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ABSTRACT  
Maritime Domain Awareness (MDA) requires the ability to accurately identify, 

track, and understand the rationale of the behavior of vessels given the surrounding 
contextual environment.   Reasoning about such behaviors can ultimately lead to a better 
understanding of whether the behaviors are normal or anomalous.  In order to adequately 
improve the quality and overall confidence of the output of the reasoning process that 
leads to the conclusions regarding the nature of vessel behaviors, a system must be 
provided with sufficient, high quality, track data from which such conclusions could be 
made.  The nature of maritime data, particularly in specific environments, and the fact 
that Intelligence, Surveillance and Reconnaissance (ISR) assets in future network-centric 
systems are likely to be heavily requested due to the complexity and number of non-
traditional missions, necessitates that these resources be effectively utilized across the 
mission space in order to maximize overall collection and hence derive good quality 
tracks for actionable tasking of limited resources.   

This paper will describe the development of ISR allocation optimization 
algorithms for the maritime domain, leveraging modeling and simulation capabilities 
from the Interactive Scenario Builder (ISB) decision support tool.  The ISB is a 3D 
tactical decision aid and mission planning system that provides insight into, and 
visualization of, the RF environment.  The ISB is used in the Joint Information 
Operations Command and in Navy IO Centers (Hawaii, Georgia, Norfolk, San Diego, 
and Whidbey Island).  The optimization algorithms being developed within the ISB take 
into consideration “areas of interest” such as high interest vessel movements, shipping 
lanes, fishing areas, military exercises, ports of particular interest, area of high piracy, 
cargo, or past shipping incidents.  These events help focus where specific ISR collection 
resources need to be positioned.  The other type of event includes “difficulty measures” 
such as signal limitations or enhancements caused by Meteorology and Oceanography 
(METOC) conditions. Such affects may lead to a reduction in effective surveillance and 
tracking caused by spatial-temporal gaps in signal collection.  The optimization 
techniques will enable the optimal positioning of ISR assets to maximize signal coverage, 
as well as enable the tracking of assets at the signal scan-on-scan level, in complex and 
uncertain maritime tracking environments by optimizing over areas of interest, difficulty 
measures and ISR asset performance characteristics.  This paper will describe the 
technical details associated with the optimization techniques, early development and 
integration results within the ISB and lastly future development activities.     
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1.0 Introduction 
Current sensor placement strategies are primarily manual, and are not robust to dynamic changes in the 
environment.  MDA efforts rely on the analysis and identification of vessel electronic emissions including 
ELINT and Automated Identification Systems (AIS) intercepts.  There are hundreds of thousands of 
vessel intercepts worldwide daily.  Environmental conditions impact electronic signals, for example, 
through decreases in Signal-to-Noise Ration (SNR) or through increasing the propagation distance.  
Taken together, this constitutes the “difficulty measures”.   In order to decide where to allocate resources 
under the difficulty measures, there must also be a sound rationale (i.e., interest measures) of where to 
place scarce resources.   The novelty of our approach is the optimization of the placement of the ISR 
resources, concurrently factoring in the difficulty and interest measures.  This capability will provide 
unique operational relevance by supporting activities such as blue force positioning for protection, red 
force identification and location, Global War on Terror (GWOT) and MDA.   

The goal is to develop a toolkit that finds an optimal allocation of sensor resources within the maritime 
domain, in the sense of maximizing the expected value of the information obtained. In order to maintain a 
state of optimal utility, this allocation will need to be refined or updated based on two types of events in 
the battlespace.  The first type of event will include “interest measures”, such as high interest vessel 
movements, key shipping lanes, fishing areas, military exercises, ports of particular interest, area of high 
piracy, cargo, and past shipping incidents.  These events help focus where specific ISR collection 
resources need to be positioned.  The other type of event includes “difficulty measures” such as 
limitations or enhancements caused by Meteorological and Oceanography (METOC) conditions.  This 
may lead to a reduction in effective surveillance and tracking caused by spatial-temporal gaps in signal 
collection.  The toolkit will support the warfighter by enabling the optimal repositioning of assets in 
maritime tracking environments by simultaneously optimizing across areas of interest, difficulty measures 
and ISR asset performance characteristics. 

2.0 Sensor Allocation Tool Architecture 
 

The proposed architecture is depicted in Figure 1.   The overall workflow consists in the user first creating 
a scenario consisting of platforms and threats (and their anticipated or projected movements) within the 
ISB environment.  When constructing a scenario, the different types of sensors on the various platforms 
must also be specified as well as their operating characteristics.  Two kinds of optimization techniques are 
available through the ISB plug-in interface, namely, optimization of signal coverage and optimization of 
track continuity.  Each optimization uses appropriately developed metrics for the evaluation of the 
effectiveness of the optimization.   The signal coverage optimization technique attempts to optimize the 
placement of platforms in order to maximize a signal coverage metric associated with the targets of 
interest, while the track continuity technique attempts to minimize the amount of time that a target cannot 
be tracked.  The box titled “Optimize Scenario” in Figure 1 implements both techniques with a different 
evaluation scheme. .  The track continuity optimization technique utilizes an evaluation from EWSim 
(“EWSim Scan-to-Scan Evaluation” box in Figure 1), which provides a scan-on-scan modeling capability 
from emitter-to-receiver, in order to assess the optimized solution in terms of gaps in track continuity.  
The algorithms and metrics are described in later sections.   
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Figure 1: Sensor Allocation Tool Components 

 
 

2.1 The Interactive Scenario Builder 
The ISB is a software application and programming framework for building radio frequency (RF) 
scenarios and analyzing propagation within a simulated environment (Figure 2). Its two primary uses are 
easy scenario construction with a globe based interface and making propagation models accessible to the 
DoD community without requiring expertise in electromagnetic modeling.  The ISB project started in the 
seventies as a FORTRAN tool for RF engineers at NRL.  It later became a C application targeting SGI 
machines, but was still intended for lab use.  The utility of a graphical RF analysis tool for planners at the 
tactical and operational levels led to an attempt to install ISB on SGI machines afloat.  The software 
wasn’t easily deployable though, and had significant usability problems, but still found utility at various 
commands that realized that the ISB provided advances in predicting and visualizing the performance of 
radar, communication and EW systems. In light of changing requirements for more widespread use, an 
effort to make the tool more accessible to the DoD community by rewriting the ISB in Java began in 
2002.  The result is the current ISB, the version 3 line, of which the most recent release is version 3.2.3 
from May 2009.   

With the version 3-baseline efforts for improved usability and deployment, there also came a desire to 
make the tool accessible to third party software developers.  This goal was met by designing the 
application with an extensive plug-in framework.  The system is designed as an amalgamation of related 
services that communicate over a central bus and are accessible by a universal registry.  The application 
consists of a few of the most critical services and packages, but most of the functionality within ISB is 
implemented using the plug-in framework and is distributed with the application as part of the standard 
installation.  Plug-ins can add new platform types, new equipment types, or can create entirely new object 
types that can be saved with the scenario file and otherwise appear seamlessly as part of the application. 

One of the key capabilities that the ISB offers is it’s suite of propagation models.  The propagation 
models are implemented by another DoD owned software tool called EMPIRE.  EMPIRE provides a 
common programming interface for accessing a number of propagation models, including: 
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– Advanced Propagation Model (APM) 

– HF field strength model from SSC-San Diego,  

– Standard propagation model (also referred to as FFACTR) 

– Millimeter Wave Propagation model (MMWPROP) 

– Radio Physical Optics (RPO) model 

– Variable Terrain Radio Parabolic Equation (VTRPE) model 

– The Terrain Integrated Rough Earth Model (TIREM) 

– Irregular Terrain Model (ITM).   

Through EMPIRE, the same interface for specifying terrain, ground dielectrics, atmosphere, foliage, rain 
rate, and other factors apply to all supported propagation models.  The ISB builds on EMPIRE’s common 
programming interface, adding a globe interface for building scenarios, viewing terrain, maps, entering 
other propagation factors, calculating the impacts of Electronic Attack (EA) on radar and communication 
performance and displaying propagation results as color plot overlays on a globe.   

 
Figure 2: ISB Screenshot 

One of the most complicated factors affecting RF propagation predictions is the effect of varying 
atmospheric conditions on an RF signal as it travels through space.  To help understand this, the ISB has a 
range of ways to enter atmosphere profiles and pass them to EMPIRE for assessment of their impact on 
propagation.  Ducting can be manually defined by specifying the humidity, duct height, and strength.  
Conditions can be estimated based on a large data set of average conditions from the past twenty years, as 
compiled by the National Center for Environmental Prediction.  Current conditions and short term 
forecasts can be fetched automatically from web services provided by Fleet Numerical Meteorological 
and Oceanographic Center (FNMOC) or from the Air Force Weather Association (AFWA).  The forecast 
data can be used to create Monin-Obukhov atmosphere profiles.  Some of the interesting parameters 
available from these services are electromagnetic duct base height and strengths, surface wind speed, and 
temperature.  The data comes from COAMPS, MM5, and WRF models.   

The ISB’s graph package is another part of the framework that is available to the optimization algorithms.   
It has classes to represent nodes, edges, and graphs, classes for building graphs as a discretization of 
spherical or Euclidean space, and classes for finding shortest paths using Dijkstra’s or A* algorithms.  The 
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A* algorithm is basically Dijkstra’s algorithm with the addition of a heuristic that predicts the distance 
from a given hypothetical path to the end point.  If the heuristic h(x) returns zero for all nodes x, A* 
becomes analogous to Dijkstra’s breadth first style algorithm.  A few standard heuristics are provided 
within the framework--including the Manhattan distance heuristic (for use where diagonal travel between 
nodes is prohibited), a heuristic based on Euclidean distance, and one based on distances on the surface of 
a WGS84 ellipsoid.  Consumers of the path finding API can also provide their own heuristic 
implementations by implementing the appropriate interface.  Graph and algorithm visualization tools are 
also provided, making it easy to display a created graph on the globe and view potential paths and search 
frontiers that expand as A* progresses (Figure 3). 

 
Figure 3: Visualization of A* Search Frontier 

The ISB serves as the integration framework for the other two components of the sensor allocation tool: 
EWSim and Optimization algorithms, both of which are integrated as ISB plug-ins.  The optimization 
algorithms are launched through custom menu actions (Figure 4).  They use the current ISB scenario 
configuration to populate a EWSim scenario.  The EWSim scenarios are run multiple times to build 
statistical models of receiver capabilities against varying initial emitter scan and pulse states.  The 
EWSim software uses ISB’s propagation interface for attenuation prediction. 

 
Figure 4: Optimization Plug-in within ISB 
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The sensor allocation project expanded the API for interacting with EMPIRE by adding a layer 
responsible for calculating, caching, persisting, and otherwise tracking results of loss computations 
between transmitter and receiver nodes.  The central entity provides a simpler interface for accessing 
propagation loss than the prior interface.  It also provides an opportunity for storing loss results centrally, 
which allows persistence of loss within saved scenarios.  The interface that the sensor allocation tool uses 
to access this centralized RF environment combines the graph and RF packages by constructing a graph 
of RF signals (Figure 5).  Nodes each have a geographic coordinate, but also have a set of signals--one 
from each transmitter in the scenario.  Nodes are linked with eight neighbors—North, South, East, West, 
and the diagonals.  The signals at each node represent the RF environment at an instance in time, so as the 
planning horizon moves the signals in the graph are updated.  The strength of the signals at each node 
indicates the suitability of the position as a sensor station or center of orbit--the stronger the signals within 
a band of interest at a node, the more desirable the position for sensor placement.  When routing sensors 
between regions of the graph, a shortest path algorithm like A* combined with an edge weighting scheme 
based on the quality of signals available along each edge can select paths that travel between nodes with 
better signal reception.  The resulting path will route sensors along paths with high quality signals on their 
way to station.  The graph can also be visualized, which allows for visual inspection of the signals in a 
studied area.  

  
Figure 5: (L) Example of a Signal Graph (R) Computed Route within Signal Graph 

 

2.2 Electronic Warfare Simulation (EWSim) 
EWSim is an agent-based simulation of electronic warfare platforms and systems and their interactions 
with each other and their environment.  While the ISB excels as a platform for developing scenarios and 
in modeling the physics pertinent to EW problems (such as RF propagation), EWSim bring depth to the 
modeling of ES sensors and RF emitters.  Specifically, EWSim models signals at the pulse level and the 
collection of those signals as the result of discrete dwells in time of ES sensors. 

Radars in EWSim are composed of fundamental building blocks of multiple transmitters, antennas, and 
beams (including 3D radiation patterns), where a radar may have multiple modes, employing one of these 
modes at a time.  A radar mode specifies its signal parameters and antenna scan characteristics, as well as 
which components (transmitters, antennas, and beams) are active in that mode.   

ES sensors in EWSim are composed of multiple receivers, antennas, and beams.  They operate in a 
manner similar to radars in that they can have multiple modes, each of which specifies the behavior of 
each component in that mode.  However, whereas RF transmitter modes specify signal generation 
characteristics, the modes of RF receivers which are components of the ES systems specify “dwell 
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schedules”, the manner in which particular frequency bands will be searched in time.  Each dwell 
requirement specifies a number of parameters for that dwell, the most significant being the dwell duration 
and revisit rate (specifying, in effect, an average duty cycle for revisiting a band).   

The combination of radar antennas scanning in space and ES sensors scanning in frequency sets up what 
is commonly known as the scan-on-scan problem, where the likelihood of an ES sensor collecting pulses 
in a dwell depends on the RF band covered by the dwell and the orientation of the radar antennas at the 
time of the dwell.  Figure 6 illustrates the time to intercept and validation of the EWSim ES sensor model 
in the extreme limits of full and mainbeam-only illumination. 

 
Figure 6: EWSim Detection Model 

EWSim’s ability to model scan-on-scan problems enables us to address higher order metrics such as 
track-continuity since we can maintain a history intercepts for each dwell.  Clearly, the goal when using 
such a metric is to minimize or even eliminate target collection gaps. 

2.3 Platform Optimization Algorithms 
Platform allocation optimization is a complex problem that involves (1) the optimization of path planning 
for the platforms and (2) the coordination of the platforms themselves. Previous work has included team 
models of unattended ground sensor networks [Yilmaz] and cooperative path planning of unmanned 
aerial vehicles (UAVs) [Shima]. By discretizing the geospatial search space, platform allocation 
optimization can be solved as a combinatorial optimization problem similar to resource allocation 
problems where the targets are waypoints on a grid. The “Hungarian” algorithm [Kuhn] for weighted 
bipartite matching solves resource allocation problems such as role assignments for multi-agent systems 
in polynomial time.  The algorithm consists of transforming a weighted adjacency matrix of agents × 
tasks into equivalent matrices until the solution can be read off as independent elements of an auxiliary 
matrix. Optimality is no longer guaranteed if the problem is over-constrained, i.e. there are more tasks to 
be assigned than agents. While the “Hungarian” algorithm provides a fast computational solution, it does 
not reflect the coordination aspects of the platform allocation problem where the continuous nature of an 
ESM signal propagation and the capability of the platforms to carry several sensors tuned to different 
frequencies make it possible to detect several targets simultaneously. Evolutionary computation is a 
stochastic gradient search optimization paradigm where a fitness function and composability of solution 
heuristics guide the search for optimal solutions in population-based algorithms. The fitness function 
enables the incorporation of coordination quality criteria such as the absence of interference or 
redundancy, or the overlap of several non-conflicting task assignments in the evaluation of a candidate 
solution.  Our optimization approach is based on evolutionary computation and will use the “Hungarian” 
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algorithm to provide a baseline for experimental evaluation.  

We adopt a “life-cycle” approach where an approximation is obtained in the discretized problem space 
with the particle swarm optimization (PSO) algorithm [Kennedy] and then refined in the continuous 
problem space with differential evolution (DE) [Storn]. The PSO algorithm is an evolutionary 
computation algorithm based on the social learning metaphor and the reinforcement of past success 
whereby an agent, represented by an n-dimensional vector, adapts its solution from the solution of one of 
its neighbors and past performance. It is characterized by its simplicity and efficiency due to its small 
population size. Differential evolution is an efficient evolutionary computation methodology for 
continuous real-valued vectors based on a principled evaluation of the mutation heuristic for exploring the 
search space. A mutation step size (magnitude and direction) is computed from weighted differences with 
randomly selected individuals in the population and applied first to produce a new candidate vector which 
is then recombined with the original candidate vector.  

The signal of the transmitters, from the platforms of interest, is propagated along a signal graph built from 
a geospatial grid (section 2.1). The PSO algorithm evolves (1) the platforms to be included and (2) the 
grid intersection points of the signal graph as destinations.  The platforms to be included are represented 
as Boolean switches enabling the corresponding grid intersections. In addition, valid destinations points 
for a platform must have receivable signals and be reached within the planning horizon specified for the 
scenario. Other constraints, including terrain and geopolitical considerations, will be incorporated for 
real-time use. The A* algorithm (native to ISB) is subsequently used to compose a route from a platform 
to a candidate destination using the grid intersections waypoints and a distance metric as its cost function. 
Once the PSO algorithm has converged, the paths obtained from a sampling of successful candidate 
solutions are refined through differential evolution.   

The different metrics for the fitness function (Section 3.0) will be combined together through multi-
objective optimization to achieve the different objectives of platform allocation, namely, maximization of 
signal coverage at the planning horizon and observed track continuity throughout the scenario.  

3.0 Evaluation Metrics 
Several metrics come into play for sensor allocation optimization. We have identified two main metrics, 
signal coverage and track continuity, to reflect the static and dynamic aspects of platform allocation. 
Given a signal graph (section 2.1) for the propagation of signals at a certain planning horizon, a signal 
coverage metric p combines performance goals g, absence of overlaps c in detecting signals, and 
resources r for n platforms into a harmonic mean to evaluate coordination as follows:  
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A track continuity metric t will be obtained from EWSim (section 2.2) results to minimize gaps in 
surveillance throughout the scenario:  

 

 

 

where r is the number of stochastic runs by EWsim, T is the number of target platforms, gaps are the track 
detection gaps (in kms) for target T, and D  is the total track distance of the target platforms to be covered. 

 4.0 Development and Experimentation Plan 
Additional areas that are expected to be investigated include the development of enhancements to the ISB 
user interface to enable a user to specify regions of interest (or exclusion zones) that must be included in 
the optimization, and including any necessary timing constraints to ensure assets arrive in the given 
region(s) within the appropriate time window.   With regard to this issue, we will need to address basic 
scheduling issues within the optimization process.   We also expect to incorporate several interest 
measures such as piracy areas or ports of particular interest and the affect of METOC (e.g., winds) on the 
routing of the aerial platforms.  

In relation to track data, we expect to integrate live vessel data feeds into the ISB environment.  When 
integrating this data, it will be useful to develop some basic track predictive capabilities so that the 
optimization techniques are able to optimize the allocation of platforms in real-time toward the predicted 
(in space and time) track positions.  Although other programs are developing more elaborate and complex 
models to enable more accurate predictions, our predictive capability will be more rudimentary in order to 
demonstrate how this type of information can be utilized in an overall platform allocation tool.   

Other metrics are of interest to the problem of platform allocation optimization will also be developed. An 
area coverage metric taking into account the different heights of the sensors, terrain, weather and 
refraction within the RF spectrum is necessary for planning possible collections. A stealth metric where 
sensors are able to collect signals without being themselves detected will also be developed as well as a 
surprise metric, where targets are approached from different directions.  These metrics will be especially 
important when expanding the set of scenarios to land-based environments.   

We are currently developing MDA-related scenarios using Subject Matter Experts from the Naval 
Reserve community, and also expect to leverage these reservists to help us improve the operational 
relevance of our algorithmic solutions through studies and evaluation.   

The Special Capabilities Office under the Deputy Under Secretary of Defense (DUSD) for Advance 
Systems and Concepts (AS&C) has expressed interest in the platform allocation technology, particularly 
from the perspective of improved tracking of maritime targets to support the counternarcotics trafficking 
in the Caribbean and Eastern Pacific.  We expect to continue dialogue in this regard to better understand 
how our tool can provide planning support.  

5.0 Future Research Challenges 

A key enabler of a sustainable military force is the notion of a tiered system (Figure 7). A tiered system is 
an integrated, multi-tier intelligence system encompassing space and air-based sensors linked to close-in 
and intrusive lower tiers. The lower tiers (e.g., UAVs) are not only the critical source of intelligence; they 
can also serve as a key cueing device for other sensors.  There is active research and exploration within 
the US DoD to understand the technical challenges in building tiered systems.   
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Figure 7: Tiered Systems 

While we have considered the development of optimization algorithms for platforms at the lower tiers, the 
technology could be expanded to include the incorporation of space-based assets.  Given the diversity of 
the platforms and assets envisioned in a tiered systems, and the fact that coordination must be achieved 
both in the horizontal and vertical planes in order to maximally take advantage of the capabilities that are 
offered by the platforms at each tier, and the environments in which the components of a tiered system 
will operate; it is not likely that a single optimization approach or even a static family of approaches 
would work across all cases.  It is more reasonable to expect that systems should learn which approaches 
work well and under which circumstances, and adapt appropriately—this will be the key challenge in 
building robust, distributed tiered systems!   
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