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Abstract— Delegating the coordination role to proxy agents
can improve the overall outcome of the task at the expense
of cognitive overload due to switching subtasks. Stability
and commitment are characteristics of human teamwork
but must not prevent the detection of better opportunities.
In addition, coordination proxy agents must be trained
from examples as a single agent but must interact with
multiple agents. We apply machine learning techniques to
the task of learning team preferences from mixed-initiative
interactions and compare the outcome results of different
simulated user patterns. This paper introduces a novel
approach for the adjustable autonomy of coordination
proxies based on the reinforcement learning of abstract
actions.

INTRODUCTION

Advances in communication technologies has lead to
increased agent interactions and increased complexity in
the decision-making process. To deal with this added
burden, the coordination role is delegated to a proxy
agent. Coordination proxy agents [1] are personal agents
that take on the coordination role on behalf of a human
user (Fig. 1). While the optimization of the global
task can be better achieved by the self-organization of
proxy agents in dynamic environments, switching roles
or teams involves preferences, such as loyalty, boredom
and persistence thresholds, in addition to interpretations
that might need to be elicited from the human in the
loop. This paper addresses issues in determining when
switching teams is appropriate to satisfy both the urgency
of the subtask relative to the global task, the preferences
of the user, and when input from the user is warranted.
We claim that through result-driven reinforcement learn-
ing, the human can train coordination proxies in a task
with examples biasing the way the task is achieved with
respect to the outcome of the task.

Similarly, in mixed-initiative planning involving goal
selection, directives from the user are obtained interac-
tively in case of plan conflict or provided apriori in the
form of plan constraints. Mixed-initiative interactions in

Fig. 1. Example of coordination proxies helping in traffic by
negotiating the road.

multi-agent systems provide a flexible way to harness
the cognitive capabilities of the human in the loop
in solving a problem while delegating more mundane
tasks to the proxy agents. As in the turn-taking problem
found in dialog management [2], the key decisions for
mixed-initiative interactions, as applied to the adjustable
autonomy of proxy agents, include knowing when to ask
for help, when to ask for more information, and when
to inform the user of a decision. This paper claims that
learning user preferences is not sufficient for training
coordination proxies if those preferences conflict with
other agents’ preferences and affect the outcome of the
task. As long as preferences are inconsistent with each
other as evidenced by the outcome of the task, a proxy
agent must keep training and continue interacting while
suggesting alternatives.

This paper is organized as follows. A learning approach
for training coordination proxies in making decisions
is first introduced. We then motivate experiments in
the prey/predator canonical coordination domain and
present empirical results and analysis of our evaluation.
Finally, we conclude with a summary of related work and
recommendations for future work. The key contribution
of this work is a mixed-initiative approach based on
the reinforcement learning of abstract actions and its
algorithm scalable to large state space for the adjustable
autonomy problem of coordination proxy agents.
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LEARNING APPROACH

A proxy agent can operate in three modes characterizing
its dialogue to the user: (a) automatic or no interaction,
(b) warn-user and (c) wait-for-user. As the proxy agent
learns the preferences of its user, it should evolve to
the automatic mode of interaction. “Warn-user” is an
asynchronous mode of interaction where the opportunity
to change roles is given to the human without interrupt-
ing the task of the proxy or the human. The “wait-for-
user” mode is a synchronous mode of interaction that
will interrupt the task (subject to timeout). Deciding au-
tonomously which mode to be in for a specific situation
constitutes adjustable autonomy [1]. This paper claims
that the urgency to interrupt the human should be based
on the ambiguity of a decision reflecting the uncertainty
of a situation given the preferences of the user and the
expected outcome of the task.
Our learning approach consists of (1) clustering exam-
ples of conflicting goal states to expedite the case-based
retrieval of past examples, and (2) learning which goal
to follow through the reinforcement of user interaction
preferences and the outcome of the task. As a result, pref-
erences will be learned only when they help coordination
in some way. Inconsistencies in the user preferences will
prolong the training mode and situational ambiguities
will trigger mixed-initiative interactions. Those steps can
be combined to learn online in an incremental way to
adjust to novel situations.

Clustering of Conflicting Goal States

This clustering step quantizes a large continuous state
space into a discrete representation that is amenable
to tabular reinforcement learning techniques. Clustering
as a preprocessing step ensures that distinct states are
kept apart and prevents oscillations in state values when
scaling up reinforcement learning to large state space.
A myopic agent with limited perception will not have
goal conflicts since only one goal at a time will be per-
ceived. Through communication and shared knowledge
an agent might be aware of other goals, increasing the
occurrence of decisions or ”choice points.” To scale up,
patterns of observation are generalized and compressed
through the competitive Hebbian learning process of self-
organizing feature maps (SOFM)[3]. A SOFM maps
an input data space <n to a lower dimensional space
(usually two or one) of prototype vectors, the neurons,
where each vector, mi = (x1, x2, ..., xn) ∈ <n, is rela-
tively ordered with respect to its “neighbors” preserving

the structure of the input space in a lower dimension
suitable for visual representation. The update equation
of a prototype vector m given a temporally decreasing
rate α (0 < α < 1) is as follows:

m(t + 1) = m(t) + α(t)[x(t) − m(t)] (1)

The granularity of clustering needs to be based on the
capability of recognizing goal conflicts. A distance func-
tion alone does not guarantee that important distinctions
will be recognized. The initial set of prototype vectors
can also affect the effectiveness of clustering. A semi-
supervised approach is presented here where the “least
used” prototype vector wins if a conflicting goal, g ∈ G,

at time t fails to be recognized as distinct. This is in
accordance to the general principle in using feature maps
for pattern recognition that prototype vectors be placed
at the class borders to avoid misclassifications [3].

Algorithm 1 Clustering of conflicting goals
Input: prototype vectors mi

Output: updated prototype vectors mi

Initialize: conflict set W ←{}
REPEAT

Generate input signals {s,g}
from P(s,g), s∈S, g∈G

if new choice point then
foreach w∈W

update mw closer to sw

W ←{}
m ← argmini (distance(s,mi))
while (conflict←{m,g’}∈W and g’6=g)
m ←argmini(hits(mi))

hits(m)++
W ←W∪{s,m,g}

endif
UNTIL (stopping criterion met)

Reinforcement Learning

From Markov Decision Processes (MDP) to Rein-
forcement Learning: Formally, an MDP is a 4-tuple
{S,A, T,R} where S is the set of states, A the set of
actions, T the transition model specifying the probabil-
ities mapping S × A × S to [0, 1] and R, the reward
function, mapping S×A×S to <. Algorithms in dynamic
programming such as value and policy iterations solve
MDPs provided T and R. The complete search space of
an MDP is exponential in the number of steps required
to solve the problem, {S×A}n. Reinforcement learning
(RL) approximately solves MDPs without a model of
transition probabilities T by directing its search of the
state space based on sample return estimates obtained
by interacting with the environment [4]. Those estimates
are encapsulated in the value function V (s) for state s
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or the action-value function Q(s, a) associating state s

to action a. Monte-Carlo methods applies to RL when
estimating sample returns based on the outcome of an
episode while temporal-difference methods [5] are based
on the next temporal step.

Reinforcement Learning of Abstract Actions: Abstract
actions are high-level actions, for example a planning
decision, that are implemented by several primitive ac-
tions but are temporally abstract. How can credit assign-
ment be given to a high-level action since the external
terminal reward might also depend on the successful
execution of lower-level actions? High-level actions such
as conflict resolution decisions occur “offline” and are
not temporally part of the execution of a discrete se-
quence of steps. Similarly, in mixed-initiative strategies
involving a human, the high-level decision from the
human is not under the control of the coordination proxy
agent. The decisions depend only on the current state
at certain synchronization points that occur at random
time intervals. Consequently, the high-level actions are
not completely Markovian since they depend on past
temporally selected high-level decisions. In the theory
of semi-Markov decision processes (SMDPs), the high-
level reward obtained is the mean reward accrued during
the time taken to accomplish the goal weighted by the
probability of reaching the goal in t time steps [6].

Fig. 2. Non-deterministic HAM controller for goal conflict resolu-
tion

Based on the theory of SMDPs, hierarchical abstract
machines (HAMs) [7] address the issue of combining
high-level actions with primitive actions in a Markov
decision process (MDP). A HAM is a non-deterministic
finite state machine (FSM) specifying valid transitions
constraining the underlying temporal MDP. The “HAM-
induced” MDP can then be solved more efficiently. It
is however possible to learn in the reduced state space
of HAMs directly. Figure 2 shows a general HAM for
goal conflict resolution. Machine states superimpose to
environmental states to identify behavioral states (e.g.
explore, hunt, stop, etc.) and choice points. Given an

environment state s, a machine state m, a reward r in
the environment state, a past choice point c in a HAM,
the accumulated reward rc since the previous choice
point c, and the accumulated discount γc (0 ≤ γ < 1)
since the previous choice point c, HAMQ-learning (Eq.
2) proceeds as follows.

Q([sc, mc], a) = Q([sc, mc])+α[rc+γcV ([s,m])−Q([sc,mc], a)] (2)

where rc = rc + γcr and γc = γγc. The value of the
current state V ([s,m]) is obtained from the underlying
temporal MDP as the expected sum of discounted reward
E[

∑∞
t=0 γt−1rt].

Reinforcement Learning of User Preferences: The com-
pressed patterns of goal states learned in the SOFM
preprocessing step described above constitute a proxy
agent’s internal representation of choice points aug-
mented with HAMQ-learned action values for the two
possible actions of selecting or not selecting the goal
state. This function approximation approach separates
learning the action value function from learning the state
representation (but see [8] for a combined approach).
The intermediate reward rc is obtained from the user
decision at the choice point while the discounted terminal
rewards upon reaching the goal states are obtained from
the underlying temporal MDP. Figure 3 describes the
architecture of a coordination proxy that learns from
reinforcement.

Fig. 3. Coordination proxy system architecture with interactions
from the environment and with other agents

By decomposing the state space into machine states
and temporal states, HAMs avoid the looping problem
[9] in introducing intermediate rewards based on user
preferences, however choice-point rewards can override
the outcome if rc � γcV ([s,m]), misleading the agent
in learning non-optimal preferences for the coordination
task. The novel mixed-initiative HAMQ algorithm (Al-
gorithm 2), based on the credit assignment of choices and
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alternatives, enables coordination proxies to dynamically
adjust their interactions depending on the preferences of
their users and the outcome of the task. It is a Monte-
Carlo algorithm based on the smooth average of episodic
returns of environmental states. Eligibility traces [5]
are used here as uncertainty variables modulated by
the strength of the pattern matching association of a
goal state to a machine state. The complementary credit
assignment to alternatives is the key characteristic of this
algorithm. The sign of the action value at a choice point
determines whether the choice is selectable. Ambiguity
arises when more than one option at a choice point is
selectable or if none are selectable. The constraints for
the fairness and rationality of reward ra for action a ∈ A

at choice point c and actions a′ ∈ A, a′ 6= a, are as
follows:

ra ≤ γcV ([s,m]) (3)

ra′ = −
1

|A| − 1
ra (4)

∑

a∈A

ra = 0 (5)

A proof of convergence of this algorithm in reducing the
ambiguity rate while increasing user precision would be
based on the convergence of online learning of linear
functions such as the Winnow algorithm [10].

EXPERIMENTAL EVALUATION

Experiments with different simulated patterns of user
preferences were conducted: (1) autonomous, (2) con-
servative, (3) risky, (4) heuristic, and (5) mixed. In an
autonomous pattern, the proxy agent learns how and
when to switch team independently of its user. In a
conservative pattern, the users initially select a team at
random and never switch teams afterwards; in a risky
pattern, the users initially select a team at random and
always switch teams afterwards; in a heuristic pattern,
users have a principled way of selecting a team. In
our experiments for a heuristic pattern, agents select the
team with the highest sum of preferences and switch
teams accordingly. In a mixed pattern, a heuristic, risky
or conservative pattern is selected randomly. This last
pattern reflects best the heterogeneity of human users.
We show corresponding learning performance results
of coordination proxies in the prey/predator domain
(introduced below) in terms of autonomously resolving
conflicts based on user preferences and outcome of the
task.

Algorithm 2 Mixed-initiative training (binary choice
points)

Input: prototype vectors mc

eligibility traces e{[mc]}
Output: a mixed-initiative policy
Parameters: α,γ
Initialize:

forall mc

Q([mc]) = 0
e([mc]) = 0

W←{}
user mode

REPEAT
when choice point c
foreach goal state s∈S
[s,mc]←map(s)
inform user of Q([s,mc])

γc ← γ
if (mode == WAIT or Q([s,mc]) is AMBIGUOUS) then

[s,mc] ← askuser
else

[s,mc]← argmax Q([s,mc])
endif

foreach s’∈S, s’6=s
W ←W ∪ {[s′,mc]}

obtain reward rs

Q([s,mc]) ← (1 - α)Q([s,mc]) + αrs

e([s,mc]) ← similarity(s,mc)
foreach w∈W
Q([s’,mc]) ← (1 - α)Q([s’,mc]) - αrs′

e([s’,mc]) ← -similarity(s’,mc)
when [s,m], obtain V([s,m])

forall [s,mc]
δ = γce([s,mc])V([s,m])
Q([s,mc]) ← Q([s,mc]) + αtδ

forall c
γc ← γγc

UNTIL end of episode

Each goal state s at a choice point c is mapped to a prototype
vector mc.

Prey/Predator

The prey/predator pursuit game is a canonical example
in the teamwork literature [11] because one individual
predator alone cannot accomplish the task of capturing
a prey. Practical applications of the prey/predator pur-
suit game include, for example, unmanned ground/air
vehicles target acquisition and search and rescue opera-
tions. Due to the decomposability of the global reward
as a sum of local rewards, the original problem can
be extended to multiple teams by including additional
preys. Prey/predators can sense each other if they are in
proximity p but do not otherwise communicate. Predators
communicate with other predators by broadcasting mes-
sages to their neighbors according to a communication
range h. Four predators are needed to capture a prey by
filling out four different roles: surround the prey to the
north, south, east and west. Those roles are independent
of each other and can be started at any time obviating the
need for scheduling. The only requirement is that they
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have to terminate at the same time either successfully
when a capture occurs or unsuccessfully if no team can
be formed. The predator agents are homogeneous and
can assume any role but heterogeneity can be introduced
by restricting the role(s) an agent can assume. The prey
and predators move concurrently and asynchronously at
different time steps. In addition to the four orthogonal
navigational steps, the agents can opt to stay in place.
Non-determinism is introduced with the modeling of
collisions. In case of collision, the agents are held back
to their previous position. The preference uij of predator
agent i for a role j is inversely proportional to the
Manhattan distance d required to achieve the role.

The predators move in the direction of their target
when assigned a role or explore the space according
to a memory-based scheme on the last few steps. The
decision space for the role allocation of P predators and
p preys is O(pT ) where T is the number of teams of
size t. This problem belongs to the most difficult class
of problems for constraint satisfaction in multi-agent sys-
tems due to the dynamic nature of the environment and
the mutually-exclusive property of role allocation. An
optimization algorithm can be used in parallel fashion by
each agent based on sensed and communicated informa-
tion from the other agents in the group to autonomously
determine which role to assume (see Algorithm 3). It is
assumed that the other agents reach the same conclusions
because they use the same optimization algorithm [12]
and the same payoff function. This type of algorithm
degrades gracefully when communication is completely
impaired since it does not rely on the communication of
intent or preference from the other agents and can rely
solely on sensory information. Information necessary to
determine the payoff of each role needs to be communi-
cated. Therefore, it is the current local state within the
perception range, or augmented with second hand infor-
mation, that is communicated to the neighbors instead
of the intended role. What is being communicated is a
location on the grid. The “Hungarian” algorithm [13]
based on weighted graph bipartite matching was found
to outperform other types of distributed role allocation
in dynamic and uncertain environments [14], albeit with
the assumption of a homogeneous cost function, and is
used here to determine the optimal role for the agent in a
team characterized by the prey to pursue as the common
goal.

Which team to join when multiple preys are present
requires a commitment for teamwork beyond role allo-
cation optimization if not enough agents are available to

accomplish the overall task. Human users of coordination
proxy agents might have vested interest in selecting one
team over another such as friendships, trust, loyalty, etc.

Algorithm 3 Distributed Role Allocation
Initialize:

set initial role to explore
active ←true

while (no termination condition) do
if (active) then
act according to role
sense environment
broadcast local state to neighbors

active ←false
endif
collect neighbors’ new information
estimate possible roles with

allocation algorithm
select role
active ←true

end while

Fig. 4. Prey/Predator HAM

Figure 4 describes the HAM for selecting a team with the
common goal of capturing a prey. Our state representa-
tion of goal conflict consists of 5 features: the distance of
the prey from the agent, the number of agents allocated
to the prey, the total proximity of the agents allocated
to the prey, and the direction of the prey from the agent
(4 quadrant values based on the coordinate system: NW,
NE, SW, SE) using 1-of-n encoding. Associated with the
state representation are two high-level decisions – select
the target or not – determined by the sign of the action
value . An ambiguity will occur if the decisions do not
uniquely select one goal or if no goals are selectable.

Empirical Results

The experiments were conducted with RePast [15], an
agent-based simulation and modeling tool where agents
act concurrently in a decentralized manner. Its pow-
erful scheduling mechanism was used to model the
asynchronous behavior of the agents in a discrete-event
simulation. In addition, its neighborhood mechanism
was used to model broadcast communication between
neighbors.
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Table I shows the number of clusters (number of winning
neurons) obtained in the preprocessing step (see ) of a
random sample of 2400 choice points when varying the
communication range h of 4 predators and 2 preys on a
30x30 grid and 5% message loss depending on distance.
In our implementation only the winner prototype vectors
were trained. The increase in granularity indicates the
increased number of distinct recognizable situations in
the training set with increasing h (t-test p-value of
0.003 over 10 runs between clusterings with h=5 and
h=11). Results shown are obtained after convergence to
a maximum norm correction distance less than 1.E-4 of
1000 initial prototype vectors or 5000 training epochs.

Comm Range h Avg Clusters Avg Err
5 240 0.0137
7 344 0.0182
9 377 0.0287
11 367 0.0268

TABLE I
CLUSTER GRANULARITY FOR VARYING COMMUNICATION

RANGES BASED ON RANDOM SAMPLES OF 2400 CHOICE POINTS

IN THE TRAINING SET AND AVERAGE ERROR FOR 400 CHOICE

POINTS IN THE TESTING SET (p = 2, α = 0.07)

The following experiments were done on a 15x15 grid
with 5 predator agents, 2 random preys, and 5% message
loss. The agents start at random locations on the grid and
the predators are as likely to be slower or faster than the
prey. A terminal reward of +1.0 is propagated after each
capture or a penalty of -1.0 if no preys are captured
after 200 cycles (episode). Learning occurs across 500
episodes. Figure 5 compare performance trend results
for the different user patterns with refinement of those
strategies by the coordination proxies and performance
improvement by the proxy agent acting autonomously
(with Boltzmann exploration) for catching the first prey.
Duplicate consecutive goal states were eliminated. An
intermediate reward is allocated when the proxy agent
selects the same decision as the user pattern (user
precision). Trend results are also shown in terms of
ambiguities resulting from this refinement in Figure 6
and in terms of precision to those user patterns in Figure
7.

The results for the different user patterns compared with
autonomous learning show clearly that mixed-initiative
HAMQ learning can produce a more stable behavior
while reducing interactions due to situational ambiguities
with the human in the loop and increased user precision.
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Fig. 5. Comparative performance of user pattern refinements
and autonomous learning of 5 mixed-initiative predator agents in
capturing the first prey

h = 7, p = 2, α = 0.07, γ = 0.99, r = 4E − 5
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Fig. 6. Ambiguity rate

If an unforeseen situation arises resulting in no selectable
goal, the coordination proxy agent will initiate an in-
teraction with its user. The standard deviations of the
learned behaviors over 100 episodes were as follows: (1)
autonomous 47.54, (2) heuristic 25.42, (3) risky 43.42
, (4) conservative 34.91, and (5) mixed 35.25. This
methodology can also validate user patterns according
to their precision rate since successful behavior will
most likely be followed. The key factor in reducing the
ambiguity rate for all behaviors seems to be in the credit
assignment to alternatives (Kolmogorov-Smirnov test p-
values of average performance over 10 runs in ablation
studies were (1) autonomous 2.2E-4, (2) heuristic 2.2E-
4, (3) risky 2.2E-4 , (4) conservative 3.E-5 and (5) mixed
0.20).

RELATED WORK

Previous work on adjustable autonomy [16], [17] has
concentrated on learning user preferences in isolation
without relation to the outcome of the task. Learning
co-adaptive predictive models of the exogenous outcome
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instead of co-adaptive behaviors has been suggested in
the context of the El Farol coordination problem where
the paradox was that agents could coordinate without
communication by not going to the same place, the El
Farol Bar, at the same time [18]. It was observed that the
online adaptation of strategies to recent situations rather
than convergence was the key to achieving coordination
in a multi-agent system. Other work in this area found
that coordination could be achieved with less variance if
the agents relied on the accuracy of the same adaptive
gradient algorithm [19].

Techniques from advice taking [20], [21] where the user
preference is explicitly incorporated into the internal
representation of the agent are complementary to this
approach. Similar to apprenticeship learning[22], state-
action trajectories are used to refine an existing pol-
icy through a reinforcement learning algorithm. In W-
learning [23], each behavior in a flexible subsumption ar-
chitecture compete with other behaviors as selfish agents
indirectly collaborating through the communication of
the W value and a winner-take-all scheme. Here, the
user and the result-driven proxy agent interact directly
as collaborating agents trying to learn from each other.

CONCLUSION

We have shown how coordination proxies can safely
adjust their autonomy in switching teams based on user
preferences and taking into account the outcome of the
decision. Hierarchies of abstract machines are superim-
posed to the temporal behavioral of the proxy agent to
specify the high-level behavior of the human in the loop.
The representation of goal states instead of environmen-
tal states enables reinforcement learning to scale up and
generalize to different situations. The complementary
credit assignment to alternatives seems to be a key factor
in reducing ambiguities while increasing user precision

and this hypothesis will be further studied. In addition,
future work should extend this approach to preferences
of states as hints for exploration and compound goals
where choice points determine a sequence of high-level
goals. This work is part of on-going research in the
coordination of intelligent agents in open environments.
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