
Utilizing Network Science and Honeynets for Software Induced Cyber
Incident Analysis

Abstract

Framing the scene and investigating the cause of a
software induced cyber-attack continues to be one of
the most difficult yet important endeavors faced by
network security professionals. Traditionally, these
forensic pursuits are carried out by manually
analyzing the malicious software agents at the heart of
the incident, and then observing their interactions in a
controlled environment. Both these steps are time
consuming and difficult to maintain due to the ever
changing nature of malicious software. In this paper
we introduce a network science based framework
which conducts incident analysis on a dataset by
constructing and analyzing relational communities.
The construction of these communities are based on
the connections of topological features formed when
actors communicate with each other. We evaluate our
framework using a network trace of the malware
network, BlackEnergy, captured by our honeynet. We
have found that our approach is accurate, efficient,
and could prove as a viable alternative to the current
status quo.

1. Introduction

Today the importance of developing effective
methods to analyze and defend against cyber attacks is
no longer in doubt. Incidents such as the recent data
breaches at Target and PF Chang as well as discovered
and alleged attacks against Nation states, bring world-
wide attention to the cyber attack problem [1-3]. This
problem has been growing exponentially despite
constant research geared towards reducing its impact.
One of the major issues causing this upward trend in
attacks is the dependence on an outdated analysis
system [4]. Modern day attacks are often sophisticated
and carried out at high speeds. In order to effectively
understand and defend against these attacks, it is
necessary to identify key attributes and actions quickly,
before the originators of the attack can cover their
tracks and attack other targets.

 When dealing with attacks where malicious
software (malware) directly interacts with a victim
computer, current methods of cyber incident analysis

involve two major steps. Step one is to discover and
manually analyze the malware that was sent to the
infected system. Step two is to run the discovered
malware in a closed simulated network (sandbox) and
evaluate its actions based on the intelligence that was
learned in step one . In theory these steps represent the
most effective method to conduct a detailed analysis of
the incident if the analyst conducting the manual
analysis is a highly competent expert in malware
analysis. Unfortunately, modern malware continues to
evolve and become increasingly complex. Because of
this, a detailed analysis is likely to take a significant
amount of time for even the most highly qualified
analyst to complete [4]. Furthermore, most sandbox
analysis systems are limited in regards to simulating a
network. For instance, in order to completely simulate
an environment, the sandbox would need to be
configured to include every item in the network that
can be modified in any way [5]. This level of
customization is unrealistic for most organizations.

We believe a beneficial approach which could
improve the efficiency and effectiveness of analyzing a
cyber incident should be able to identify the important
actors involved in the incident without requiring a
detailed internal description of the actor. This would
reduce the time consuming roadblock of manually
analyzing convoluted malware code. We also believe
this approach needs to be able to identify and track the
transactions that take place between actors. This
would reduce the dependence on sandboxes for the
discovery of behavioral characteristics. Community
based analysis from the multi-disciplinary field of
network science provides techniques that can satisfy
these requirements. Here, actors and their interactions
are modeled using graph theory where each actor is
represented by a vertex 𝑉 and each interaction between
actors is represented by an edge 𝐸. Communities are
then formed based on the context of the discovered
interactions [6]. One of the findings we present in this
paper shows that the discovered community structures
and the relationships within the communities reveal the
underlying meanings of the network as a whole. This
is a finding that echoes the results of networks in other
fields of study, such as biology and social networking
[7, 8].

In this paper, we present and discuss our honeynet
based framework that captures network traces of cyber
incidents, identifies key actors within the network
trace, and constructs communities based on the
interactions of the discovered actors. Current tests are
very encouraging and show that a meaningful analysis
is possible without an in depth knowledge of the inner
workings of the malware code.

The remainder of the paper is structured as follows.
In Section 2 we discuss related work in the area of
software based cyber incident analysis, honeynet
technology, and network science based community
detection. Section 3 discusses the components of the
framework. In Section 4 we discuss the results, and
Section 5 concludes the paper.

2. Background

 Cyber incident analysis in general includes the
gamut of cyber attacks conducted on a computer
network. One category of these incidents include
reflection attacks, such as the NTP reflection attack.
Here an attacker sends a small request to a vulnerable
NTP server or group of servers, but asks for the reply
to be sent to a separate target computer. The NTP
server then responds with a large amount of data which
causes a denial of service in the target computer.
Software bug exploitation is another form of a cyber
incident. Here an attacker has knowledge of a flaw in
software installed on a computer system. The attacker
then uses this flaw to gain access to the system and is
free to copy or take anything available based on the
level of access he has achieved. Attacks such as these
are especially troubling because it may not be possible
to identify the intrusion. This is the case with the
recently discovered heartbleed bug [9]. The analysis of
reflection attacks, bug exploitations, and other
incidents that do not involve software based malware
directly interacting with a targeted network are beyond
the scope of this paper, but in theory can be analyzed
using our network science based approach. We leave
the analysis of these types of networks for future
works.
 In this section we discuss previous research that
focused on software induced incidents.

2.1. Related Work

In a recent survey on network-based botnet
detection methods by Garcia et al. [10], the authors
took an in-depth look at the most widely used and
researched botnet detection tools available. In this
survey there was a discussion which highlighted the
fact that bot detection mechanisms have different

requirements than botnet detection mechanisms due to
the difference in detecting one machine as opposed to a
group of machines. Detecting a bot fits in the realm of
this paper since a bot is software that induces the cyber
incident. Of these methods, "BotMiner" [11],
"BotSniffer" [12], "N-gram" [13], and "Tamed" [14],
were similar to our method based on their detection
approach. Our method is different from these and all
the other approaches found in this survey because once
the software is discovered in our system it is analyzed
based on communities, which can be analyzed to
determine relationships between actors located in the
same community and throughout multiple
communities. The methods presented in this survey
employ clustering in their detection algorithms.
Clustering is conducted based on a metric of distance
and does not take into account relationships [6].

In another recent survey, which compared dynamic
malware analysis techniques, Egele et al. conducted a
study on methods that look to dynamically analyze
malware to reduce the time gap between discovery of
the malware to gaining intelligence from the malware
[15]. In this survey the authors acknowledge that most
forms of malware analysis still rely heavily on manual
or static based analysis. They also discuss the major
forms of malware discovered on the Internet today.
The methods discussed in this work seek to conduct an
analysis of the malware without first performing the
manual static analysis step. They also use clustering
and automated dynamic analysis reports to describe
observed actions. These actions are then turned into
behavioral profiles. Our approach also focuses on
behaviors, but instead of using clustering, we use
communities which allows us to identify relationships
for a more fine grained analysis.

Two works which developed systems to detect and
analyze software induced malware networks are "In
Mining Botnet Behaviors on the Large-scale Web
Application Community" [16] and "Botnet Detection
Based on Traffic Behavior Analysis and Flow
Intervals" [17]. In both these systems the authors used
machine learning to discover patterns within the
network that explain botnet behaviors. Our framework
has the same goal of identifying patterns, but machine
learning techniques suffer from their dependence on
generating a training set of data. Also, this type of
analysis does not make any connections between
identified nodes of interest.

2.2. Honeynet Technology Overview

Honeynets are networks composed of machines that
are geared to attract and capture transactions of
malicious users [18]. If one machine is configured to
collect this data it is called a honeypot. This

technology has proven very useful in studying and
defending against malicious networks. In most cases a
general honeypot with a simple vulnerability will
receive many attack attempts within minutes. Virtually
any analysis tool or method can be plugged into the
honeynet in order to run analysis on the discovered
attacks. Honeynets can be configured in a variety of
ways, based on the desired level of interaction from the
malicious software. Simple implementations seek only
to capture traces of automated attacks which search for
vulnerabilities within systems on a subnet. These types
of honeynets are considered low interaction. Other
forms of honeynets allow the malware to connect to
locations outside of the network. These types of
honeynets are considered high interaction. The
connections are normally limited so as not to allow the
malware to damage outside sources from the honeynet.
These types of implementations can become very
elaborate. It is possible to create a framework which is
an exact replica of a production network. Creating
such a honeynet would allow the system administrator
or researcher to investigate the effect a piece of
malware would have on the corresponding production
network. The goal of a successful honeynet is to
record data and discover patterns in malicious traffic,
without alerting the attacker, in order to discover a way
to render the attack useless. Researchers and security
professionals have used these methods to identify and
shutdown attacks from all over the world.

2.3. Network Science Based Community
Detection

Network Science is an inter-disciplinary field that
studies the network representations of physical,
biological, and social phenomena. It includes methods
and theories from a wide range of fields. Detecting the
community structure of graphs is a graph theoretic
based approach that fits into this area. A network is
said to have community structure if the nodes of the
network can be grouped into multiple sets of nodes,
where the sets of nodes are more connected internally
than externally [19].

Communities are distinct from clustering because
communities group nodes based on context and not just
distance [6]. This fact becomes especially useful when
considering node overlap. Node overlap is when a
node is a member of two distinct communities at the
same time [20]. By investigating the context and the
semantics of both community memberships we can
begin to understand the purpose of the memberships.
We can also begin to understand the connections
between the two communities.

There are several methods used to construct the
communities. The most prevalent methods are
hierarchy based [21], modularity (null model) based
[22], information theory based [23], and clique based
[24]. Each model has its drawbacks and advantages.
In this paper we utilized the clique based method due
to its natural ability to discover overlaps within
communities. Other hybrid based methods are also
able to detect overlaps and may be more efficient, so
we will explore those options in future work.

3. Cyber Incident Analysis Framework

 Our incident analysis framework is composed of
five modules which can act as a standalone method for
malware analysis. In this particular application we are
conducting an analysis of a botnet which is a network
of computers that has been infected by agents. This
network is controlled by one or more commanders,
which are called botmasters or bothearders. We chose
a botnet as our first test dataset because the important
actors (Bots, Botnets, and Command and Control
Centers) are well defined and network traffic
concerning each actor can be detected by our honeynet.
These factors made it a good choice for community
detection.

3.1. Traffic and Log Collection Module

The traffic and log collection module is the entry
point to the framework. It aims to capture and monitor
the traffic at the edge of networks and each sensor of
installed honeypots within the honeynet. This module
has two modes. It can capture live traffic from a
network in the form of packets by using the pcap
library and it can load captured files stored on a file
system. Currently the types of stored traffic that can be
read with this module is pcap, netflow, argus, and
sebek. Other forms of log data can be formatted to be
included in our framework. Collected data is
forwarded to the Traffic processing module.

3.2. Traffic Processing Component

The Traffic processing component aims to pre-

process the traffic for flow correlation. The Traffic
separator module within the component separates the
traffic into 5 minute time windows in order for us to
observe changes in behavior over time. The packet
parsing module extracts header level information from
the traffic such as source IP, destination IP, source
port, destination port, TCP/UDP payload size except 0
size of TCP length, source to destination packet count
and data size, destination to source packet count and

data size, and session interval. And this module
generates txt file and CVS file based on above
information. The Flow aggregation module generates
an input file for flow correlation. The matrix for
correlation is {srcIP, dstIP}, {srcIP, TCP/UDP payload
size}, and {TCP/UDP payload size, dst IP}.

3.3. Flow Correlation Component

The flow correlation component creates

communities from the normalized data inputted from
the flow aggregation module located in the traffic
processing component. As mentioned earlier, we use
the clique based method to generate the communities.
This method relies on constructing a matrix which is
built from completely connected sub graphs called
cliques. In order to generate the cliques we first need
to define what a node is. In our approach we used IP
addresses as nodes and the message between a srcIP
dstIP pair as the link.

The botnet community graph generator module
inside the flow correlation component produces a
visual image of the communities within a certain time
period. This graph is then passed to the botnet
behavior monitoring component.

3.4. Network Behavior Monitoring Component

In the network behavior monitoring component we
analyze the current community graph and then
compare it to previous graphs to determine dynamic
changes that have occurred over time. Here we can
discover the evolution of nodes and fluid relationships
within the same community and across multiple
communities.

3.5. Bot Master and C&C Detection

The Bot master and C&C detection component is
where the results from the other components are
combined and correlated to produce intelligence.

The botnet behavior modeling results module gives
a display of what has changed over time within the
community graphs.

The packet parsing results module captures and
displays parsing results from each data source that was
used in the analysis. This module was included to
provide the analyst with a lens into the lower level data
in case there is a question about the validity of the
monitoring results. Here the analyst can manipulate the
data before correlation is facilitated.

The correlation module adjusts the output of the
behavior monitoring results depending on what has
changed in the packet parsing results. If no change has
been made the correlation results will be identical to
the input for the behavior monitoring results. If a

Figure 1: Community Based Cyber Incident Analysis Framework

change has been made, the results will change
accordingly.

4. Results

Our preliminary results have shown that we can
detect various types of data streams in our traffic and
log collection module. All other modules are also
functional, but results are currently being evaluated
and will be presented in the next required revision.

4.1. Discovered Communities

Our clique based community detection algorithm

was able to identify communities within the
BlackEnergy data. This proves that the data is not
random since it has a defined community structure.
We were also able to track distinct nodes across
multiple community graphs. This was made possible
by performing a correlation of IP addresses with
distinct user IDs which were discovered from a manual
static analysis of the dataset. Without this step, distinct
node discovery would be impossible due to the
constant changing of IP addresses over time. Statistics
showing the comparison of IP addresses and distinct
username IDs will be completed before the next
revision of this paper.

5. Conclusion

Here we introduced a cyber incident analysis
framework which is based on the detection of
communities within discovered attack data. This
framework does not need to perform a time consuming
manual analysis step or a closed system dynamic
analysis step to identify intelligence from the data.
Instead, all that is needed is high level identification
data and knowledge of communications between the
identified actors. Preliminary results have been very
promising and have revealed community structures
within the tested BlackEnergy data. We were also able
to identify relationships between the communities due
to the overlap discovered. We are currently collecting
analysis results to be included in this paper and we will
have a complete analysis by the next revision.

6. References

[1] Krebs, Brian, "The Target Breach, By the Numbers",
http://krebsonsecurity.com/2014/05/the-target-breach-by-the-
numbers/, May 14, 2014

[2] Krebs, Brian, "P.F. Chang's Breach Likely Began in Sept.
2013", http://krebsonsecurity.com/2014/06/p-f-changs-
breach-likely-began-in-sept-2013/, June 14, 2014

[3] Geers, Kenneth, Kindlund, Darien, Moran, Ned, and
Rachwald, Rob, "World War C: Understanding Nation-State
Motives Behind Today's Advanced Cyber Attacks",
http://www.fireeye.com/resources/pdfs/fireeye-wwc-
report.pdf, 2013

[4] Dittrich, David, "So you want to take over a botnet", In
Proceedings of 5th USENIX conference on Large-Scale
Exploits and Emergent Threats, USENIX, 2012

[5] Rossow, Christian, Dietrich, Christian, J., Bos, Herbert,
Cavallaro, L., Steen, Maarten van, Freiling, Felix, C., and
Pohlmann, Norbert, "Sandnet: Network Traffic Analysis of
Malicious Software", ACM, 2011

[6] Fortunato, Santo, "Community detection in graphs",
Physics Reports, 2010

[7] Jia, Yuntao, Garland, Michael, and Hart, John, C., "Social
Network Clustering and Visualization using Hierarchical
Edge Bundles", Computer Graphics Forum, December 2011

[8] Leydesdorff, Loet and Ahrweiler, Petra, "In Search of a
Network Theory of Innovations: Relations, Positions, and
Perspectives", Journal of the American Society for
Information Science and Technology (JASIST), 2013

[9] Codenomicon, "The Heartbleed Bug",
http://www.heartbleed.com, April, 2014

[10] Garcia, Sebastian, Zunino, Alejandro, and Campo,
Marcelo, "Survey on network-based botnet detection
methods", Security and Communication Networks, May
2014

[11] Guofei, Gu, Perdisci, Roberto, Zhang, Junjie, and Lee,
Wenke, "BotMiner: Clustering Analysis of Network Traffic
for Protocol-and Structure-Independent Botnet Detection,
USENIX, 2008

[12] Guofei, Gu, Zhang, Junjie, and Lee, Wenke, "Botsniffer:
Detecting botnet command and control channles in network
traffic.", In Proceedings of the 15th Annual Network and
Distributed System Security Symposium, NDSS, 2008

[13] Abou-Assaleh, T., Cerone, N, Keselj, V, and Sweidan,
R., "N-gram-based Detection of New Malicious Code.", In
Proceedings of the 24th Annual International Computer
Software and Applications Conference (COMPSAC 2004),
Hong Kong, 2004

[14] Yen, Ting-Fang and Reiter, Michael, K., "Traffic
Aggregation for Malware Detection", Detection of Intrusions
and Malware, and Vulnerability Assessment Lecture Notes in
Computer Science, Volume 5137, 2008

[15] Egele, Manuel, Scholte, Theodoor, Kirda, Engin, and
Kruegel, Christopher, "A Survey on Automated Dynamic
Malware Analysis Techniques and Tools, ACM Computing
Surveys, Vol. 44, No. 2, 2012

[16] Garant, Daniel and Lu, Wei, "Mining Botnet Behaviors
on the Large-Scale Web Application Community", In
Proceedings of 27th International Conference on Advanced
Information Networking and Applications Workshops
(WAINA), IEEE, 2013

[17] Zhao, David, Traore, Issa, Sayed, Bassam, Lu, Wei,
Saad, Sherif, Ghorbani, Ali, and Garant, Dan, "Botnet
detection based on traffic behavior analysis and flow
intervals", 27th IFIP International Information Security
Conference, Computers and Security, Volume 39, Part A,
November 2013

[18] Honeynet Project, "Know Your Enemy: GenII
Honeynets", http://old.honeynet.org/papers/gen2/, 2005

[19] Lancichinetti, Andrea and Fortunato, Santo,
"Community detection algorithms: A comparative analysis",
Phys. Rev. E 80, 056117, Novermber 2009

[20] Xie, J., Kelley, S., and Szymanski, B., "Overlapping
community detection in networks: the state of teh art and
comparative study. In Social and Information Networks,
ACM, 2012

[21] Wang, Jianxin, Li, Min, Chen, Jianer, and Pan, Yi, "A
Fast Hierarchical Clustering Algorithm for Functional
Modules Discovery in Protein Interaction Networks,
Computational Biology and Bioinformatics, IEEE/ACM
Transactions, 2011

[22] Perry, Patrick and Wolfe, Patrick, "Null Models for
Network Data", Available at
http://arxiv.org/abs/1201.5871v1, 2012

[23] Rosvall, Martin and Bergstrom, Carl, T., "An
information-theoretic framework for resolving community
structure in complex networks", Proceedings of the National
Academy of Sciences of the United States of America, 2007

[24] Palla, Gergly, Derenyi, Imre, Farkas, Illes, and Vicsek,
Tamas, "Uncovering the overlapping community structure of
complex networks in nature and society", Nature, June 2005

