on a peer.

• Pipes: Pipes support communication between peers. Input pipes are used
by peers to receive messages; output pipes are used to send messages.

• Messages: A message is an object that is transmitted between JXTA
peers. Messages may be either in XML or binary form.

• Advertisements: Advertisements are XML documents that describe
peers, peer groups, pipes or services. There are nine advertisement types
that are supported in JXTA.

Using the JXTA architecture, peers advertise their capabilities with a

rendezvous peer (i.e., directory), which caches the advertisement. The
advertisement may include the service offered as well as information about
how to connect to the peer that offers the service. If a peer wishes to
discover a service, and an advertisement is not found on the local rendezvous
peer, then a discovery request is propagated by that rendezvous peer to other
rendezvous peers on the network. A rendezvous peer that contains the
specific service advertisement provides the pipe advertisement to the
requesting peer, which uses the pipe advertisements to connect directly with
the peer that offers the service.

Relay peers contain routes to other peers, and are also capable of routing
messages to peers. In the example above, if the service is not found on the
local rendezvous peer, then a route is needed to other rendezvous peers as
well as eventually to the peer that offers a service. The route will be
contained as a series of hops through a set of relay peers to the destination.
Rendezvous and relay peers may be implemented on the same node.

124 Chapter 6

7.2 NeuroGrid

The Neurogrid [19] environment provides a decentralized, adaptive
search system that learns over time in response to user queries. Two main
components of Neurogrid that complement one another are semantic routing
and learning. Semantic routing refers to the ability to forward queries based
on their content, while learning in this context refers to the ability of the
nodes to dynamically adjust the meta-data describing the contents of nodes
and the files that make up those contents.

The concept behind NeuroGrid is to store the relationship between
bookmarked URL’s and their relationships to user queries (e.g., keywords)
as well as between keywords and other nodes, which then provides a
capability to semantically route discovery requests between nodes in order to
determine which nodes offer the best response (e.g, URL) to the query
(keywords, or metadata, may also be updated at this point). A direct link is
also formed between the initiating node as well as the node that returns the
response, thereby increasing the connectivity in the network. Neurogrid
addresses the issue of how to rank multiple URLs that are associated with
the same keyword by not only using the fact that the user has clicked
through the URL, but whether it was bookmarked as well. The mathematics
behind Neurogrid also takes into account cases where the ratio of
recommended bookmarks to that of selected bookmarks, for a given search,
is identical.

NeuroGrid, in its current server side implementation is not a pure P2P
system in the sense that each node is connected to every other node. It is,
however, based around a large number of small servers being linked to one
another in a P2P fashion, with each server supporting a small community of
users

7.3 The CoABS Grid

The CoABS grid [5] (hereafter referred to as Grid) was developed under
the DARPA CoABS program, and arguably provides the most successful
and widely used infrastructure to date for the large-scale integration of
heterogeneous agent frameworks with object-based applications, and legacy
systems. Based on Sun’s Jini [29] services, it includes a method-based
application-programming interface to register and advertise capabilities,
discovers services based on those capabilities, and provides the necessary
communication between services. Systems and components on the Grid can
be added and upgraded without reconfiguration of the network. Failed or
unavailable components are automatically purged from the registry and
discovery of similar services and functionality is pursued.

6. Linking Military Systems with Simulations and Intelligent Agents 125

The Grid supports a wide variety of applications, from those that support
simple monitoring and information retrieval to complex, dynamic domains
such as military command and control. Using the Grid, agents and wrapped
legacy systems can (1) describe their needs, capabilities and interfaces to
other agents and legacy systems; (2) find and work with other agent
components and legacy systems to accomplish complex tasks in flexible
teams; (3) interact with humans and other agents to accept tasking and
present results, and (4) adapt to changes in the application domain, the task
at hand, or the computing environment. The Grid does this by providing
access to shared policies and ontologies (mechanisms for describing agents’
capabilities and needs), and services that support interoperability among
agents and legacy systems with simple or rich levels of semantics—all
distributed across a network infrastructure.

Although most agent frameworks provide some of the interoperability
and other services that the Grid provides, each framework typically supports
specialized constructs, communication, and control mechanisms. This
specialization is desirable because particular systems can use mechanisms
appropriate to the problem domain/task to be solved. The Grid is not
intended to replace current agent frameworks but rather to augment their
capabilities with services supporting trans-architecture teams.

The Grid provides helper utility classes that are local to an agent and hide
the complexity of Jini. These classes automatically find any Look-up
Services in both the local area network and user-designated distant
machines. The Grid supports agent and service discovery based on Jini
entries and arbitrary predicates as well as by service type. The Grid also
provides event notification when agents register, deregister, or change their
advertised attributes.

Recently DARPA has conceived a new program within the Information
Processing Technology Office (IPTO) called Fast Connectivity for Coalition
and Agents Project (FastC2AP). One of the goals of the FastC2AP program
is to investigate and build linkages between the CoABS grid and web
services. The idea is to make web services easily accessible to software
agents on the grid. Programs such as this demonstrate that web service
technology is maturing fast and permeating into military applications.
However, it is becoming apparent that architectures more suited to large-
scale multi-agent systems, such as the CoABS grid, will continue to be used
and will therefore be required to work with web services.

126 Chapter 6

8. SUMMARY

This chapter has described the current state-of-the-art in web services
technology and how it is being applied to support the development of the
GIG. This chapter has also described a proof-of-principle implementation
that uses web services to support the interoperability between a military
system, simulation and intelligent agents to support CoAA. Future areas to
explore in the proof-of-principle include the integration with the eXtensible
Battle Management Language [32], which enables access to military
Operational Orders (OPORDS) through a web service interface. This will
enable the agents to relate the impact of the deviations to the OPORD
(particularly whether critical tasks within the OPORD are affected by the
deviations). Additional areas include the use of BPEL to configure services
from within the JWARS Situation Monitor and exploring techniques for
mapping between ontologies to support agent-to-agent communication.

This chapter has also outlined the challenging problems that software
agents may be expected to not only face, but also help solve in the GIG. The
issues that have been suggested include:

• The integration of agent technology within a web-services paradigm.
• Interoperability of systems between the GIG COI’s and whether software

agents (which understand one ontology) will be able to effectively (e.g.,
semantically) communicate with other agents (having a different
ontological representation).

• Limitations associated with the reasoning capabilities of software agents
in the GIG, and whether human-agent cooperation will be necessary and
can agents learn from this interaction?

Lastly, this chapter has outlined the potential limitations of web service

technology to support the full operational concept of the GIG, and discussed
the role of competing architectures such as JXTA, Neurogrid and CoABS
grid. It is unclear how web service technology will evolve to meet the needs
of the GIG. For example, industry watchers now proclaim the next big
revolution to be grid services, which offers a mechanism to enable, among
other things, reliability in accessing services through new WSDL
specifications. The continuing evolution of web services and related
technology will certainly impact the deployment of software agent
technology in the GIG. The big question is “will there be a single
technology that provides the infrastructure for the GIG, or will there be
several complementary technologies that also provide better support for
software agents?” If the latter is true, questions of how to best bridge the
applications that rely on different technologies will need to be answered?

6. Linking Military Systems with Simulations and Intelligent Agents 127

9. REFERENCES

1. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S. Narayanan, M.
Paolucci, T. Payne, K. Sycara, H. Zeng, "DAML-S: Semantic Markup for Web
Services", In Proceedings of the International Semantic Web Working Symposium
(SWWS), July 30-August 1, 2001

2. Berners-Lee, T. Hendler, J. Lassila, Ora. (2001). The Semantic Web. Scientific
American. 279(5), pp. 35-43 (2001).

3. Carlton, B. Scrudder, R. Black, C. Hopkins, M. Initialization of C4I Systems and
Simulation Federations – Today and in the Future, In Proceedings of the 2004 Fall
Simulation Interoperability Workshop (2004)

4. C2IEDM, http://www.mip-site.org
5. Control of Agent Based System Grid, http://coabs.globalinfotek.com
6. DARPA Agent Markup Language, http://www.daml.org
7. Defense Advanced Research Projects Agency, http://www.darpa.mil
8. Defense Information Infrastructure (DII) Common Operating Environment (COE),

http://diicoe.disa.mil/coe
9. ebXML Web Site, http://www.ebxml.org
10. eXtensible Markup Language, http://www.w3.org/XML/
11. Foster, I. Kesselman, K. Tuecke, S. The Anatomy of a Grid: Enabling Scalable Virtual

Organizations. International Journal of Supercomputer Applications, 15(3), pp. 200-222,
Fall 2001.

12. Global Command and Control System Common Operational Picture Reporting
Requirements, CJCSI 3151-01A (19th January 2003)

13. Global Information Grid (GIG), http://ges.dod.mil, http://www.disa.mil/ns/gig.html
14. Hawkins, J. Defense Information Systems Network (DISN): Policy, Responsibilities and

Processes. July 2003, http://www.dtic.mil/cjcs_directives/cdata/unlimit/6211_02.pdf
15. Horizontal Fusion, http://horizontalfusion.dod.mil
16. Hypertext Markup Language, http://www.w3.org/MarkUp/
17. Joint Tactical Radio System, http://jtrs.army.mil
18. Joint Warfare Simulation, http://www.caci.com/business/systems/simulation/jwars.shtml
19. Joseph S. (2002) "NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks."

In Proceedings of the International Workshop on Peer-to-Peer Computing (co-located
with Networking 2002), Pisa, Italy, May 2002.

20. Meyerriecks, D. Net-Centric Enterprise Services. Military Information Technology
Online Archives, 7 (3), 2003.

21. Mittu, R., Walters, J., Abramson, M., “Improving Simulation Analysis through
Interfaces to C4I systems and Simulations”, In Proceedings of the 2004 Spring
Simulation Interoperability Workshop., Crystal City, VA.

22. Naval Doctrine Command. Naval Doctrine Publication 5: Naval Planning. 1996
23. Peer-to-Peer Computing, http://www.openp2p.com
24. Project JXTA Web site, http://www.jxta.org
25. Rao A. S. and Georgeff M. P. “BDI agents: from Theory to Practice”. In Proceedings of

the First Intl. Conference on Multiagent Systems, San Francisco, 1995.
26. Resource Description Framework, http://www.w3c.org/RDF/
27. Resource Description Framework Schema, http://www.w3.org/TR/rdf-schema/
28. Sherman, Doron. BPEL Unleashed: Putting a Modern Business Process Execution

Standard to Work. Web Services Journal, 5 (1), pp. 18, 34-36.
29. Sun Microsystems, Jini Network Technology: An Executive Overview,

http://wwws.sun.com/software/jini/whitepapers/jini-execoverview.pdf

128 Chapter 6

30. Tambe, M. “Agent Architectures for Flexible, Practical Teamwork”. In Proceedings of

the National Conference on Artificial Intelligence, 1997.
31. Theatre Battle Management Core System, http://www.fas.org/man/dod-

101/sys/ac/equip/tbmcs.htm
32. Tolk, Andreas, Pullen, J. Mark, Sudnikovich, W. Hieb, M. “Developing Battle

Management Language into a Web Service”. In Proceedings of 2004 Spring Simulation
Interoperability Workshop. Crystal City, VA.

33. Wooldridge, M. An Introduction to MultiAgent Systems, John Wiley and Sons, 2002.
34. World Wide Web Consortium (W3C), http://www.w3c.org
35. WSFL: http://xml.coverpages.org/wsfl.html
36. XLANG: http://xml.coverpages.org/xlang.html
37. http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol1/
38. DAML Services Coalition (alphabetically A. Ankolekar, M. Burstein, J. Hobbs, O.

Lassila, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H.
Zeng), "DAML-S: Semantic Markup for Web Services",Proceedings of the International
Semantic Web Working Symposium (SWWS), July 30-August 1, 2001

