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ABSTRACT  

The present study examined the sensitivity of several candidate metrics of real-time 
workload within the spatial component of an unmanned aerial vehicle (UAV) task. 
Advanced Brain Monitoring’s (ABM) wireless B-Alert system was used to collect 
participant’s EEG workload and engagement data. Eye tracking data was also 
collected. The UAV simulation required participants to report heading information 
of moving vehicles, as seen from the UAV. There were four blocks of difficulty, 
over which a significant performance decrement was shown. Additionally, 
participants rated their workload significantly higher and pupil diameter 
significantly increased across blocks of increasing difficulty, as well as within each 
block during periods of highest mental demand. ABM’s workload and engagement 



 

 

metrics however did not show a significant change over or within blocks. The 
results showed that pupil diameter shows promise as a correlate of mental 
workload.   
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INTRODUCTION  

Augmented Cognition emphasizes the use of a closed-loop system using real-time 
physiological assessment to improve human performance (Schmorrow  & Stanney, 
2008). In a training environment closed-loop systems could reduce the time 
required to train an individual by keeping workload at an optimal level for learning 
(Coyne, Baldwin, Cole, Sibley, & Roberts, 2009). Several metrics such as pupil 
diameter and electroencephalographic (EEG) have been shown to vary predictably 
with increases and decreases in workload. Monitoring these different metrics allows 
training to be optimized in computer based training (CBT) environments. 
Ultimately, this research will impact the way CBT is conducted by establishing the 
foundation for adaptive automation through monitoring neural resources.   

EEG and eye tracking metrics have been extensively investigated as a means of 
assessing cognitive workload. For example, (Berka et al., 2007) developed a mental 
workload metric based on an individual’s EEG signal that tracks task demand in 
mental arithmetic and digit span tasks. Other researchers have focused on eye 
tracking metrics and found changes in pupil diameter, fixation duration, and blink 
frequency to be predictive of various levels of cognitive demand in a task ( Tsai, 
Viirre, Strychacz, Chase, & Jung, 2007; Van Orden, Limbert, Makeig, & Jung, 
2001; Veltman & Gaillard, 1996). Additionally, many researchers have had success 
using artificial neural networks (ANN) to accurately classify different operator 
states for individuals (Wilson, 2005; Wilson & Russell, 2003) and improve 
performance with the aid of adaptive automation (Wilson & Russell, 2007). 

Recent advances in eye tracking and EEG technologies have made utilizing 
closed-loop systems based on physiological measures more feasible. For example, 
accurate and unobtrusive off-the-head eye trackers now allow and account for head 
movements and can collect and process data in real-time. Furthermore, technologies 
like wireless EEG caps and dry, no-prep electrodes have recently been developed 
(Christensen, Estepp, Wilson, & Davis, 2009); both of which reduce the prep time 
normally required. Both EEG and eye tracking data can also now be collected and 
run using affordable personal computers that are capable of processing and storing 
large amounts of data. These and other similar advances have made it viable to 
utilize this type of technology in a CBT environment.  

The ultimate goal of this multi-year effort is to build an automated training 
environment where objective physiological metrics along with subjective workload 
ratings and quantifiable performance measures can be used to classify an 
individual’s workload and guide desktop training simulations. The purpose of the 



 

 

current study, reported here, was to examine neurophysiological markers of 
workload in a simulated UAV task at varying levels of difficulty.  

METHOD  

PARTICIPANTS 

All participants (N= 15) were volunteers recruited from the Naval Research 
Laboratory.  None of the participants had any prior experience with UAV 
simulators. Two were dropped from the study: one was due to second day attrition 
and the other because of partial dropped eye tracking data. Therefore, thirteen 
participant’s eye tracking and performance data were analyzed and only the last 
nine participant’s electroencephalographic (EEG) data were analyzed due to a hard 
drive error that caused four participant’s data to be lost.  

MATERIALS 

Advanced Brain Monitoring’s (ABM) wireless B-Alert system was used to collect 
participant’s EEG data. The system uses a wireless six channel head cap that 
transmits data via Bluetooth to a PC running ABM’s B-Alert software. ABM’s 
classification algorithms assessed raw EEG and provided a second by second 
workload and engagement metric on a scale of 0-1. In addition, the Tobii X120 off-
the-head eye tracker was used to collect pupil diameter and gaze position data.  The 
unit was placed in front of the participant and just below the surface of the monitor 
running the simulation. The system recorded both eyes at 120 samples per second.  

Virtual Battlespace 2 (VBS2) by Bohemia Interactive, Australia was used to 
construct the UAV simulation scenarios. VBS2 is a high-fidelity, 3-D virtual 
training system used for experimental and military training exercises. One 
Windows PC ran the UAV scenario, while a second PC recorded the eye tracking 
data, and a third recorded the EEG data. All computers were time synched using 
network time protocol in order to ensure accurate post-hoc data analysis.  

TASKS AND PROCEDURES 

UAV DESKTOP SIMULATION 

After receiving a brief PowerPoint training about the task, participants engaged in a 
UAV desktop simulation created from videos using VBS2 where they were trained 
to report information on enemy targets as seen from a UAV. A continuous video 
stream from the UAV was shown on the monitor (Image 1) and participants were 
asked to report heading information about the target vehicles crossing the screen. 
Participants were given the heading of the UAV and were required to estimate the 



 

 

heading of the vehicle on the ground. A graphical depiction of a compass facing 
due north with 30 degree increments was provided to the participant for reference. 
After entering the target heading estimation, participants were then asked to rate 
their mental effort in calculating the target heading.  

The difficulty of the task progressed over four blocks of trials. Only one vehicle 
was shown on the screen at a time and a total of sixteen vehicles were shown within 
each block. Difficulty was manipulated by varying the UAV heading as well as the 
possible target heading. For example, the easiest level (block one) showed the UAV 
heading at only 0 degrees and the target’s heading could be either 0, 90, 180 or 270 
degrees. The most difficult level (block four) showed the UAV heading at various 
30 degree increments, which changed after every two targets, and the target heading 
could be any 30 degree increment.    

Since this simulation is ultimately intended to help train a UAV operator, the 
order of difficulty levels were not randomized. On the first day, participants only 
completed one block, referred to as the baseline block, which was the equivalent 
difficulty level of block four.  On the second day of the experiment, participants 
progressed through the task from block one to block four. This was done in order to 
assess learning, by comparing performance on the baseline block and block four. 
Each block took approximately eight minutes to complete. 

 

IMAGE1.  Screenshot of the UAV simulation. Note the dust trail of an enemy vehicle 
just to the right of center. Based on the given UAV heading of 300, the participant 
would correctly report this vehicle heading as approximately 270°. 

300 

270 



 

 

THE EXPERIMENT 

All participants took part in two, one hour sessions over two days. At the beginning 
of each day, participants were prepped for EEG recording with ABM’s six 
electrode wireless headset. Both EEG and eye tracking data were collected while 
participants were engaging with the UAV simulation.  

On the first day, participants completed ABM’s thirty-minute vigilance task. 
This task was developed by ABM as a means to filter out noise and uniquely fit 
classification algorithms to a participant in order to assess various levels of 
cognitive state. The vigilance task and software are part of ABM’s real-time EEG 
classification system. After completing that task, any subsequent EEG data was run 
through ABM’s classification algorithm to provide an individual’s workload and 
engagement in real-time. After this process, participants reviewed a PowerPoint 
presentation that contained an overview of the tasks and training on how to 
complete the heading determination task. Participants were given a brief practice on 
the task and they next completed the experimental baseline block.  

On the second day, participants were prepped for EEG and the experimenter 
briefly reviewed the task instructions. Following the instructions, participants began 
the UAV simulation while participant performance, EEG, and eye tracking data 
were collected, along with subjective mental effort ratings. All participants 
proceeded from blocks one through four with targets appearing at the exact same 
time, in the same order.  

RESULTS 

BEHAVIORAL PERFORMANCE 

Analysis of performance data for blocks one through four confirmed effective 
manipulation of difficulty among levels within the UAV simulation. A significant 
difference existed among blocks one through four in heading error, F(3, 36) = 
16.52, p = .000, • 2 = .75, subjective workload ratings, F(3, 36) = 43.47, p = .000, • 2 

= .78, and for errors of omission, F(3, 36) = 4.50, p = .006, • 2 = .29. Heading error 
was computed by dividing the error from correct heading answer by 180 degrees; 
subjective ratings were on a scale of one to seven; and errors of omission were 
averaged over the entire block.  See Figure 1 for a depiction of these effects.  

While a statistically significant difference does not exist between heading error 
on the baseline block (M= 0.16, SD= 0.08) and block four (M= 0.13, SD= 0.07), the 
average error did decrease slightly and errors of omission decreased from 1.69 on 
the baseline block to 0.92 on block four. 

 



 

 

 

FIGURE 1.  Average heading error and subjective workload ratings across all blocks 

ABM'S WORKLOAD AND ENGAGEMENT INDICES  

Preliminary analysis of the ABM workload and engagement metrics showed almost 
identical levels of workload and engagement when the metrics were averaged 
within each block and then compared across block levels. Thus, we further 
investigated the metrics by averaging each classification over the three seconds 
preceding participant response for each target heading. This time was chosen 
because it should correspond with when the participant is calculating the target 
heading, and thus is most cognitively loaded. Still, results revealed no significant 
difference in the ABM’s workload metric across blocks one through four, F(3, 24) 
= 1.62, p = .211. Similarly, no significant difference existed in ABM’s engagement 
metric across blocks one through four, F(3, 24) = 1.41, p = .265. See Figure 2.  
 

 
FIGURE 2.  ABM's engagement and workload indices averaged three seconds prior 
to participants providing their heading response 
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PUPILLOMETRY   

Pupil dilation was investigated as a measure of mental workload, and consequently 
pupil diameter was averaged within each entire block and compared across 
difficulty levels. Analysis revealed significant differences in pupil diameter among 
blocks one through four for the left eye (F(3, 36) = 6.9, p = .005, • 2 = .37) as well 
as the right eye (F(3, 36) = 6.9, p = .008, • 2 = .37), as shown in Figure 3.  Analysis 
of the pupil diameter between the baseline and block four yielded some interesting 
results. A significant difference between the baseline (M= 3.34, SD= .46) and block 
four (M= 3.25, SD = .39) did exist for the left eye, F(1, 12) = 5.18, p = .042, • 2 = 
.30. However no significant differences existed between the baseline (M= 3.34, 
SD= .36) and block four (M= 3.31, SD= .40) for the right eye, F(1, 12) = 0.17, p = 
.688, • 2 = .02.  

Further investigation of pupil dilation also prompted averaging pupil size over 
the immediate seconds preceding participant response for each target heading. 
Increments of one, three, and ten seconds were investigated and all yielded similar 
results. In particular, pupil diameter across blocks one through four was 
significantly larger one second preceding heading response when averaged across 
the whole block for the left eye, F(1, 12) = 64.96, p = .000, • 2 = .84, and the right 
eye, F(1, 12) = 88.11, p = .000, • 2 = .88. This suggests that pupil dilation is 
sensitive to phasic changes in workload over a small amount of time and confirms 
pupil dilation as a highly promising correlate of workload. See Figure 4 for a 
comparison of the different average time increments.  

 

FIGURE 3.  Average of all participants’ pupil size difference from his or her average 
pupil size for each block  
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FIGURE 4.  Average pupil dilation averaged one second prior to heading response 
compared to pupil dilation averaged over the entire block  

DISCUSSION 

Analysis of the performance data and subjective workload ratings indicated that the 
various levels of difficulty were successfully manipulated across the task. 
Subjective workload ratings, errors of omission, and heading error all increase in 
accordance with increasing levels of difficulty (i.e. from block one to block four). 
While a significant difference does not exist between heading error for the baseline 
block and block four, about half as many errors of omission occurred on block four 
(i.e. a failure to respond due to time pressure or simply not knowing the answer). 
Thus, heading errors on block four could be influenced by fewer omissions, and 
therefore be slightly higher than if the omission rate were the same between blocks 
four and the baseline block.  

Comparison of performance between the baseline and block four are of interest 
as a means of assessing the UAV simulation as a potential training simulation. Due 
to potentially a lack of power and other factors, pre (baseline block) and post (block 
four) test training effects weren’t statistically different. However, the total time 
allotted to training was only about forty minutes over both days, since each block 
took about eight minutes to complete. Hence, with more time to train an individual 
at each level in a real world training simulation, one would expect to see smaller 
heading errors and errors of omission by the end of training, compared to the 
baseline trial. In addition, one would expect ratings of workload to be significantly 
lower on the post test than the pre test. 

Neither ABM’s workload index nor engagement index were sensitive to changes 
in this task across difficulty levels. Changes were also not apparent when the index 
was calculated three seconds prior to heading response, when workload and 
engagement should have been highest within the block. On account of these 

2.6
2.8

3
3.2
3.4
3.6
3.8

1 Sec Left 1 Sec Right Avg Left Avg Right

Pu
pi

l D
ila

ti
on

 (m
m

) 

Left and Right Eye Averages

Pupil Dilation prior to Heading Response compared 
to Average over entire Block

Block 1

Block 2

Block 3

Block 4



 

 

findings, future studies will not be using ABM’s cognitive state classification 
algorithms, but instead will investigate the use of artificial neural networks as a 
means of assessing workload in a UAV training simulation. 

The most promising results of this study were systematic changes in pupil 
dilation as a function of difficulty level. The initial analysis of pupil diameter was 
performed by averaging an individual’s pupil diameter over each eight minute 
block. Simply comparing average block pupil dilations yielded significant 
differences in pupil size across blocks (see Figure 3). Further investigation showed 
that average pupil size one second prior to submitting heading response was 
significantly higher compared to pupil size during the rest of the block (see Figure 
4). This pre-response computation was also calculated at three and ten seconds 
preceding response, and yielded similar effects; indicating that this effect was likely 
not due to some kind of response initiation. Therefore, pupil dilation is not only 
sensitive to changes in workload over large periods of time, but also is sensitive 
within the demands of a task. These results substantiate the robustness of pupil 
dilation as a means of assessing cognitive load. 

One surprising result was the large difference between average left and right 
pupil diameter for the baseline block, that actually yielded differing results when 
comparing dilation between the baseline block and block four. Left eye data is 
consistent with research that suggests differences in workload across difficulty 
levels should diminish with practice (Berka et al., 2004). However, data from the 
right eye would suggest that this is not the case. At present, further investigation is 
necessary before any firm conclusions can be drawn.  

Future studies are planned to investigate how measures of workload change with 
practice within a difficulty level. In particular, other eye tracking metrics, such as 
blink frequency/duration, fixation frequency/duration, and divergence will be 
investigated. Analysis of blink data were not possible for this study, due to the 
inability to reliably differentiate lost eye tracking data from blinks using the Tobii 
eye tracking system. Future studies will use EOG to solve this problem. Fixation 
data and nearest neighbors analyses also were not possible to analyze because of 
too much error in the Tobii calibration. This problem has been resolved with new 
software that will be incorporated into future studies. 

Another area of interest will be collecting physiological data when a participant 
is overloaded. We intend to increase the difficulty level of the hardest block in 
order to purposely overload the participant. Additionally, fewer blocks will be 
necessary since it is difficult to distinguish four distinct levels in the performance 
data. Three levels with more trials in each level will be used in follow up studies. 

 Overall, these findings show promise for using pupil diameter as a means of 
assessing workload. More data collection is necessary to investigate other eye 
tracking and EEG correlates. Using spectral analysis of the EEG recordings may 
prove more sensitive than the ABM engagement index explored in the present 
study.  Ultimately, with the combination of performance, subjective ratings, eye 
tracking data, and EEG, we are confident that we will be able to successfully 
predict user workload and eventually perform mitigations within a closed loop 
system.   
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