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Abstract 

Framing the scene and investigating the cause of a 
software induced cyber-attack continues to be one of 
the most difficult yet important endeavors faced by 
network security professionals.  Traditionally, these 
forensic pursuits are carried out by manually 
analyzing the malicious software agents at the heart of 
the incident, and then observing their interactions in a 
controlled environment.  Both these steps are time 
consuming and difficult to maintain due to the ever 
changing nature of malicious software.  In this paper 
we introduce a network science based framework 
which conducts incident analysis on a dataset by 
constructing and analyzing relational communities.  
The construction of these communities are based on 
the connections of topological features formed when 
actors communicate with each other.  We evaluate our 
framework using a network trace of the malware 
network, BlackEnergy, captured by our honeynet.  We 
have found that our approach is accurate, efficient, 
and could prove as a viable alternative to the current 
status quo.  
 
 
1. Introduction  
 

Today the importance of developing effective 
methods to analyze and defend against cyber attacks is 
no longer in doubt.  Incidents such as the recent data 
breaches at Target and PF Chang as well as discovered 
and alleged attacks against Nation states, bring world-
wide attention to the cyber attack problem [1-3].  This 
problem has been growing exponentially despite 
constant research geared towards reducing its impact.  
One of the major issues causing this upward trend in 
attacks is the dependence on an outdated analysis 
system [4].  Modern day attacks are often sophisticated 
and carried out at high speeds.  In order to effectively 
understand and defend against these attacks, it is 
necessary to identify key attributes and actions quickly, 
before the originators of the attack can cover their 
tracks and attack other targets. 

 When dealing with attacks where malicious 
software (malware) directly interacts with a victim 
computer, current methods of cyber incident analysis 

involve two major steps.  Step one is to discover and 
manually analyze the malware that was sent to the 
infected system.  Step two is to run the discovered 
malware in a closed simulated network (sandbox) and 
evaluate its actions based on the intelligence that was 
learned in step one .  In theory these steps represent the 
most effective method to conduct a detailed analysis of 
the incident if the analyst conducting the manual 
analysis is a highly competent expert in malware 
analysis.  Unfortunately, modern malware continues to 
evolve and become increasingly complex.  Because of 
this, a detailed analysis is likely to take a significant 
amount of time for even the most highly qualified 
analyst to complete [4].  Furthermore, most sandbox 
analysis systems are limited in regards to simulating a 
network.  For instance, in order to completely simulate 
an environment, the sandbox would need to be 
configured to include every item in the network that 
can be modified in any way [5].  This level of 
customization is unrealistic for most organizations.   

We believe a beneficial approach which could 
improve the efficiency and effectiveness of analyzing a 
cyber incident should be able to identify the important 
actors involved in the incident without requiring a 
detailed internal description of the actor.  This would 
reduce the time consuming roadblock of manually 
analyzing convoluted malware code.  We also believe 
this approach needs to be able to identify and track the 
transactions that take place between actors.  This 
would reduce the dependence on sandboxes for the 
discovery of behavioral characteristics.  Community 
based analysis from the multi-disciplinary field of 
network science provides techniques that can satisfy 
these requirements.  Here, actors and their interactions 
are modeled using graph theory where each actor is 
represented by a vertex 𝑉 and each interaction between 
actors is represented by an edge 𝐸.  Communities are 
then formed based on the context of the discovered 
interactions [6].  One of the findings we present in this 
paper shows that the discovered community structures 
and the relationships within the communities reveal the 
underlying meanings of the network as a whole.  This 
is a finding that echoes the results of networks in other 
fields of study, such as biology and social networking 
[7, 8]. 



In this paper, we present and discuss our honeynet 
based framework that captures network traces of cyber 
incidents, identifies key actors within the network 
trace, and constructs communities based on the 
interactions of the discovered actors.  Current tests are 
very encouraging and show that a meaningful analysis 
is possible without an in depth knowledge of the inner 
workings of the malware code. 

The remainder of the paper is structured as follows.  
In Section 2 we discuss related work in the area of 
software based cyber incident analysis, honeynet 
technology, and network science based community 
detection.  Section 3 discusses the components of the 
framework.  In Section 4 we discuss the results, and 
Section 5 concludes the paper. 
 
2. Background 
 
     Cyber incident analysis in general includes the 
gamut of cyber attacks conducted on a computer 
network.  One category of these incidents include 
reflection attacks, such as the NTP reflection attack.  
Here an attacker sends a small request to a vulnerable 
NTP server or group of servers, but asks for the reply 
to be sent to a separate target computer.  The NTP 
server then responds with a large amount of data which 
causes a denial of service in the target computer.  
Software bug exploitation is another form of a cyber 
incident.  Here an attacker has knowledge of a flaw in 
software installed on a computer system.  The attacker 
then uses this flaw to gain access to the system and is 
free to copy or take anything available based on the 
level of access he has achieved.  Attacks such as these 
are especially troubling because it may not be possible 
to identify the intrusion.  This is the case with the 
recently discovered heartbleed bug [9].  The analysis of 
reflection attacks, bug exploitations, and other 
incidents that do not involve software based malware 
directly interacting with a targeted network are beyond 
the scope of this paper, but in theory can be analyzed 
using our network science based approach.  We leave 
the analysis of these types of networks for future 
works.   
     In this section we discuss previous research that 
focused on software induced incidents. 
 
2.1. Related Work  
 

In a recent survey on network-based botnet 
detection methods by Garcia et al. [10], the authors 
took an in-depth look at the most widely used and 
researched botnet detection tools available.  In this 
survey there was a discussion which highlighted the 
fact that bot detection mechanisms have different 

requirements than botnet detection mechanisms due to 
the difference in detecting one machine as opposed to a 
group of machines.  Detecting a bot fits in the realm of 
this paper since a bot is software that induces the cyber 
incident.  Of these methods, "BotMiner" [11], 
"BotSniffer" [12], "N-gram" [13], and "Tamed" [14], 
were similar to our method based on their detection 
approach.  Our method is different from these and all 
the other approaches found in this survey because once 
the software is discovered in our system it is analyzed 
based on communities, which can be analyzed to 
determine relationships between actors located in the 
same community and throughout multiple 
communities.  The methods presented in this survey 
employ clustering in their detection algorithms.  
Clustering is conducted based on a metric of distance 
and does not take into account relationships [6]. 

In another recent survey, which compared dynamic 
malware analysis techniques, Egele et al. conducted a 
study on methods that look to dynamically analyze 
malware to reduce the time gap between discovery of 
the malware to gaining intelligence from the malware 
[15].  In this survey the authors acknowledge that most 
forms of malware analysis still rely heavily on manual 
or static based analysis.  They also discuss the major 
forms of malware discovered on the Internet today.  
The methods discussed in this work seek to conduct an 
analysis of the malware without first performing the 
manual static analysis step.  They also use clustering 
and automated dynamic analysis reports to describe 
observed actions.  These actions are then turned into 
behavioral profiles.  Our approach also focuses on 
behaviors, but instead of using clustering, we use 
communities which allows us to identify relationships 
for a more fine grained analysis.   

Two works which developed systems to detect and 
analyze software induced malware networks are "In 
Mining Botnet Behaviors on the Large-scale Web 
Application Community" [16] and "Botnet Detection 
Based on Traffic Behavior Analysis and Flow 
Intervals" [17].  In both these systems the authors used 
machine learning to discover patterns within the 
network that explain botnet behaviors.  Our framework 
has the same goal of identifying patterns, but machine 
learning techniques suffer from their dependence on 
generating a training set of data.  Also, this type of 
analysis does not make any connections between 
identified nodes of interest.   

 
2.2. Honeynet Technology Overview  
 

Honeynets are networks composed of machines that 
are geared to attract and capture transactions of 
malicious users [18].  If one machine is configured to 
collect this data it is called a honeypot.  This 



technology has proven very useful in studying and 
defending against malicious networks.  In most cases a 
general honeypot with a simple vulnerability will 
receive many attack attempts within minutes.  Virtually 
any analysis tool or method can be plugged into the 
honeynet in order to run analysis on the discovered 
attacks.  Honeynets can be configured in a variety of 
ways, based on the desired level of interaction from the 
malicious software.  Simple implementations seek only 
to capture traces of automated attacks which search for 
vulnerabilities within systems on a subnet.  These types 
of honeynets are considered low interaction.  Other 
forms of honeynets allow the malware to connect to 
locations outside of the network.  These types of 
honeynets are considered high interaction.  The 
connections are normally limited so as not to allow the 
malware to damage outside sources from the honeynet.  
These types of implementations can become very 
elaborate.  It is possible to create a framework which is 
an exact replica of a production network.  Creating 
such a honeynet would allow the system administrator 
or researcher to investigate the effect a piece of 
malware would have on the corresponding production 
network.  The goal of a successful honeynet is to 
record data and discover patterns in malicious traffic, 
without alerting the attacker, in order to discover a way 
to render the attack useless.  Researchers and security 
professionals have used these methods to identify and 
shutdown attacks from all over the world.   
 
2.3. Network Science Based Community 
Detection 
 

Network Science is an inter-disciplinary field that 
studies the network representations of physical, 
biological, and social phenomena.  It includes methods 
and theories from a wide range of fields.  Detecting the 
community structure of graphs is a graph theoretic 
based approach that fits into this area. A network is 
said to have community structure if the nodes of the 
network can be grouped into multiple sets of nodes, 
where the sets of nodes are more connected internally 
than externally [19].   

Communities are distinct from clustering because 
communities group nodes based on context and not just 
distance [6].  This fact becomes especially useful when 
considering node overlap.  Node overlap is when a 
node is a member of two distinct communities at the 
same time [20].  By investigating the context and the 
semantics of both community memberships we can 
begin to understand the purpose of the memberships.  
We can also begin to understand the connections 
between the two communities.   

There are several methods used to construct the 
communities.  The most prevalent methods are 
hierarchy based [21], modularity (null model) based 
[22], information theory based [23], and clique based 
[24].  Each model has its drawbacks and advantages.  
In this paper we utilized the clique based method due 
to its natural ability to discover overlaps within 
communities.  Other hybrid based methods are also 
able to detect overlaps and may be more efficient, so 
we will explore those options in future work.  
 
3. Cyber Incident Analysis Framework  
 
     Our incident analysis framework is composed of 
five modules which can act as a standalone method for 
malware analysis.  In this particular application we are 
conducting an analysis of a botnet which is a network 
of computers that has been infected by agents.  This 
network is controlled by one or more commanders, 
which are called botmasters or bothearders.  We chose 
a botnet as our first test dataset because the important 
actors (Bots, Botnets, and Command and Control 
Centers) are well defined and network traffic 
concerning each actor can be detected by our honeynet.  
These factors made it a good choice for community 
detection.  
 
3.1. Traffic and Log Collection Module 
 

The traffic and log collection module is the entry 
point to the framework.  It aims to capture and monitor 
the traffic at the edge of networks and each sensor of 
installed honeypots within the honeynet. This module 
has two modes.  It can capture live traffic from a 
network in the form of packets by using the pcap 
library and it can load captured files stored on a file 
system.  Currently the types of stored traffic that can be 
read with this module is pcap, netflow, argus, and 
sebek. Other forms of log data can be formatted to be 
included in our framework.  Collected data is 
forwarded to the Traffic processing module. 
 
3.2. Traffic Processing Component 

 
The Traffic processing component aims to pre-

process the traffic for flow correlation. The Traffic 
separator module within the component separates the 
traffic into 5 minute time windows in order for us to 
observe changes in behavior over time.  The packet 
parsing module extracts header level information from 
the traffic such as source IP, destination IP, source 
port, destination port, TCP/UDP payload size except 0 
size of TCP length, source to destination packet count 
and data size, destination to source packet count and 



data size, and session interval. And this module 
generates txt file and CVS file based on above 
information. The Flow aggregation module generates 
an input file for flow correlation. The matrix for 
correlation is {srcIP, dstIP}, {srcIP, TCP/UDP payload 
size}, and {TCP/UDP payload size, dst IP}.  
 
3.3. Flow Correlation Component 

 
The flow correlation component creates 

communities from the normalized data inputted from 
the flow aggregation module located in the traffic 
processing component.  As mentioned earlier, we use 
the clique based method to generate the communities.  
This method relies on constructing a matrix which is 
built from completely connected sub graphs called 
cliques.  In order to generate the cliques we first need 
to define what a node is.  In our approach we used IP 
addresses as nodes and the message between a srcIP 
dstIP pair as the link.   

The botnet community graph generator module 
inside the flow correlation component produces a 
visual image of the communities within a certain time 
period.  This graph is then passed to the botnet 
behavior monitoring component.   

 
3.4. Network Behavior Monitoring Component 

 

In the network behavior monitoring component we 
analyze the current community graph and then 
compare it to previous graphs to determine dynamic 
changes that have occurred over time.  Here we can 
discover the evolution of nodes and fluid relationships 
within the same community and across multiple 
communities.   
 
3.5. Bot Master and C&C Detection 
 

The Bot master and C&C detection component is 
where the results from the other components are 
combined and correlated to produce intelligence.   

The botnet behavior modeling results module gives 
a display of what has changed over time within the 
community graphs.   

The packet parsing results module captures and 
displays parsing results from each data source that was 
used in the analysis.  This module was included to 
provide the analyst with a lens into the lower level data 
in case there is a question about the validity of the 
monitoring results. Here the analyst can manipulate the 
data before correlation is facilitated. 

The correlation module adjusts the output of the 
behavior monitoring results depending on what has 
changed in the packet parsing results.  If no change has 
been made the correlation results will be identical to 
the input for the behavior monitoring results.  If a 

Figure 1:  Community Based Cyber Incident Analysis Framework 



change has been made, the results will change 
accordingly.   
 
4. Results  
 

Our preliminary results have shown that we can 
detect various types of data streams in our traffic and 
log collection module.  All other modules are also 
functional, but results are currently being evaluated 
and will be presented in the next required revision. 

 
4.1. Discovered Communities 

 
Our clique based community detection algorithm 

was able to identify communities within the 
BlackEnergy data.  This proves that the data is not 
random since it has a defined community structure.  
We were also able to track distinct nodes across 
multiple community graphs.  This was made possible 
by performing a correlation of IP addresses with 
distinct user IDs which were discovered from a manual 
static analysis of the dataset.  Without this step, distinct 
node discovery would be impossible due to the 
constant changing of IP addresses over time.  Statistics 
showing the comparison of IP addresses and distinct 
username IDs will be completed before the next 
revision of this paper. 

 
5. Conclusion  
 

Here we introduced a cyber incident analysis 
framework which is based on the detection of 
communities within discovered attack data.  This 
framework does not need to perform a time consuming 
manual analysis step or a closed system dynamic 
analysis step to identify intelligence from the data.  
Instead, all that is needed is high level identification 
data and knowledge of communications between the 
identified actors.  Preliminary results have been very 
promising and have revealed community structures 
within the tested BlackEnergy data.  We were also able 
to identify relationships between the communities due 
to the overlap discovered.  We are currently collecting 
analysis results to be included in this paper and we will 
have a complete analysis by the next revision. 
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