
Coordination in Disaster Management and Response: a Unified
Approach

Myriam Abramson, William Chao, Joseph Macker, Ranjeev Mittu

Naval Research Laboratory, Washington DC 20375, USA
myriam.abramson@nrl.navy.mil

Abstract. Natural, technological and man-made disasters are typically followed by chaos that results
from an inadequate overall response. Three separate levels of coordination are addressed in the mitigation
and preparedness phase of disaster management where environmental conditions are slowly changing:
(1) communication and transportation infrastructure, (2) monitoring and assessment tools, (3) collabora-
tive tools and services for information sharing. However, the nature of emergencies is to be unpredictable.
Toward that end, a fourth level of coordination – distributed resource/role allocation algorithms of first re-
sponders, mobile workers, aid supplies and victims – addresses the dynamic environmental conditions of
the response phase during an emergency. A tiered P2P system architecture could combine those different
levels of coordination to address the changing needs of disaster management. We describe in this paper
the architecture of a tiered P2P agent-based coordination decision support system for disaster manage-
ment and response and the applicable coordination algorithms including a novel, self-organized algorithm
for team formation.

1 Introduction
Large scale disasters are characterized by catastrophic destruction of infrastructure (e.g., transportation, sup-
ply chain, environmental, communication, etc). The lack of coordination characterizes such disasters. While
preparedness is the best response to emergencies [1], a multiagent-based approach to coordination decision
support systems (CDSS) can play an important role in disaster management and response (DM&R) in shaping
decentralized decision-making on a large scale. However, the diverse aspects of coordination make it difficult
to find a unified approach for continuous control. Coordination is at best defined as an emergent property
from local interactions, either cooperative or competitive, explicit or implicit, in the pursuit of multiple goals.
A taxonomy of coordination is illustrated in Fig. 1. Finding a unified approach is a key problem in disas-
ter management because a cooperative approach in the preparedness phase has to be complemented with a
competitive approach in the response phase due to life-threatening situations requiring fast and reactive solu-
tions. For example, satellite-based environmental surveillance requires centralized planning and scheduling
in advance due to geo-spatial and atmospheric constraints but needs to be supplemented by unmanned aerial
vehicles for timely information requests. Conversely, planning and preparedness decisions have to be relevant
in emergency situations to the first responders and provide them with guidelines. A disaster management task
is specified by the tuple {P, T, A, S} where P is the set of plans, T the set of tasks or incidents, A the set of
agents, volunteers, first responders, and coordinators, S the set of sensors, static or mobile, and where A ⊆ S.

The problem consists of matching the needs of T with the resources of A in a decentralized and concurrent
fashion to accomplish goals defined by P.

This paper is organized as follows. First, we explain the agent-based CDSS framework in Sect. 2 and motivate
a tiered peer-to-peer (P2P) coordination architecture for integrating the different coordination dimensions of
DM&R. Then, in Sect. 3, we introduce two basic coordination algorithms for heterogeneous agents suitable
in disaster management response. In Sect. 4, a self-organized, semi-centralized coordination algorithm is
introduced in support of the architecture proposed. An empirical evaluation follows in Sect. 5 on a canonical
fire/rescue scenario to illlustrate the relative merits of the coordination algorithms. Finally, Sections 6 and 7
conclude with related work.

2 Agent-Based CDSS
Recent technological advances in communication and processing power, enabling sensor networks and per-
sonal digital assistants, have made possible the self-organization of mobile agents (robots or people) and
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Fig. 1. Coordination Taxonomy and related coordination mechanisms

geo-localized decision support. The complexity of decentralized decision-making is tamed by delegating cer-
tain management tasks to proxy agents [2]. Coordination is a pervasive management task that helps reduce
interference in role assignments and enhance information sharing. The degree of consensus to obtain before
making a decision can be arbitrarily set. The lower the degree of consensus, the more flexible the agents
are in reacting to outside events and making timely decisions but the more negative interactions can occur.
Assuming rational communicating and trusting agents reduces the degree of consensus overhead required in
coordination tasks because the agents are likely to reach the same conclusions given the same information.
Current collaborative web-based tools have essentially a fixed client/server approach because of the relatively
stable nature of internet routing. Coordination is achieved through the server as a synchronizing blackboard
passively mediating the interactions of intelligent agents as clients. P2P approaches, such as JXTA [3], de-
emphasize the role of the server as passive synchronizer but the role of mediator is taken up actively by
“rendez-vous” peers and “relays.” Peers discover each other through advertisements propagated by relays
and rendez-vous peers. This suggests a flexible, semi-centralized coordination architecture for complex tasks
such as DM&R where the preparedness and information sharing architecture can seamlessly adapt to rapidly
changing conditions and communication infrastructure (Fig. 2). In this framework, coordination at the net-
work layer, whereby a host is chosen to act as relay for propagating messages through the network, maps
with a coordinator role at the application layer.

Fig. 2. Semi-Centralized Coordination Architecture

3 Coordination Algorithms for Heterogeneous Agents

One of the key coordination problem in disaster management is the heterogeneity of the players involved.
Roles provide a convenient a priori decomposition of a task and are a key coordination tool [4]. Roles can be
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Algorithm 1 Basic agent loop for cooperative distributed systems
set initial role to explore
active ← true
rounds← 0
while (no termination condition) do
if (active) then

sense environment
act according to role
broadcast information to neighbors
active ← false

else
read neighbors’ new information, if any
deliberate and select role
active ← true

endif
rounds++
end while

viewed either as fixed slots in a team structure that are filled by agents or part of an agent’s behavior repertoire
in its relationships with other agents that can determine the structure of a team. The decision complexity for
the role allocation of N agents to p tasks is O(pT ) where T is the number of teams of size t that can be
selected from N agents:
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t is the number of roles in a team which might not correspond to the number of agents N . In the first case,
∑T

i
ti ≤ N, agents have distinct, mutually-exclusive roles. In the second case, agents fill a number of non

mutually-exclusive roles (i.e. an agent can perform a number of roles in a team). The complexity in role
allocation scales up with heterogeneous agents where the mapping of agents to roles is one-to-many. The
basic agent loop for role allocation in distributed cooperative systems is described in Alg. 1. Two basic
matching algorithms for generalized role allocation of heterogeneous agents running in polynomial time are
described below.

3.1 Greedy Set Cover Algorithm
This is an approximate matching algorithm [5] that finds the minimum set cover for a list of resources needed
to accomplish a task given the initial capabilities of a set of agents sorted in maximal task coverage order
(Fig. 3). In addition, a small penalty is given to capabilities not relevant to the task. The preference for a task
is proportional to its coverage and the preference of the agents selected for the task, ensuring commitment to
mostly completed tasks.

Fig. 3. Greedy Set Cover of a task decomposed into 6 needs (dots) with 3 agents and one overlapping capability.
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3.2 Hungarian Algorithm

The “Hungarian” algorithm for weighted bipartite matching [6,7] solves constraint optimization problems
such as the job assignment problem in polynomial time. An implementation of this algorithm follows Munkres’
assignment algorithm [8]. The algorithm consists of transforming a weighted adjacency matrix of roles ×
agents into equivalent matrices until the solution can be read off as independent elements of an auxiliary
matrix. While additional rows and columns with maximum value can be added to square the matrix, the op-
timality is no longer guaranteed if the problem is over-constrained, i.e. there are more roles to be filled than
agents. This algorithm can be extended to heterogeneous agents by expanding the original set of agents to
virtual homogeneous agents, one for each capability required by the task, ignoring other capabilities. The
mapping of agent capabilities to incident needs is illustrated by the bipartite matching graph in Fig. 4. Here
too, the preference for a task depends on the coverage of the task and the preference of the agents selected
for the task.

Fig. 4. Weighted Bipartite Matching

4 Semi-Centralized Coordination Algorithms

Semi-centralized algorithms were found to be both practical and efficient in the large-scale coordination of
agents [9] and lend themselves well to a contract net protocol. The level of specificity in the planning of large
groups do not extend to individual behaviors. DM&R planning in the National Response Plan [10] provides
specific guidelines at the lowest geographical and organizational level but leaves room for self-organization.
Semi-centralization through team formation enables the continuous control of decentralized decision-making
to achieve planned objectives and maintain situation awareness through data fusion at the global level.
Clustering techniques are often used in team formation to find appropriate subteams minimizing intra-goal
distance and maximizing inter-goal distance. Adaptive clustering techniques extend fixed clustering tech-
niques such as k-means to dynamic conditions when the clusters change over time. The problem is (1) to
self-adjust to the correct number of clusters, i.e. the proper degree of centralization, and (2) incrementally
update the clusters. We first describe a cycle-based self-organizing algorithm for the formation of “cluster
heads” and then our extension of this algorithm to take into account environmental demands.

4.1 Low-Energy Adaptive Clustering Hierarchy (LEACH) Algorithm

The LEACH algorithm [11] is a stochastic adaptive algorithm for energy-efficient communication in wireless
sensor networks in the task allocation of aggregating and routing messages back to the base station (BS).
Because of the limitation on battery power, the task should be fairly distributed among the nodes. In addition,
aggregating the data to reduce noise before sending it to the BS is more efficient. Rotating this “cluster head”
role among the nodes will (1) minimize the overall energy consumed and (2) allow the battery power to get
replenished through solar energy. A round in the algorithm includes a setup phase establishing a transmission
schedule to maximize bandwidth utilization and a steady-state phase where data fusion occurs and the aggre-
gated messages are actually transmitted. It is assumed that the percentage of nodes that should take up this
role is known a priori by the agents. An algorithm where the agents take turn assuming the “cluster head”
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Algorithm 2 LEACH algorithm
active←true
rounds←0
set activation rate
while (no termination condition)
if (active) then

if (cluster_head) then
read BS mesgs
aggregate BS mesgs
send BS mesgs to BS
rounds←0
cluster_head←false

else
route BS msgs to elected cluster_head

endif
generate a random number r
T←estimate threshold
if (r < T) then
cluster_head←true
broadcast advertisement messages

endif
propagate messages
active←false

else
if (cluster_head) then
read election mesgs
create transmission schedule
broadcast transmission schedule

else
read advertisement mesgs
elect cluster_head
send election mesg to cluster_head

endif
active←true

endif
rounds++
end while

role is described in Alg. 2. An agent i assumes the role of “cluster head” if the stochastic probability is below
a threshold T , determined as follows:

T (i) =

{

P

1−P∗(r mod
1
P

)
if n ∈ G

0 otherwise
(2)

where P is the desired percentage of cluster heads known a priori, r is the current round, and G is the set of
agents that have not been cluster heads for the past 1

P
rounds. If below threshold, the agent will advertise its

services. Otherwise, the agents elect as their leader the closest agent according to the advertisements received.

4.2 Extension of the LEACH Algorithm

This algorithm assumes that (1) the activation percentage is given a priori and (2) the activation duration
during which a schedule is propagated and messages are transmitted to the base station is fixed. This works
well for sensor networks (e.g. unmanned aerial vehicles) where the number of nodes is known in advance and
the only mission is to report back to the BS. This algorithm needs to be adapted to act as a relay in a mobile
ad hoc network (i.e, transmit messages from any node to any other nodes) and to autonomously adjust to the
number of nodes in the network. The time interval allocated to be a “cluster head” need not be limited to a
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single transmission to the BS and has to adapt to the needs of the network. First, we motivate our approach
with an illustration of self-organization by the El Farol Bar problem and then describe the Adaptive Team
Formation (ATF) algorithm.

El Farol Bar [12] The problem addressed was that of a paradox: how agents could coordinate without
communication by not going to the same place, the El Farol bar, at the same time. This problem addresses
“tragedy of the common” type of problems where resources, otherwise plentiful, become scarce without
implicit coordination. Arthur evolved a set of hypotheses relating previous attendance at the El Farol bar and
the “happiness” outcome based on how crowded the bar was found to be. Note that an agent has complete
information when going to the bar. The online co-adaptation of those hypotheses to recent situations rather
than convergence was the key to achieving coordination. Other work in this area found that coordination could
be achieved with less variance if the agents relied on the accuracy of the same adaptive gradient algorithm[13].

Adaptive Team Formation (ATF) algorithm If an agent i does not assume a network role or “cluster head,”
it will receive only advertisement messages, and will send only election messages. As long as it receives
advertisement messages, it does not have to compete for the network role. However, if everybody assume the
same strategy, no service will be provided. The key idea is to predict the correct individual phase to alternate
between roles based not only on internal disposition but also on the state of the environment. A coverage
metric as the number of agents reached over the total number of agents looking for the service measures the
performance of this algorithm. The time-to-live (TTL) parameter, latency and communication range affect
the propagation of messages and the coverage of a node.
In contrast to other adaptation problems where convergence of an agent to a fixed behavior (or role) is desired,
congestion problems like the El Farol Bar problem requires learning when to change behavior to resolve
conflicts. Response thresholds in swarm intelligence [14] induce a dynamic task allocation depending (1) on
the disposition of the agents and (2) the environmental demands. A simple reinforcement learning scheme
allocates agents to the task by either raising or lowering their response threshold. In our problem, an increase
in connectivity (due to proximity or communication range) should sensitize an agent to be a team leader but
a decrease in advertisement messages should also be an incentive to assume the role. The stimulus si for an
agent i to become a team leader at time t depends on the connectivity of the agents (i.e. the number of other
agents within one hop) or degree di of the network node, the change in connectivity δi, and repulsion factor
α∈ (0, 1) as follows:

si0 =
di0

di0 + 1
(3)

sit+1
= sit

− α
#Advertisements

#Elections + #Advertisements + ε
+ δit+1

(4)

Here ε > 0 is a small constant that prevents division by 0. The agent’s response threshold Ti at time t taking
into account its internal disposition θi and external demands is then as follows:

Tit
=

θit

1 + e−sit

(5)

The initial disposition θio
∈ (0, 1) of an agent can be a function of its battery power or other hardware

capabilities. To avoid specialization and redistribute the manager task fairly among the agents according
to their capabilities, θt is adjusted based on the “fatigue” of performing the task or the “boredom” of not
performing the task measured in cycles as in the LEACH algorithm above (see Subsect. 4.1).

θit
= θi0 ∗ (r mod

1

θi0

) (6)

where r is the number of elapsed rounds.
It is assumed that the agents can perform their deliberative task in selecting a role in one round and that roles
are noncommittal. The leader determines a proper role allocation (Sect. 3) of the team by iterating through
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Algorithm 3 Adaptive Team Formation
active ←true
set repulsion rate
rounds← 0
while (no termination condition) do
if (active) then

read role allocation mesg
perform step(s) in role
generate a random number r
update stimulus and disposition
T←estimate threshold
if (r < T) then
leader←true
broadcast advertisement mesg

else
leader←false
elect leader
send election mesg to leader

endif
send role preferences mesgs to leader
propagate all messages
active←false

else
read role preferences mesgs
read role allocation mesgs
read election mesgs
read advertisement mesgs
if (leader) then
optimize task allocation for team
send role allocation mesgs

endif
active←true

endif
rounds++
end while

each task. Roles are allocated to the best ranking team based on coverage of the task and preferences. The
process repeats again on the remaining agents and tasks until no team can be formed. Redundancy against
message loss occurs when roles are reallocated either by the same manager agent in the next round or another
manager agent. Algorithm 3 describes the combined process.

5 Experimental Evaluation

The experiments were conducted with RePast [15], an agent-based simulation and modeling tool where agents
act concurrently in a decentralized manner on a n × n grid. Its powerful scheduling mechanism was used
to model the asynchronous behavior of the agents. Communication between agents was implemented by
transmitting messages to agents in a Moore neighborhood1 of 7 cells, eliminating cycles, and time-to-live
parameter set to 6 hops. In addition, a 5% message loss proportional to distance was simulated.
Figure 5 compares the comparative coverage rates of the LEACH and ATF clustering algorithms without task
allocation for a varying number of agents in fixed random locations on a 100× 100 grid. Only cluster nodes
relay messages to other agents. The agents were randomly initialized with a disposition rate varying in the
[0,0.1] range. The swarm-based ATF algorithm provides a significantly better coverage albeit with a larger
clustering rate for each node. Nodes were cluster nodes at a rate of ~0.5% in the LEACH algorithm while
their rate was evaluated at ~0.8% in the ATF algorithm.

1 All agents within a specified square radius in all directions are included.
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Fig. 5. LEACH vs. ATF coverage comparison over 100 cycles

5.1 Coordination Metric

Because coordination is an emergent property of interactive systems, it can only be measured indirectly
through the performance of the agents in accomplishing a task where a task is decomposed in subgoals.
The more complex the task, the higher the number of subgoals needed to be achieved. While performance
is ultimately defined in domain-dependent terms, there are some common characteristics. Performance in
a task can be measured either as the number of steps taken to reach the goal, i.e. its time complexity, or
as the amount of resources required, i.e. its space complexity. An alternative evaluation for coordination
is the absence of “failures”, for example negative interactions such as collisions or lost messages. Figure
6 illustrates the taxonomy of coordination solution quality in pursuit games. To show the scalability of a
solution, the evaluation must linearly increase with the complexity of the task [16].

Fig. 6. Taxonomy of coordination solution quality

A combined coordination quality measure is defined as the harmonic mean of goals achieved g, resources
expanded r and collisions c as follows :

g =
#Goals Achieved

#Goals
(7)

r =
#agents

log2(#MessagesReceived + 1) + #agents
(8)

c =
#agents

log2(#Collisions + 1) + #agents
(9)
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coordination =
3grc

gr + rc + cg
(10)

Such a metric combining the different aspects of coordination can evaluate the tradeoff of performance and
consuming bandwidth in large-scale tasks. In [17], coordination is evaluated solely as an effort, such as
additional steps to avoid collisions or messages to avoid role conflicts, and do not take into account the
indirect effect on performance.

5.2 Fire/Rescue Problem

In our scenario, buildings are randomly created on a n×n grid with a random probability of being on fire and
of spreading fire to adjacent buildings if not extinguished in time. Each fire or incident creates an emergency
situation requiring up to k types of resources. In turn, each responder agent can provide up to k matching
types of capabilities. There are a total of n capabilities and needs for each agent and incident (n < k).
The problem consists of dynamically matching capabilities and needs with a team of agents. When a team
of agents with the desired capabilities is situated near the incident within the agent’s perception range p,
the emergency will be removed. There are no scheduling constraints in matching resources but the overall
resource requirements might increase over time as the fire spreads. Each agent has a perception range p and a
typically greater communication range h to communicate with its neighbors. Figure 7 is an illustration of the
simulation of this domain in Repast.

Fig. 7. Fire/Rescue Scenario

There are 4 types of messages in this scenario. Advertisement messages are broadcast while election mes-
sages are point-to-point. Received messages not matching the destination host are ignored using flooding,
while ATF retransmits the message to the next leader node. Role preferences are communicated among agents
(point-to-point to the leader with ATF and broadcast otherwise) that include the known targets and the associ-
ated preferences for covering each resource needed. The preferences are based on the distance to the incident
and reflect the expected utility of the agent’s capabilities. When observing an incident, a “resource needed”
message is propagated among the agents describing the incident.
Figure 8 shows the coordination performance (10) of the two decentralized role allocation algorithms (Sect.
3), Greedy Set Cover and “Hungarian,” in this domain along with a random strategy of just stumbling upon
an incident while exploring. A simple flooding algorithm was used to transmit messages among agents. A
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significant difference was found between those two algorithms (t-test p-value = 0) and the random strategy.
The results suggests that approximate algorithms using appropriate heuristics (Greedy Set Cover) perform
better in complex and uncertain environments than non-optimal solutions to non-approximate algorithms
(“Hungarian”).
Figure 9 shows the coordination performance (10) in this scenario with ATF where the elected leader node
performs the network role of relaying messages. In the semi-centralized case, the leader node performs the
managerial task of role allocation. In addition, one scout agent transmits additional observations to the leader
nodes with retransmission to clients. In the distributed case, the role allocation task is performed implic-
itly by the agents. Both cases use the Greedy Set Cover algorithm. Results show that self-organization and
semi-centralization of role allocation incurs an overhead with a large number of agents and depends on other
information available to the leader node for its performance with a smaller number of agents. There is a signif-
icance difference under ATF with 50 agents (t-test p-value = 0.002) between fully distributed role allocation
and semi-centralized role allocation using the Greedy Set Cover algorithm.
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6 Related Work

Workpad [18] has proposed a 2-layer P2P architecture where the static internet backend provides the infor-
mation services necessary to first responders in a tethered mobile ad hoc network. The scenarios explored an
architecture for a coordination layer on top of the network layer where a team leader would reallocate tasks
to solve predicted fragmentation of the network due to the mobility of the agents. In this paper we explored
in detail the algorithms for role allocation and for selecting a team leader in a self-organized way.
Cooperative mediation [19] combines distributed role allocation with partial centralization. An agent, acting
as mediator, recommends value changes (role assignments) to neighboring agents to optimize local subprob-
lems. If a current solution is different from an optimal solution, the mediator transmits repairs to the relevant
agents. Agents are prioritized to act as mediator based on the size of their “social knowledge.” If a solution
cannot be found, the neighboring agents transmit their constraints which could involve other agents enlarging
the context of the subproblem. Cooperative mediation achieves a global optimal solution in a distributed way
by exploiting the substructure of the problem. If no local optimal solution can be found, the mediator will
progressively enlarge its context until an optimal global solution is found. Similarly, the ATF approach uses
the degree of connectivity as a stimulus to influence the tendency of an agent to be a team leader but the
election of a leader is explicit. A team leader divides the search space according to the substructure of the
problem but does not attempt to reach a more global solution in this paper. The role of the team leader is
not only to coordinate other agents in solving a task but also to coordinate the information sharing between
agents.

7 Conclusion

We have presented applicable coordination algorithms and introduced a tiered P2P architecture to unify the
different communication and coordination dimensions of DM&R with possible applications to other com-
plex environments such as battlespace management. In addition, a novel self-organized, semi-centralized
algorithm, ATF, has been introduced extending the LEACH algorithm to adaptive team formation. Semi-
centralization is important to achieve planned objectives with bounded resources and to integrate disparate
systems. Experimental evaluations of role allocation algorithms for heterogeneous agents have been presented
in the fire/rescue domain along with a coordination metric that takes into account communication costs as
well as partial goals achieved. Dynamic coordination alternating between semi-centralized and distributed
role allocation based on this coordination metric will be examined. Future work should include a more com-
plex scenario where the leader nodes communicate between themselves to reach a more global solution.
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