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Abstract— Role allocation has emerged as one of the key
issue in teamwork involving communication. While direct
point-to-point communication is expensive and uncertain,
access to neighbors is reliable and efficient in scale-free
networks such as those found in open environments and
social networks. This suggests decentralized approaches
to role allocation based on communication between neigh-
bors. This paper adapts and evaluates some of the basic
types of algorithms in distributed role allocation in open
environments using a novel coordination measure in the
prey/predator domain.

Index Terms— distributed problem-solving, role allocation,
coordination, open environments

I. INTRODUCTION

Open environments, e.g. peer-to-peer (P2P) and
wireless or Mobile Adhoc Networks (MANET), are
characterized by dynamic team formation, multiple
and changing goals, non-deterministic state transi-
tions, variable resources, and unreliable communi-
cation. The key issue in teamwork theory is role
allocation based on the communication of beliefs
and intentions. This issue becomes complicated by
the characteristic factors of open environments.

Role allocation can be viewed as a constraint satis-
faction problem similar to resource allocation prob-
lems where agents are variables and roles are values
that those variables can take. When a utility or
preference is attached to an assignment, role alloca-
tion also entails a constraint optimization problem.
When multiple teams coexist, an agent can take
on multiple non-conflicting roles. Over-constrained
situations where a team cannot be formed because
of an insufficient number of agents are not relevant
here. Rather, an agent has to assume multiple roles
in those situations. The capability of agents to

Fig. 1. Multi-hop routing in MANET
Communication can extend beyond the immediate neighbors, effec-
tively extending the communication range of the agents

handle multiple roles is an important aspect of the
coordination of intelligent agents.

Mobile Adhoc Networks are characterized by a
dynamic topology due to node mobility and limited
energy life. In addition, the limited communication
range provides only a partial knowledge of the
global environment but is not necessarily restricted
to the immediate neighbors (see Fig. 1). Those
constraints make it advantageous for agents to self-
organize within their communication range and the
absence of centralized control requires a distributed
control policy. The uncertainty that a message
will arrive at its destination in a finite amount
of time violates one of the basic communication
assumptions of distributed constraint satisfaction
algorithms[1]. How to extend those algorithms to
open and uncertain environments is still an active
area of research[2].

This paper is organized as follows. Section II in-
troduces our methodology for evaluation as well as
motivates experiments in the prey/predator domain.
Section III presents results and analysis of our
evaluation. Finally, Section IV and V conclude with
a summary of related work and recommendations



for future work.

II. METHODOLOGY

Our methodology consists of adapting three distinct
types of distributed role allocation algorithms and
evaluating results in the prey/predator domain – a
concurrent and asynchronous environment.

A. Prey/Predator Problem

The prey/predator pursuit game (Fig. 2) is a canon-
ical example in the teamwork literature[3] because
one individual predator alone cannot accomplish the
task of capturing a prey. Practical applications of
the prey/predator pursuit game include, for example,
unmanned ground/air vehicles target acquisition,
distributed sensor networks for situation awareness,
and rescue operations. Due to the decomposability
of the global reward as a sum of local rewards,
the original problem can be extended to multiple
teams by including additional preys. Prey/predators
can sense each other if they are in proximity but do
not otherwise communicate. Predators communicate
with other predators individually or can broadcast
messages through their neighbors. Four predators
are needed to capture a prey by filling out four
different roles: surround the prey to the north, south,
east and west. Those roles are independent of each
other and can be started at any time obviating the
need for scheduling. The only requirement is that
they have to terminate at the same time either suc-
cessfully when a capture occurs or unsuccessfully
if no team can be formed. The predator agents
are homogeneous and can assume any role but
heterogeneity can be introduced by restricting the
role(s) an agent can assume. The prey and predators
move concurrently and asynchronously at different
time steps. In addition to the four orthogonal navi-
gational steps, the agents can opt to stay in place. In
case of collision, the agents are held back to their
previous position. The prey moves furthest away
from the closest predator in its perception range or
does not move if no predators are in sight. This
strategy is referred to as the Move Away From
Nearest Predator (MAFNP) strategy [4]. It has been
shown to lead to certain capture situations[5]. The
preference ����� of predator agent � for a role � is

Fig. 2. Prey/predator pursuit game on a toroidal grid

inversely proportional to the Manhattan distance �
required to achieve the role.

The predators move in the direction of their target
when assigned a role or explore the space according
to a memory-based scheme on the last few steps.
The decision space for the role allocation of �
predators and 	 preys is 
��
	���� where � is the
number of teams of size � 1. This problem belongs
to the most difficult class of problems for constraint
satisfaction in multi-agent systems[6] due to the dy-
namic nature of the environment and the mutually-
exclusive property of role allocation.

B. Distributed Role Allocation Algorithms

There are three basic types of distributed role allo-
cation algorithms involving communication between
agents. Typically, each agent runs the same algo-
rithm to decide whether to change their value and
arrive at a solution after exchanging messages in
an iterative fashion. In one type, the distributed
stochastic algorithm (DSA) [7], [8], changes are
made stochastically by the agents and communi-
cated until a consistent solution is obtained (see II-
B.1). In the other type, illustrated by the simple
distributed improvement algorithm (SDI) (see II-
B.2), the changes are communicated and “voted”
on in a distributed fashion before being incorpo-
rated into a solution. A third type of distributed
algorithm (DCO) involves the communication of
state information, or beliefs, between agents to infer
their respective role using a constraint optimization
method. In those algorithms, agents only broadcast

1 ���� ��������� for distinct teams and � � for non-distinct teams where
agents assume multiple roles.



communications without waiting for responses elim-
inating deadlocks such as the coordinated attack
dilemma[9].

The basic sense-think-act agent loop needs to be
modified to augment perception with communi-
cation from peers. A distributed sense-think-act-
communicate agent loop follows:

1) Read messages from neighbors
2) Sense environment
3) Modify internal state and select next action
4) act
5) send messages to neighbors

In this context, a round or cycle involving communi-
cation consists of executing steps 4 and 5 and then,
assuming all messages have been simultaneously
put in the appropriate channels, steps 1, 2 and 3.
In synchronous environments, those two alternate
modes, active and passive, are executed in locksteps.
In asynchronous environment, the time required for
executing a round depends on the internal clock
of the agent. Depending on how fast the internal
clock of the agent is relative to the other agents
and the environment, a discrepancy between the
external world and the internal state of the agent
will occur. In those algorithms, exploring is another
role that the agent can assume. Since the possible
roles are not known apriori but obtained through
sensory information, they have to be disseminated
as a separate message.

1) Distributed Stochastic Algorithm: The DSA al-
gorithm (Algorithm 1) is a stochastic algorithm
where each agent changes their assignment con-
currently if it improves the overall solution quality
in terms of constraint violations, according to a
probability 	 � The stochasticity of the algorithm
should reduce the number of possible messages
without affecting the overall performance. The role
communicated is the high-level role (e.g. surround
the prey 	 to the north). To avoid cycles, a tabu
search is conducted when searching for a new role
to minimize conflicts. Agent � selects a new role ! �
according to its preference �"�#� and the number of
constraint violations $ associated with the new role
� :

Algorithm 1 Distributed Stochastic Algorithm(DSA)
select % � , a probability threshold
set initial role to explore
active & true
while (no termination condition) do
if (active) then

if (a new role is selected) then
broadcast the new role to neighbors

endif
act according to role
sense environment
broadcast prey information to neighbors
active & false

endif
sense environment
collect neighbors’ new roles, if any
generate a random number r
if ( '"()% � ) then
select the next best role

to reduce conflicts
endif
active & true
end while

! ��*,+ !.-0/ +210� �
�3���
$ � � (1)

The best role � according to Eq. 1 that is not tabu
is selected. If a new role cannot be obtained, the
agent switches to exploration. Each agent maintains
a view of the intent of the other agents but does
not know or infer their role preferences. The agent
stochastically selects a different role if there are
conflicts but not necessarily a better role in terms of
preference. A role might not have a feasible plan if
the location of the prey is unknown and the agent
has to switch to exploration until then. A message is
sent only if the agent selects a new role or switches
to exploration. In a closed and static environment,
termination occurs after 4 consistent rounds where
4 is the number of neighbors and is assumed fixed.
At this stage, the agents have common knowledge of
their respective roles. Termination entails commit-
ment to a role. In an open and dynamic environment,
the agents can only weakly commit to a role and no
termination is ensured.

2) Simple Distributed Improvement Algorithm:
A similar algorithm, based on distributed local
improvement[10] and the min-conflict heuristic[11],
exchanges messages among neighbors before set-
tling on a role that attempts to find a solution
minimizing conflicts (Algorithm 2). In a leader’s
election approach[9], an external consensus based
on preference is sought before settling on a role.

Administrator
Inserted Text
lated



Algorithm 2 Simple Distributed Improvement (SDI)
set initial role to explore
active & true
while (no termination condition) do

if (active) then
if (a new role is selected) then

broadcast the new role to neighbors
endif

act according to role
sense environment
broadcast prey information to neighbors
active & false
endif
sense environment
selectively collect roles from neighbors

with maximal improvement
if (conflicts occurs) then

select a new role
endif
active & false

end while

In an open and dynamic environment, a role is
tentatively followed without reaching a consensus,
keeping the option of readjusting when conflicts oc-
cur. Upon conflict, an agent will attempt to change
its role only if the role is taken by another agent
with a higher preference for the role. As in the DSA
algorithm, a tabu list is kept to avoid cycles. If a new
role cannot be obtained, the current role is kept.
The role communicated is the high-level role (i.e.
intent) relative to a uniquely identified prey (e.g.
surround prey 	 to the north) along with the agent’s
preference for the role. A message is sent only if
the agent selects a new role.

3) Distributed Constraint Optimization Algorithm:
An optimization algorithm can be used in parallel
fashion by each agent based on sensed and com-
municated information from the other agents in the
group to autonomously determine which role to as-
sume (see Algorithm 3). It is assumed that the other
agents reach the same conclusions because they
use the same optimization algorithm[12] and the
same payoff function. The Hungarian algorithm[13]
is used as the optimization method by each agent.
Information necessary to determine the payoff of
each role needs to be communicated. Therefore, it is
the current local state within the perception range,
or augmented with second hand information, that
is communicated to the neighbors instead of just
the intended role. What is being communicated is a
location on the grid.

The Hungarian algorithm, also known as the bipar-

Algorithm 3 Distributed Constraint Optimization (DCO)
set initial role to explore
active & true
while (no termination condition) do

if (active) then
act according to role
sense environment
broadcast local state to neighbors
active & false
endif
collect neighbors’ new information, if any
estimate possible roles with
a constraint optimization algorithm

select role
active & true

end while

TABLE I

DISTINCTIVE FEATURES OF DISTRIBUTED ROLE ALLOCATION

ALGORITHMS

belief* intent* preference* stochastic

DSA 5 5
SDI 5 5

DCO 5
* Description of what is being communicated

tite weighted matching algorithm, solves constraint
optimization problems such as the job assignment
problem in polynomial time. The implementation
of this algorithm follows Munkres’ assignment
algorithm[14]. The algorithm is run over a utility
matrix of !7698;:.<>= + -?:A@"�B<2� The algorithm consists
of transforming the matrix into equivalent matrices
until the solution can be read off as independent ele-
ments of an auxiliary matrix. While additional rows
and columns with maximum value can be added
to square the matrix, the optimality is no longer
guaranteed if the problem is over-constrained, i.e.
there are more roles to be filled than agents.

Table I summarizes the main features of the algo-
rithms studied.

III. EXPERIMENTAL EVALUATION

The experiments were conducted with RePast[15],
an agent-based simulation and modeling tool where
agents act concurrently in a decentralized manner.
Its powerful scheduling mechanism was used to
model the asynchronous behavior of the agents.



Fig. 3. Taxonomy of Coordination Solution Metrics

A. Coordination Evaluation

Because coordination is an emergent property of
interactive systems, it can only be measured in-
directly through the performance of the agents in
accomplishing a task where a task is decomposed
in a number of goals to achieve. The more complex
the task, the higher the number of goals needed to be
achieved. While performance is ultimately defined
in domain-dependent terms, there are some common
characteristics. Performance can be measured either
as the number of steps taken to reach the goal, i.e.
the time complexity of the task, or as the amount
of resources required. An alternative evaluation for
coordination is the absence of failures or negative
interactions such as collisions or lost messages. Fig.
3 illustrates a taxonomy of coordination solution
metrics. To show the scalability of a solution, the
evaluation must linearly increase with the complex-
ity of the task[16].

A combined coordination quality measure is defined
as the harmonic mean of goals achieved - , net
resources expanded ! and collisions $ as follows:

CEDGFIHKJMLON�PRQKSOT9UWV7JMLOX
FYHKJMLON.P (2)
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B. Experimental Setup

We experiment with a @u=v@ toroidal grid and a
variable number of predators � and MAFNP preys
	 . We vary the probability of a message to get to its
destination according to a normal distribution based
on (Euclidean) distance and the communication
range w of each agent. The smaller the distance, the
more likely a message will get to its destination.
To simulate different internal clocks, each predator
is given a different schedule interval selected ran-
domly in the [0,1] tick range. The preys are given a
fixed schedule set midway at 0.5. The experiments
were limited to 100,000 prey cycles. Capture is
detected from the prey’s point of view when no
escape is possible. The probability of changing role
was set to 0.7 for the DSA algorithm. To simulate
delays in receiving a message due to network traffic
congestion, only a fixed number of messages / at a
time are kept in the predators’ message queue. The
messages are processed in temporal order. Unless
an updated message arrives, the predators might act
on the basis of obsolete information. Messages and
sensory information are aged and removed after 3
ticks. A short, reliable prey/predator detection range
! simulates the perception range. The path planning
routine of the predators is to move horizontally first
and then vertically to reach the position indicated
by the role allocation. Deadlock among predators
can occur because this routine does not take into
account other predators resulting in a collision and
letting the prey escape. If no role is set, exploration
consists of moving one step in a random direction
to a location that has not been visited in the past 7
steps.

C. Evaluation

The experiments illustrate the coordination quality
in terms of performance and failures as defined in
Eq. 5. The results were averaged over 100 runs.

1) One prey: Fig. 4 illustrates the coordination
quality obtained on a 10x10 grid with one MAFNP
prey for the different predator strategies. The DCO
algorithm has an overall significant advantage over
the other strategies (t-test p-value was 0.001 com-
pared with the SDI and DSA results). This algorithm
also degrades gracefully when communication is
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Fig. 4. Comparative coordination quality on a 10x10 grid with one
prey

h=4, prange=2,m=1000

completely impaired ( w * x ) since it does not
rely on the communication of intent or preference
from the other agents to coordinate but assumes
identical payoffs. The simplicity of the DSA or
SDI algorithms might have some advantage when
bandwidth is scarce. In this case, the resources
expanded factor in Eq. 3 could be weighted by the
load imposed on the network. The experiments also
illustrates the diminishing marginal return of adding
more team members to the task for the distributed
optimization algorithm given a fixed message queue.

2) Multiple Preys: Fig. 5 scales up to a 20x20
grid and 2 preys. To decide which team to join (as
defined by the target prey) in the DCO algorithm,
the agent selects the role in the team that has the
maximal sum of preferences rather than maximizing
preferences across teams, thereby ensuring team
formation. No such team consideration exists for
the DSA and SDI algorithms although the SDI algo-
rithm will tend not to disrupt teams close to capture
and therefore scales better to higher dimensions.

Fig. 6 shows the change of performance when the
task complexity, as measured by the number of
goals, is increased given the same resources. The
DCO and SDI algorithms experience a degradation
of performance while the stochasticity of the DSA
algorithm enables it to perform better under in-
creased complexity escaping “needle-in-a-haystack”
kind of situations.

3) Scouts: Can delegating the exploration task to
scouts help in the overall task? The scouts’ role is to
explore and communicate the location of the preys
found using similar communication and perception
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range as the predators. They have no impact on the
coordination task except for the implicit exploration
role and the additional communication load on the
network. Fig. 7 shows the impact of scouts for the
different types of algorithms. The impact of scouts
is significant only for the SDI algorithm (t-test p-
value of 2.18E-17 with the addition of one scout).
Under the SDI algorithm, agents keep their role if
no conflicts are found but might need to explore if
the location of the prey is not known. Scouts help
provide this missing information to SDI agents to
perform their role.

IV. RELATED WORK

Research on distributed constraint satisfaction
(DCSP) algorithms has concentrated on proving
completeness in obtaining a global solution through
the communication of neighboring agents rather
than responding to dynamic situations[1]. The for-
malism of DCSP has been extended to dynamic
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environments and classes of problems have been
identified[6] but no results reported for the class
of problems such as the prey/predator pursuit game
where adaptive approaches without communication
have also been applied[5], [17]. Communication-
based approaches[18] have however been shown to
improve the performance of evolved predators and
the experiments confirm and extend those results.

V. SUMMARY AND CONCLUSIONS

This work shows that, in open and dynamic envi-
ronments, inferring intent yields better coordination
results than deconflicting communicated intent and
the coordination quality obtained far outweighs the
communication cost of sharing information. This
suggests that learning a common policy for similar
payoff and optimization might be more preferable
than building a consensus in a dynamic environ-
ment. Future work should include extending the
distributed constraint optimization method to het-
erogeneous agents with different initial strategies
and preferences. Coupling role allocation with the
exploration of role opportunities while maintaining
connectivity has also been shown to be critical to
the overall performance of multi-agent systems in
open and dynamic environments and future work
should address this issue as well.
The authors want to acknowledge useful discussions with Joe Macker
and Joe Collins.
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