
Discovering and Analyzing Deviant Communities:
Methods and Experiments

Napoleon C. Paxton*, Dae-il Jang**, Ira S. Moskowitz*, Gail-Joon Ahn** and Stephen Russell*

*Information Technology Division, Naval Research Laboratory, Washington, DC
**School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ

Abstract—Botnets continue to threaten the security landscape
of computer networks worldwide. This is due in part to the time
lag present between discovery of botnet traffic and identification
of actionable intelligence derived from the traffic analysis. In
this article we present a novel method to fill such a gap by
segmenting botnet traffic into communities and identifying the
category of each community member. This information can be
used to identify attack members (bot nodes), command and con-
trol members (Command and Control nodes), botnet controller
members (botmaster nodes), and victim members (victim nodes).
All of which can be used immediately in forensics or in defense
of future attacks.

We discuss the feasibility and practicality of our method
through experiments with real-world botnet traffic. Our experi-
mental results show a high detection rate with a low false positive
rate, which gives encouragement that our approach can be a
valuable addition to a defense in depth strategy.

I. INTRODUCTION

There has been a significant amount of research devoted to
discovering botnet traffic within computer networks, but an
equally important area of research is the analysis of the data
once it has been discovered. Security analysts in charge of
decyphering information gathered after a botnet attack always
begin at a disadvantage due to the everchanging landscape of
botnet administration and the custom and decentralized meth-
ods used to analyze the data. Because of this, many botnets
such as Mariposa (7 months), Kelihos (8 months), and Rustock
(5 years), can continue to operate for a significant amount of
time after an attack has been discovered, while waiting for ac-
tionable information gathered from current analysis techniques
[5]. This "wait" is significant because current analysis methods
have to decipher the commands used to administer the botnets.
Experts agree that this is time consuming and non-trivial even
for experienced and skilled analysts [13], [4]. A preliminary
analysis that will allow analysts to take immediate steps, (such
as identifying and blocking key actors in the botnet), can
lessen the effects of continued operations until a more detailed
analysis can be completed.

Malicious botnets, which are networks of compromised
machines, continue to be among the top threats found on
the Internet [16]. Attacks performed using botnets include:
Distributed Denial of Service (DDoS), Identity Theft, Click
Fraud, Phishing, Spam, and so on. Each type of attack can
cause significant harm to their victim and consume consider-
able bandwidth of the networks they operate in. For example,
in the case of spam, a recent security report from Trustwave

found that 75.2% of all inbound emails are considered spam
sent by botnets [12]. Additionally, ten percent of those spam
emails contain malicious content, which will infect vulnerable
machines of users who click on the email’s embedded link.

Defense In Depth is a strategy used by nearly every
network security professional to defend against threats on
the Internet. This strategy involves multiple layers of pro-
tective solutions such as anti-virus, anti-spyware, firewalls,
and intrusion detection/prevention systems. This strategy also
includes layers of analysis methods which generally consist
of custom tools that analyze malware and network traffic.
Each layer works in concert to defend systems. Information
discovered from the analysis layers are turned into signatures
that are fed into the protection layers. Current botnet analysis
techniques, which are based on the custom tools, are effective
in discovering fine-grained details about botnets. However, due
to the amount of time that takes place between protection
layers and analysis layers, an additional analysis layer is still
needed to reduce the effects of the botnet while the more
conclusive analysis takes place.

Methods for finding communities have been studied ex-
tensively in a variety of networks including the Internet [6].
In each method, all networks are represented generically as
graphs composed of vertices (nodes) and edges (links). The
concept of communities does not have a widely accepted
definition. For the purpose of this article communities are
described as nodes in the network that communicate with
each other through links more than they do with any other
nodes in the same network. In previous research, discovering
the communities and the relationships between their nodes
has revealed key facts about the purpose of the community
creation. In this article we investigate how this method can be
further extended to perform botnet analysis.

This article is organized as follows: the overview of botnet
analysis approaches is described in Section II. Section III
discuss our botnet community analysis model which is based
on k-clique constructs. In Section IV, we discuss our tool and
evaluation results on both IRC and HTTP botnets. To evaluate
the effectiveness of our approach, we compare information dis-
covered in our analysis with the results of a manual analysis of
the same botnets. Our comparison shows community analysis
methods can accurately uncover preliminary information with
a low false positive rate. This information can be eventually
used to reduce the time between discovery of botnet activity

and identification of actionable intelligence. The future direc-
tions of our approach are elaborated in Section V. Section VI
concludes the paper.

II. CURRENT BOTNET ANALYSIS METHODS

Botnets have the ability to conduct attacks or other mali-
cious activities within minutes or even seconds. Current botnet
analysis techniques designed to discover enough information
to slow down or stop botnets are effective once the semantics
of the data captured from the botnet can be discovered [11].
Unfortunately, the deciphering of the data normally takes days,
and in some cases months, to complete.

Signature Based Analysis. Most botnet analysis techniques
today require a manual pre-processing step, which involves
reviewing the normal format of the command and control
protocol being used, and comparing it with the format of the
actual command structure found in the botnet data. This is
a mandatory step because many botnet administrators modify
their command and control protocols to evade detection or
monitoring. As mentioned before, this step can be very time
consuming depending on the sophistication of the protocol
modification and the skill level of the analyst [4], [5]. The
products of this type of analysis are signatures which are used
to power mechanisms such as anti-virus programs, firewalls,
and blacklists. Signatures block botnet traffic based on a
defined ruleset. Again, the problem with this approach is the
length of time involved in the signature discovery. In normal
cases botnet administrators slightly change their malware
to avoid a detection engine, this simple change places the
requirement on the analyst to repeat the tedious signature
based process each time a change occurs.

Anomaly Based Analysis. Anomaly based solutions such
as sandnets perform their analysis based on patterns discovered
during execution of the data [14]. Existing approaches such as
botsniffer [9] and bothunter [8] require a malicious activity
response module for each type of botnet action that is to
be monitored. Today botnets have become sophisticated in
disguising their activities so that it could make defining
malicious activity response modules both difficult and imprac-
tical. Since our approach is based on physical structure and
communication patterns, we do not require this step for botnet
analysis.

Sinkholing. Sinkholing is the current method of choice for
botnet analysis and defense [3]. In this approach, the analyst
deceives bots into taking orders from the analyst instead of
their normal command and control servers. Once this is done
the analyst receives all traffic packets passed from the bots
to the botnet. There are several drawbacks to sinkholing and
shutting down botnets. The biggest issue is the complexity and
time involved in conducting a sinkholing campaign. Normally,
sinkholing involves a coordinated effort from the analyst, ISPs,
and law enforcement officials. Another major concern is after
a botnet is sinkholed, there is only a small window to conduct
an analysis of the entire botnet. This is because the command
and control server and the master of the botnet are no longer
controlled by the deviant users whom the botnet used to belong

to. Shutting down the botnet also has its drawbacks. Although
the loss of the botnet is a setback for the administrators and
botmasters that controlled the botnet since the perpetrators
behind the botnet are normally not captured, they are free to
regroup and create new and more resilient botnets.

Each of these methods are useful in a defense in depth
approach over time, but new methods are needed to discover
information about botnets earlier so more immediate actions
can be taken to address the threats caused by the botnet
activity.

III. BOTNET COMMUNITY ANALYSIS

There exist several approaches in extracting and analyzing
communities within the network data. Early algorithms, such
as the approach by Borgatti et. al. [2] and the k-core algorithm
[15] showed how communities could be extracted, but did not
allow nodes to be part of more than one community within
a network. Networks such as botnets do contain nodes that
belong to multiple communities so these methods could not
be easily adapted for our approach. CFinder is an algorithm
that allows community members to overlap and it is the
most studied method in the literature. It is based on k-clique
percolation, which was introduced by Palla et. al. [10]. This
algorithm builds communities based on k-cliques and has been
proven effective in identifying the semantics of many network
communities such as social networks and normal Internet
traffic networks [6]. However, this approach is not sufficient
for our purposes in its native form because it does not consider
communication direction.

Attribute Selection. Analyzing botnet data using our
method is dependent on selecting attributes for two elements,
(1) Discovering nodes and (2) Discovering links that connect
the nodes. Discovering these elements is dependent on the
format of the available data, but not the structure of the
command and control commands. For example, the most
common data format collected for all protocols is packet
capture data (PCAP) which is based on the packets created
by the transport layer of the TCP/IP protocol stack when
messages are sent back and forth over the Internet. This means
that if PCAP data is available for IRC, P2P, HTTP, and any
other botnet administration protocol it is structured the same,
the only preparation that needs to be made before analysis is
the selection for the attributes to define the nodes and links.

Node attribute selection seeks to identify each member of a
community that sends or receives a message. We selected IP
address as our node attribute because each node is required
to have an IP address assigned to it. A well known issue
with IP addresses is that they tend to change frequently,
which makes identifying nodes uniquely impossible when
considering only the IP address. Our current research is only
concerned with discovering the communities and the semantics
of the communications between the nodes in each community.
Hence, the uniqueness of each node is not required. We leave
identifying unique nodes to future work.

Link attribute selection in our approach is concerned with
identifying identical links. Because of this, we selected Pay-

2

load Length as our link. Payload length meets our requirement
since periodically bot nodes in a botnet will either receive or
send an identical message. Payload length is also readily avail-
able and useful regardless of the readability of the payload. For
instance, if the payload messages of a botnet are encrypted,
we will not be able to understand the communication across
the network without a time consuming decryption step, but
since many payload messages in a botnet tend to have the
same content, these identical messages which are encrypted
using the same algorithm will be the same size.

Node Category Discovery. To discover information that
can aid in botnet defense, we place each node in a category
based on their actions in the communities. These categories
are: Master Node-which initiates all commands to the botnet,
Command and Control Node-which acts as a proxy between
the Master Node and the rest of the botnet, Bot Node-
which carries out commands received from the Command and
Control and returns responses periodically or when prompted,
and finally the Victim Node-which is the target of attacks and
does not send a response recorded in our data.

A. Botnet Community Model

We select k-clique constructs that are based on Palla et.
al. [10], to build our communities. Our intuition behind this
is two-fold: (1) our community identification is local, which
means if a node or link outside of the community were to be
removed, then the local community would not be effected. (2)
It allows overlaps, which means a node can be part of more
than one community at the same time. In clique percolation,
there is a graph with nodes and links, (of weight 1 and non-
directional), which represent a means of communication or
contact without self-edges.

Definition 3.1: A clique is a set of nodes that have a link
to every other node in the set.

(a) k=2 (b) k=3 (c) k=4

Fig. 1. Example k-cliques: In order to be a k-clique each node needs to have
a connection to every other node in the clique. (a) Two fully connected nodes
(b) Three fully connected nodes (c) Four fully connected nodes.

The k in k-clique represents the number of fully connected
nodes in the clique. Fig. 1 displays three cliques with different
k values. All cliques are equal to or are a subset of a maximal
clique. In addition, there can be many cliques in a maximal
clique, but a maximal clique cannot belong to another clique.
Cliques percolate into each other by being adjacent and
communities are built from adjacent cliques. We define several
terms as follows:

Definition 3.2: The largest amount of fully connected nodes
k found in a particular community is known as the maximal
clique.

Definition 3.3: Two k-cliques are adjacent if they have k−1
nodes in common.

Definition 3.4: A community is a set of two or more
adjacent cliques.

Note that others have relaxed the definition of adjacency by
varying k − 1 to k − i, and is dependent on the method being
used [10]. An important element captured using the clique
percolation method is community overlap.

Definition 3.5: Community overlap occurs when at least
one node is part of multiple communities.

In order to identify communities using this method we first
discover the maximal cliques in the botnet. This step takes
into account the botnet as a whole and finds the maximal
cliques built from fully connected nodes within the botnet.
Each maximal clique now represents a node which will or
will not be paired with other maximal cliques. To identify the
links between cliques we create an adjacency matrix O with
adjacent cliques i and j. In order to find all cliques of size k that
are percolating into each other and forming communities, all
values of O that are equal to or greater than k-1 are given the
value 1 in the matrix and all other values of O are set to 0.
After this process, each value of 1 in the matrix represents
a community and the community overlap is discovered by
identifying the number of vertices shared by clique (i and j).

Once communities are discovered, we integrate directional
data based on the Source and Destination IPs. This step is
straight forward and forms the basis of our analysis by iden-
tifying how nodes communicate amongst each other. Previous
research has shown that bots make up at least 50% of the
total nodes found in a botnet [9]. Using this key metric as a
threshold, we discover the category of each node. Our node
categorization algorithm performs as follows:
1. Discovering Coordinated Activity–Identify all messages

sent to or received by at least 50% of the nodes in a
community graph and this step terminates if a coordinated
link is not discovered or no nodes in a current community
have been previously categorized;

2a. Identifying Command and Control Nodes–Identify all
nodes sending messages to or receiving and forwarding
messages from coordinated nodes;

2b. Discovering Victim Node–Identify all nodes that receive
messages from coordinated nodes and do not respond;

3. Discovering Master Nodes–Identify all nodes that
sends/receives non coordinated messages to the command
and control nodes without receiving a coordinated reply;
and

4. Discovering Bot Nodes–Identify all nodes that are part of
the coordinated group that sent or received coordinated
messages.

A community graph is a set of all communities discovered
in a temporal window. Each community graph represents a
timestep in our botnet analysis. We have discovered that many
botnets have session intervals of less than 10 minutes, for this
reason we chose 10 minute time intervals for each community
graph. This means that all nodes and links that are discovered
within a 10 minute increment are part of the same community

3

graph. We also consider adjacent community graphs to account
for sessions that span across multiple community graphs.
Assuming that we are analyzing the initial community, step
1 of our algorithm checks each community in the graph for
discovering identical links in one direction that reaches at least
50%. If the community does not have a coordinated group of
at least 50% we do not consider it useful for botnet analysis.
In step 2, we check to see if the discovered coordinated links
have a one to many relationship. Step 2 is split into (a) and (b)
because at this point the single node that has been identified
will be classified as a Command and Control Node if messages
are being sent and received which is identified as Step 2a. If
messages are only being received, the node will be classified
as a Victim, which is identified in Step 2b. At this point, the
command and control nodes have been identified. Nodes that
send non-coordinated links to the command and control nodes
are identified in Step 3, and are considered bot masters because
no other node type recorded in the community will send non-
coordinated messages without receiving a coordinated reply in
the allocated time interval. Step 4, identifies the nodes that are
50% or over of members that sent or received a coordinated
link. There has to be at least 2 nodes in this category.

IV. BOTNET COMMUNITY ANALYSIS EVALUATION

All of the components in our analysis are implemented on
commodity hardware using Inter Core i7 and 8GB memory
through Cygwin. This is important because no modification of
the hardware is required for our method to operate. The data
collection and analysis were conducted in Virtual Machines
(VMs) designed to capture botnet traffic. Our datasets consist
of PCAPs from the HTTP based BlackEnergy botnet and an
unnamed IRC botnet.

Tools and Implementation. To conduct our analysis, we
created tools based on the Python and Perl programming
languages. We based our community extraction on the open
source tool, CFinder[1], to discover communities. Fig. 2 shows
the proof-of-concept prototype of our graphical and command
line tools.

The front end of our tool is designed to provide options in
choosing the node.

A. Analysis of an IRC botnet

First we demonstrate our approach by analyzing network
traffic from a botnet controlled by the IRC protocol. As a
reminder, the verticies (nodes) are identified by IP address
and the edges (links) are identified by the message payload
size in bytes. Example (21B is a message of size 21 bytes).

Community Graph Analysis (IRC): Figure 3 shows
six randomly selected nodes from a community graph. The
applied directional links show that nodes (x.x.x.16, x.x.x.17,
x.x.x.18, x.x.x.19, x.x.x.10) all receive a (21B) request (shown
in dotted lines) from (node x.x.x.194). All nodes except for
node x.x.x.194 returned a (20B) response (shown in solid
lines). Following step 1 of our algorithm, nodes x.x.x.10,
x.x.x.16, x.x.x.17, x.x.x.18, and x.x.x.19 all received and sent
a message at the same time and since this represents over

(a) GUI

(b) CUI

Fig. 2. Current Proof of Concept Tool: (a) Graphical Interface and (b)
Command-line

50% of the nodes found in the community graph this qual-
ifies as a coordinated communication event. Based on step
2a of our algorithm, node x.x.x.194 is a COMMAND AND
CONTROL node because it is the node that sent and received
the coordinated message. In this community there were no
nodes that received coordinated messages without returning
a message step 2b and there were no nodes that sent non-
coordinated messages to the command and control node step
3. All the other nodes were part of the group that made up the
coordinated nodes which only sent and received coordinated
messages. According to step 4 of our algorithm, these nodes
all belong to the BOT node category.

Fig. 3. Sample Community of IRC Botnet in a Community Graph: Command
and control node x.x.x.194 sends a link (21B) to all bots in the community.
Bots respond to the command and control node with identical links of (20B).

In Figure 4 we first see the (20B) and (21B) messages
sent previously step 1. Node x.x.x.194 still qualifies as a
COMMAND AND CONTROL node based on Step 2a. Node
x.x.1.19 received coordinated messages but did not return any

4

data, so based on Step 2b it fits in the VICTIM node category.
Next we see node x.x.x.10, which was one of the nodes found
in the bot category in the previous community graph and sent a
non-coordinated message, (181B), to the command and control
node x.x.x.194. According to Step 3 this places the node in
the BOTMASTER node category. In this new graph all the
other nodes in the graph sent a message (9B) to the node
x.x.1.19, which places it in the VICTIM category. The nodes
that sent the coordinated message represent more than 50% of
the nodes in the graph and they only sent coordinated messages
so according to Step 4 these nodes belong to the BOT category.

Manual Analysis (IRC): The IRC botnet we analyzed
followed specifications from RFC 2812 and included all mes-
sage types. Link (21B) translated to a PING message and link
(20B) translated to a PONG message. PING/PONG messages
are sent periodically to determine what nodes are considered
available within the IRC network. In Figure 4(a), we can notice
that the PING links (21B) were sent throughout the network
to see what nodes were available and the PONG links (20B)
gave the reply. In Figure 4(a), a node x.x.x.10 sent an attack
command to node x.x.x.194 with the destination node set to
ALL. Figure 4(b) shows the result of the command (ALL),
where each of the bots in the botnet sent a (9B) message to
the node x.x.x.19.

Summary of Overall IRC Analysis. The overall results
discovered using our botnet community overlap method were
similar to those discovered using the manual analysis. Bots
were correctly classified (99%) of the time during the evalu-
ation and Command and Control Nodes were fully identified.
Botmaster Nodes were identified with a (67%) detection rate,
but this result was a bit misled because 77 of those botmaster
Nodes identified by manual analysis connected to a Command
and Control Node once and did not commit any subsequent
transactions. Victim Nodes had a success rate of (87%), but
attack detection had a rate of (68%). The reason for the
disparity here is many attacks only involved one or two bots
in the botnet. These are reconnaissance attacks that are sent
out before more large-scale coordinated attacks are conducted.
Currently our approach does not capture these reconnaissance
attacks in the communities. Overall our analysis result was
meaningful and promising and it shows our method was
conducted nearly three days faster than the manual analysis.
Community overlap was relatively high in our study. This is
interesting because normal Internet traffic is said to have a
relatively low overlap rate.

Method Time Bots C&C botmasters Victims Attacks
Bot Com 30 min 4323 34 234 61 219
Manual 3 days 4310 34 351 70 321

TABLE I
IRC COMMUNITY METHOD RESULTS

B. Analysis result of HTTP botnet

The HTTP botnet used in this article followed standard
protocol procedures in HTTP RFC 2616 [7]. Figure 5 shows

(a) IRC Command Propagation Found in Community Graph 1

(b) IRC Command Execution Found in Community Graph 2

Fig. 4. Sample Result of Command Propagation and Attack Across Adjacent
Community Graphs: (a) Botmaster node x.x.x.10 sends a link (181B) to
command and control node x.x.x.194 to send a message to all bots in the
botnet. (b) All the bots in the botnet send a (9B) attack to victim node x.x.x.19.

three partial communities across three community graphs that
were constructed from randomly selected nodes.

(a) HTTP Bots and Command and Control Server Interactions Found in
Community Graph 1

(b) HTTP Botmaster and Command and Control Server Interactions Found
in Community Graph 2

(c) HTTP Attack Discovered From Multiple Bots to a Victim Found in
Community Graph 3

Fig. 5. Sample Result of Adjacent HTTP Botnet Community Graphs: (a)
Command and control node x.x.x.51 sends a coordinated link (279B) to all
the bot nodes in the botnet. (b) Botmaster node x.x.x.16 sends a series of links
(823B, 395B, 583B, 468B) to command and control node x.x.x.51, which
then sends a series of replies (78B, 1460B, 104B, 870B, 820B) back to the
botmaster node.

Community Graph Analysis (HTTP): Here we show
an example of our analysis across three community graphs

5

which are shown Figure 5. Figure 5(a) shows a segment of a
community graph where a node x.x.x.51 sent a coordinated link
to all the other nodes in the community. Based on step 1, this
qualifies as a coordinated event since more than 50% of the
nodes received a link of the same size (279B). Based on step
2(a), node x.x.x.51 is a COMMAND AND CONTROL node
because it sent the link. In this community graph there are no
nodes that received coordinated messages without returning
a response so step 2(b) does not apply and there were no
nodes that sent a non-coordinated link without receiving a
coordinated response, so no botmasters were discovered using
step 3. Since all nodes x.x.x.27, x.x.x.31, x.x.x.28, x.x.x.29,
x.x.x.1, and x.x.x.30 received a coordinated link (279B), these
nodes are classified as BOT nodes by step 4 of our algorithm.
Note that after all the bot nodes received a coordinated link
they returned similar, but non-identical replies. These replies
are updates and are currently used as metadata, but not to
identify the category of the nodes.

In the community graph illustrated in Figure 5(b), a new
node is discovered which sends a series of non-coordinated
links to a node x.x.x.51. The node x.x.x.51 was previously
identified as a command and control node in an adjacent
community graph. In this community graph steps 1,2 (a), 2(b),
and 4 were not utilized, because no coordinated links were
observed, but since the node x.x.x.51 was already identified
in a previous graph, we were able to use its previous state
and apply step 3 which placed a new node, x.x.x.16, in the
BOTMASTER node category because it sent non-coordinated
links without receiving a coordinated response.

In the community graph shown in Figure 5(c), nodes that
were previously identified as belonging in the bot category
also sent a coordinated message to a new node x.x.x.89. Since
the node x.x.x.89 did not respond to the coordinated link, it
is placed in the VICTIM category. Also, if the nodes that sent
the coordinated message were not previously identified as bots,
they would have been identified as bots in this graph because
of the coordinated message that was detected.

Manual Analysis (HTTP). Manual analysis of the commu-
nity graph in Figure 5(a) shows that nodes x.x.x.27, x.x.x.31,
x.x.x.28, x.x.x.29, x.x.x.1, and x.x.x.30 are bots sending re-
quests to a command and control node x.x.x.51 for obtaining
command instructions. Figure 5(b) shows a series of com-
munications between a botbotmaster x.x.x.16 and a command
and control server x.x.x.51. In Figure 5(c), bot nodes x.x.x.1.,
x.x.x.27, x.x.x.28, x.x.x.29, and x.x.x.30 all sent an attack
message to the victim node x.x.x.89. These results also are
consistent with the analysis conducted using our community
graph analysis.

Summary of Overall HTTP Analysis. The overall results
of our method compared to the manual analysis for this
botnet were nearly identical. Just like the analysis of the
IRC based botnet, bots were correctly classified (99%) and
Command and Control Nodes were fully identified. In the
case of the bots, the nodes that were not identified did not
participate in the coordinated group activity for some reason.
Since they did not perform anything malicious they were

not important from the attack analysis perspective. Botmaster
nodes were partially identified (31%) but this result is again
misled because all 9 of the botmasters that were not discovered
only connected to each other and did not perform a malicious
act. For victims we actually had 2 false positives. The manual
analysis revealed that we incorrectly classified two botmasters
as victims because multiple bot nodes sent a link of the same
size to the botmasters within the same time interval. Finally
we had a success rate of (91%) for discovering attacks. All
the attacks that we missed were small-scale activities so they
were not captured in our community analysis. Our community
overlap rate was once again high across communities, which
suggests we may be able to leverage this attribute in future
analysis studies.

Method Time Bots C&C botmasters Victims Attacks
Bot Com 12 min 2123 5 4 45 59
Manual 2 days 2102 5 13 43 65

TABLE II
HTTP COMMUNITY ANALYSIS RESULTS

V. DISCUSSION

Here we discuss future directions of our approach along
with potential approaches.

Attack Reconnaissance Discovery. An issue with discov-
ering botnet communities using our method is the possibility
of not discovering all botnet transactions. For our analysis
we set the value of k to 3, which allows us to identify all
communities where at least three nodes can communicate with
each other. The communities are not captured if it involves
direct messages between two nodes, such as botmaster to
botmaster communications. These transactions are usually
used to discuss malicious plans or send test attacks towards
a target. One way to solve this problem is to reduce the
k value to 2, but this also greatly enlarges the size of the
communities discovered. Instead of reducing the k value across
the entire community, we will experiment with conducting an
analysis that reveals all adjacent links and nodes of identified
botmaster and command and control nodes. This should reveal
the "silent" botmasters that only connect to other botmasters
and command and control nodes.

Botnet Traffic Detection. Currently our method only ap-
plies to botnet data after an attack has been discovered by other
methods. In the future we plan to investigate expanding our
approach to further discover botnet traffic in a set of unfiltered
network data. The current state of our algorithm will not allow
us to accomplish this goal because of the significant amount of
communities that will be created, such as the case addressed in
[6]. Furthermore, at k = 3, some of the communities created
by our approach would not be related to botnet traffic. To
address this issue we plan to modify our algorithm by adding
additional conditions which are more selective for constructing
communities. One possible option is to require the detection
of homogeneous interaction between nodes before a com-
munity is extracted. Currently we consider the homogeneous

6

properties of the traffic after the communities are discovered,
which initiates our node classification. The high success rate
in correctly identifying these nodes show that the homogenous
property is of significant value and has a reasonable chance
to succeed in differentiating botnet communities from other
communities on the Internet.

VI. CONCLUSION

In this article we introduced a new approach for analyzing
botnet traffic. In particular, we made two notable contributions:

Our first contribution was a novel algorithm for botnet
analysis based on an extension of k-clique community finding
constructs. By discovering communities in botnets, events
such as attacks are systematically identified without having to
conduct a time consuming, manual analysis of the commands
used to administer the botnets.

Our second contribution was a method to identify the
category that each node belongs to within the botnet based
on their communication patterns. Discovering this information
early in the overall analysis process gives analysts enough
information to make preliminary decisions, such as blocking
attacking IPs and identifying key nodes such as the command
and control servers.

Current methods to analyze botnets require the manual step
of reverse-engineering the command and control protocol used
to administer the botnet. This is a nessecary step for a detailed
analysis, but presents an opportunity for the botnet to continue
its nefarious acts during the procurement of the process. Our
approach has shown through a botnet analysis comparison of
our method, and an expert based manual method, that our
approach identifies the correct category for each node with a
high percentage rate and a low false positive rate. Since our
approach is command and control protocol independent it can
perform this analysis without reverse-engineering the botnet
administration structure. This makes our analysis much faster
than the detailed analysis, and the information provided can
prevent attacks while waiting for the more detailed analysis
to complete. These results show that our approach shows
great promise as a potential add-on-layer to a defense-in-depth

network protection strategy.

REFERENCES

[1] B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and T. Vicsek. Cfinder:
locating cliques and overlapping modules in biological networks. Bioin-
formatics, 22(8):1021–1023, 2006.

[2] S. Borgatti, M. Everett, and P. Shirey. Ls sets, lambda sets, and other
cohesive subsets. In In the Proceedings of Social Networks, 1990.

[3] D. Bradbury. Fighting botnets with sinkholes. Network Security,
2012(8):12–15, 2012.

[4] C. Y. Cho, D. Babic, E. C. R. Shin, and D. Song. Inference and
analysis of formal models of botnet command and control protocols.
In Proceedings of ACM Conference on Computer and Communications
Security. ACM, 2010.

[5] D. Dittrich. So you want to take over a botnet. In Proceedings of
5th USENIX conference on Large-Scale Exploits and Emergent Threats.
USENIX, 2012.

[6] E. Gregori, L. Lezini, and C. Orsini. k-clique communities in the
internet as-level topology graph. In Proceedings of the 31st International
Conference on Distributed Computing Systems Workshop, pages 134–
139. IEEE, 2011.

[7] N. W. Group. Hypertext transfer protocol request for comments.
http://www.ietf.org/rfc/rfc2616.txt, 1999.

[8] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter:
Detecting malware infection through ids driven dialog correlation. 2007.

[9] G. Guofei, J. Zhang, and W. Lee. Botsniffer: Detecting botnet command
and control channels in network traffic. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium. NDSS,
2008.

[10] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435(7043):814–818, 2005.

[11] N. C. Paxton, G.-J. Ahn, and M. Shehab. Masterblaster: Identifying
influential players in botnet transactions. In 35th Annual IEEE Inter-
national Computer Software and Applications Conference (COMPSAC).
IEEE, 2011.

[12] N. J. Percoco. 2013 trustwave global security report. In
www2.trustwave.com/rs/trustwave/images/2013-Global-Security-
Report.pdf. Trustwave, 2013.

[13] D. Plohmann and E. Gerhards-Padilla. Malware and botnet analysis
methodology. In Proceedings of 4th Annual Conference on Cyber
Conflict. CyCon, 2012.

[14] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. v. Steen, F. Freiling,
and N. Pohlmann. Sandnet: Network traffic analysis of malicious
software. ACM, 2011.

[15] S. Seidman. Network structure and minimum degree. In In the
proceedings of Social Networks, 1983.

[16] Z. Zhao, G.-J. Ahn, and H. Hu. Examining social dynamics for
countering botnet attacks. In 54th IEEE Global Communications
Conference (GLOBECOM). IEEE, 2011.

7

