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Abstract — This paper considers the problem of

developing algorithms for the distributed fusion of

Gaussian Mixture Models through the use of Cher-

noff information. We derive a first order approxi-

mation and show that, in a distributed tracking prob-

lem in which sensor nodes are equipped with only

range-only or bearing-only sensors, it yields consis-

tent estimates.
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1 Introduction

In many estimation problems, the assumption that
random variables are independent, or that the correla-
tions between them are known, is not true. Errors in
the process and observation models, for example, lead
to correlated process and observation noises [1]. Even
if the models are known perfectly, computational and
storage requirements often mean that the full corre-
lation information cannot be maintained. One impor-
tant class where this arises is in distributed data fusion
(DDF).

DDF networks are composed of a set networked
set of nodes. Nodes can fuse data acquired locally
(from sensors) and remotely (from information prop-
agated from other nodes). Because estimates rather
than raw sensor data are propagated, the problem of
double counting has to be avoided by factoring out
common information [2]. When the network is known
to lie in a tree-connected topology, a single path ex-
ists between any pair of nodes. This fact can be ex-
ploited to calculate the mutual information between
the nodes using channel filters [3]. However, there are
two important limitations with this approach. First,
when the connection topology is arbitrary, channel fil-
ters cannot be used and, in fact, no local solution can
be applied [4]. Second, when the estimates are not
Gaussian, the factoring process used in a channel fil-
ter does not appear to have a closed form solution and
computationally expensive numerical methods must be
used instead [5]. An alternative approach, known as
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Covariance Intersection (CI), was proposed in [6, 7].
Given a set of estimates which are described by their
means and covariances, CI provides a mechanism for
fusing them together such that the estimate remains
consistent. Although CI provides a very powerful and
general method for fusing data in arbitrary networks,
it only utilizes the mean and covariance of the esti-
mates and cannot exploit any additional information
about the probability distribution of the estimates.

Although the mean and covariance representation
has been successfully used in many tracking systems,
it has a number of limitations that can be encountered
in a variety of practical contexts. For example, a single
large mean and covariance is a poor representation of
the uncertainty associated with a range-only sensor [8]
or a bearing-only sensor [9]. Furthermore, multiple hy-
pothesis tracking is poorly represented by a single large
covariance. Therefore, we seek methods to generalize
CI to exploit more information than a mean and co-
variance representation.

In this paper we develop an algorithm to extend
CI to Gaussian Mixture Models (GMMs). Our algo-
rithm is based on a first order approximation to the
Chernoff Information. We describe our approach as
empirical for two reasons. First, the only justification
we have for using Chernoff Information as the basis of
a generalization of CI are based on the observations by
Mahler [10] and Hurley [11] (discussed in more detail
below). Second, to develop a closed form solution, we
use first order approximations of the Chernoff Infor-
mation for GMMs and a simplified cost function for
the optimization process. These approximations intro-
duce their own sources of error and lead to extremely
complicated error analysis. Rather than attempt to
theoretically prove the properties of the algorithm, we
demonstrate its performance on a distributed tracking
application. Our results show that, despite these ap-
proximations, the algorithm is both consistent (in a
mean squared error sense) and outperforms the only
other algorithm we are aware of that tries to extend
CI to GMMs [12].

The structure of this paper is as follows. Section 2
describes the distributed data fusion problem and the
Chernoff Information solution. Our closed form ap-
proximation to Chernoff Information is developed in
Section 3 and its properties are analysed. The perfor-



mance of the algorithm is illustrated in a distributed
tracking problem in Section 4 and conclusions are
drawn in Section 5.

2 Problem Statement

The problem of fusing data from two sources can be
posed using Bayes Rule. Mathematically, this can be
written as
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common information between the two nodes. In an
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cannot be calculated
using local information, and the entire network must
be considered. Given that the network can scale to
thousands or millions of nodes, this erodes many of
the advantages of distributed data fusion networks in-
cluding their scalability, robustness and flexibility.

To overcome these limitations, a number of au-
thors have attempted to develop methods that avoid
the need to calculate the properties of the entire net-
work. Mutamabara [13] and Berg [14], for example,
developed methods in which only subsets of state in-
formation need to be distributed to subsets of nodes.
Grime [3] developed algorithms for tree connected
structures using channel filters considering mean and
covariance representations. More generally, Chong and
Mori [15] used graph theory to identify conditionally
independent information within state estimates that is
guaranteed to be independent and can be distributed
amongst nodes. However, all of these solutions rely
on specific assumptions about the network topology
(it is tree-connected) and/or the structure of the state
space (such that conditionally independent nodes can
be identified). However, neither condition holds true
for a general adhoc network with arbitrary, time vary-
ing system models.

In [6, 7], a data fusion algorithm called Covariance
Intersection (CI) was presented. Suppose that the
means and covariances of P (xk|Z

a
k) and P
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are
(a,A) and (b,B) respectively. Let the mean and co-
variance of the update be (c,C). Let ã and b̃ be the
errors in the estimates. If the estimates are consistent
in the sense

A − E
[

ããT
]

≥ 0
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]

≥ 0
(1)

where ≥ 0 denotes positive semidefinite, the CI update
rule is

C−1 = ωA−1 + (1 − ω)B−1

c = C

(

ωA−1a + (1 − ω)B−1b

)

.

This update is guaranteed to be consistent in the sense

C − E
[

c̃c̃T
]

≥ 0 (2)

for ω ∈ [0, 1]. The CI equations are equivalent to the
Kalman filter equations with A replaced by A/ω and
B/(1 − ω).

Therefore, given consistent estimates, CI can yield
consistent updates. However, the CI equations only
use a linear update rule and can only utilize the first
two moments of the state estimate. In many problems
these representations are extremely crude and there
is a strong incentive to consider how CI could be ex-
tended to utilize additional distribution information
when it is available.

The first author to consider this issue was
Mahler [10] who observed the following. Suppose Pa(x)
is a Gaussian distributed random with the pdf

Pa(x) = N {x;a,A} .

Raising it to a power ω and renormalizing gives

Pω
a (x) = N {x;a,A/ω} .

In other words, the distribution is still a Gaussian
with the same mean but the covariance has been scaled
to A/ω. Similarly, calculating and renormalizing
P (1−ω)

(
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)

leads to a Gaussian-distributed ran-
dom variable with mean b and covariance B/(1 − ω).
Since CI resembles the KF with scaled covariance ma-
trices, and since the KF is an application of Bayes’
Rule with Gaussian distributed random variables, he
extrapolated this observation to all distributions to
give the expression

Pω(x) =
Pω

a (x)P 1−ω
b (x)

∫

Pω
a (x)P 1−ω

b (x)dx
. (3)

For 0 ≤ ω ≤ 1, one heuristic interpretation is that this
tends to “flatten” the distribution. Because it becomes
more uniform in nature, it becomes a more “conserva-
tive” estimate.

Mahler proposed choosing a value of ω to maximize
the “peakiness” of the distribution,

(ω, x̂) = arg sup
ω,x̂

Pω(x)

However, no actual studies were provided to show that
this is a truly robust result and not simply the coinci-
dence of the properties of Gaussian distributions.

Hurley independently made the same observations
about Gaussians but noted that (3) is an equation used
to calculate the Chernoff Information of a pair of dis-
tributions [11]. Chernoff Information quantifies the
best achievable exponent in the Bayesian probability
of error. It arises when constructing decision regions
to minimize the probability of error and is extensively
used in distributed target identification to determine
the best achievable performance. Unlike Mahler’s ap-
proach, the Chernoff Information is calculated across
the entire distribution and is given by

C(P1, P2) = − min
0≤ω≤1

log

(
∫

Pω
a (x)P 1−ω

b (x)dx

)

(4)



The optimal value of ω, ω?, has the property that

D∗ = D

(

Pω?(x)||Pa(x)

)

= D

(

Pω?(x)||Pb(x)

)

where D(·||·) is the Kullback-Leibler divergence. In
other words, the Chernoff Information is equally dis-
tance from both of the prior distributions1.

Because Chernoff Information is a general result
which applies to all probability distributions, it sug-
gests that its relationship with CI is not a mere co-
incidence of the Gaussian form and thus might have
general applicability. However, to our knowledge few
authors have attempted to develop distributed data fu-
sion algorithms using Chernoff Information. The only
paper we are aware of which uses this approach is a
study by Hwang [17] who compared several different
approaches to distributed hypothesis testing for tar-
get identification. His study looked at the effects of
sensors which misclassified data. His results suggested
that Chernoff Information was worse in the sense that
the estimate was more heavily affected by the incorrect
sensors. However, these results can also be interpreted
in a positive light — the Chernoff Information filter
was more susceptible to the information because it did
not converge as tightly to a single identification hy-
potheses.

These theoretical studies and empirical results sug-
gest that Chernoff Information might offer a strategy
for distributed data fusion. We now consider the appli-
cation of Chernoff Information to an important class
of probability distributions — the Gaussian Mixture
Models.

3 Approximate Chernoff Infor-

mation for Gaussian Mixture

Models

A Gaussian Mixture Model (GMM) is a probability
distribution function which can be written as the sum
of a set of weighted Gaussian kernels. Therefore,

Pa(x) =

Na
∑

i=1

piN {x;ai,Ai} ,

Pb(x) =

Nb
∑

i=1

qiN {x;bi,Bi} .

(5)

We seek a closed form analytical approximation of the
Chernoff solution such that

Pc(x) =

Nc
∑

i=1

riN {x; ci,Ci} . (6)

1This is distinct from O’Brien’s Fusion of Correlated Proba-
bilities (FCP) algorithm [16]. This algorithm used the expression

Pα,β(x) =
P α

a (x)P β

b
(x)

R
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b
(x)dx

.

No conditions were placed on the values of α and β and thus it
could be interpreted as a generalization of Chernoff Information.
However, no theoretical analysis has been provided for this form.

There are three reasons why we consider pdfs of this
form. First, GMMs are a very natural extension of the
mean and covariance representation. Second, the fam-
ily of GMMs is, in principle, extremely general and al-
most any pdf can be expressed precisely using GMMs.
Furthermore, many distributions can be approximated
well by a small number of terms of a GMM. Therefore,
it is an extremely important practical distribution. Fi-
nally, GMMs share a strong theoretical relationship
with Multiple Hypothesis Tracking (MHT). As we dis-
cuss in the conclusions, MHT might offer a mechanism
for generalizing these results even when the mixtures
are not Gaussian distributed.

Upcroft proposed a form of CI for GMMs which
we term the Pairwise Component CI (PCCI) fusion
rule [12]. Given the two distributions Pa(x) and Pb(x),
CI is applied to each pair of estimates in turn. Let ωij

be the weight applied to the fused estimate from the ith
component of Pa(x) and the jth component of Pb(x).
Then Nc = NaNb and the ijth component is given by

C−1
ij = ωijA

−1
i + (1 − ωij)B

−1
j

cij = Cij

(

ωijA
−1
i ai + (1 − ωij)B

−1
j bj

)

rij =
ωijpi + (1 − ωij) qj

∑Na

k=1

∑Nb

l=1 ωklpk + (1 − ωkl) ql

(7)

Heuristically, this form is motivated by the fact that
when ωij = 1 the estimate should only contain the
component from A whereas if ωij = 0.0 then the esti-
mate should only contain a component from B. Fur-
thermore, CI can be applied to each component inde-
pendently. However, this form is an extremely poor
approximation to the Chernoff solution. This is illus-
trated in Figure 1. The figure shows contour lines of
the pdfs of two input estimates, the Chernoff Informa-
tion solution (calculated numerically) and the PCCI
when ωij is chosen to minimize the determinant of
Cij . As can be seen, the Chernoff Information solu-
tion has a single strong mode whereas the PCCI main-
tains multiple modes. Furthermore, the PCCI tends to
underweight the middle mode which is closest to the
Chernoff solution.

This can be quantified using a metric proposed by
Comaniciu [18]. The metric quantifies the distance be-
tween two distributions and is given by

d =

√

1 − ρ
[

P (x), P̂ (x)
]

where

ρ
[

P (x), P̂ (x)
]

=

∫
√

P (x)P̂ (x)dx

is the Bhattacharyya Coefficient. This metric has the
property that its value is lies between 0 and 1. The
results for this example are shown in Table 1. The
metric has a high value of 0.73.

Given this deficiency, we seek a more accurate cal-
culation of the Chernoff Information. However, (3)
does not have a closed form solution for a GMM. Its
value could be approximated numercally using a grid.
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Figure 1: Contour plots of pdfs for different fusion
algorithms.

Algorithm Cost
PCCI 0.7286

Pseudo-Chernoff 1 0.6608
Pseudo-Chernoff 2 0.6347

Table 1: The costs of the different approximations.

Although the sparse methods proposed by Bucy and
Senne can be applied [19] to reduce the computational
costs, the curse of dimensionality means that, in gen-
eral, this approach is prohibitively expensive. A similar
difficulty arises in evaluating (4).

In this paper we use two approximations. First, to
calculate the power series we use the approximation

(

n
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di

)ω

≈
n
∑

i=1

dω
i .

Substituting into (5),

Pω
a (x) =

1
∑N

i=1 pω
i

N
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pω
i N {x;ai,Ai/ω} . (8)

In other words, it leads to an N component GMM. The
means of each component remain the same but all the

covariances are scaled up by a factor of 1/ω and all
weights have been renormalized. A similar expression

is used to calculate P
(1−ω)
b (x).

Therefore, the update rule has Nc = NaNb compo-
nents and can be written as
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k q
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l
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The effect of this approximation is illustrated in Fig-
ure 1(e). The results were calculated using the first
order expansion approximation and the value of ω cal-
culated by the numerical Chernoff solution. As can be
seen, the estimate consists of a large, interconnected
mass whose main peak lies in the same location as the
Chernoff solution. Despite the fact that the solution
does not have any well-defined modes, Table 1 its co-
efficient is smaller than that for PCCI.

The second difficulty is to approximate the calcula-
tion of ω such that (4) is satisfied. This could be calcu-
lated by Monte Carlo integration [20] or by adapting
the distance approximation developed by Goldberger
to measure the dissimilarity between two GMMs [21]2.
However, this introduces its own approximations and
we do not investigate their effects here. Rather, we
use the (somewhat crude) approach of minimizing the
covariance of the entire mixture of the distribution,

c =

Na
∑

i=1

Nb
∑

j=1

rijcij

C =

Na
∑

i=1

Nb
∑

j=1

rij

(

Cij + cijc
T
ij

)

− ccT . (10)

The results of the Pseudo-Chernoff algorithm is
shown in Figure 1(f). This distribution possesses two
distinct modes, one over the Chernoff solution, the
other offset to the right. The cost metric shows that
the approximation has a smaller cost than using ω cal-
culated by Chernoff and PCCI, and thus shows that it
is a more accurate approximation.

We now show the effect of this suboptimal solution
in a target tracking example.

4 Example

A sensor network, consisting of the five nodes listed in
Table 2, attempts to estimate the position and velocity
of a target in 2D. Each sensor has its own detection
range and sensor error characteristics. Nodes 1, 2 and

2Both of these methods depend on the observation that

C =

Z

P ω
a (x)P

(1−ω)
b

(x)dx =

Z

Pa(x)

„

Pb(x)

Pa(x)

«1−ω

dx

In other words, the expectation can be taken with respect to
Pa(x). Since this probability distribution is known it does not
have to be approximated.



Node Position Velocity Type Range Uncertainty

1 (0,0) (0,0) Bearing 2000 0.5◦

2 (100,0) (-1,0) Bearing 2000 2◦

3 (0,1000) (0,-2) Bearing 200 1◦

4 (0,-1000) (0,0) Range 800 10
5 (0,1000) (0,0) Range 1200 10

Table 2: The location, velocity, type detection range
and accuracy for the sensors used in the example.
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Figure 2: The GMMs generated by the different sensor
types. The location of the target is given by ? and the
location of the node by ◦. Sensor measurements are
the dashed lines. For each component of the GMM,
the mean is shown as the + and the 3σ covariance
ellipse is shown as the solid line.

3 measure the bearing to the target and nodes 4 and 5
measure the range. Therefore, the state of the target
is not observable from any single node.

Each node takes a measurement once per second and
the probability of detection is 1. When the measure-
ments are first received, each node initializes a GMM
to represent the available information. The initialized
results are shown in Figure 2. The bearing-only sensor
uses the range parameterized Kalman filter proposed
by Peach [9]. Peach observed that, for bearings only
tracking, a Kalman filter using modified polar Carte-
sian coordinates is consistent providing

σR

R
≤ 0.2.

A bank of filters are initialized, each with the same
weight, and each using the bearing estimate and a nom-
inal range to initialize the track position. In our exper-
iments, we found that if we used the Unscented Trans-
formation [22] and Cartesian coordinates, we could in-
crease the above inequality to 0.5. To initialize the
range-only estimate we used an angle parameterized
Kalman filter [8]. This is conceptually very similar to
the range-parameterized filter: a set of hypotheses are
generated for different nominal values of the bearing.
The range data was extracted from the sensor and the
bearing covariance was set to be sufficiently large to en-
sure that adjacent covariance ellipses overlapped. Ex-
periments indicated that a 45◦ degree spacing, leading
to 8 modes, was sufficient to provide stable tracking.

Once a sensor had initialized a target, each mode
was predicted and updated locally using the standard
GMM update rules [23]. After every 10 time steps the
nodes compressed their estimates for distribution and
broadcast their estimates to other nodes. The com-
pression step merged the GMM estimates in each mode

into a mixture of four components. This step was
carried out for two reasons. The first was to reduce
the number of parameters which must be distributed
between the nodes. Second, by reducing the num-
ber of modes, the computational cost of the update
algorithm is greatly reduced. We used the Integral
Squared Error Reduction algorithm (ISER) developed
by Williams and Maybeck [24]. This algorithm uses a
greedy approach to merge components such that the
integral squared distance between the original distri-
bution, P (x) and the approximate distribution P̂ (x),

∫

(

P (x) − P̂ (x)
)2

dx

is minimized.
Each node broadcast its state estimate to all other

nodes. The probability that an update was received
was 70%. Furthermore, no acknowledgment scheme
was used and so no node knows if an estimate received
its communication. Therefore, the topology of the net-
work is, in effect, adhoc and time varying.

If a node received a broadcast estimate, it fused that
estimate using one of the update schemes into its lo-
cal estimate and the number of components were re-
duced back to 4 (for nodes 1–3) or 8 (for nodes 4–5)
using ISER to prevent the combinatorial explosion in
the number of terms in the GMM.

Three algorithms were tested:

1. Naive Bayes. This assumes that the estimates
are independent. The standard GMM equations
are used to fuse local and remote estimates.

2. PCCI This uses the PCCI equations in (7) with
the cost function to minimize the determinant of
each Cij .

3. Pseudo-Chernoff. This uses the pseudo-
Chernoff equations in (9) with the cost to mini-
mize C in (10).

Each algorithm has qualitatively different results as
illustrated in Figure 3. This figure plots the com-
ponents of each estimate for each node at time step
31. At this time step the target has been detected by
nodes 1, 2 and 5 and the nodes have just completed
a distributed update. In this instance, all nodes re-
ceived updates from all other nodes. Because both
range and bearing data are being fused together, the
results should lead to an estimate which is tightly clus-
tered about the intersection of the range and bearing
measurements. However, the components of the naive
Bayes estimate, shown in Figure 3(a), are scattered
around the intersection region. The PCCI algorithm,
on the other hand, scatters its components much more
widely. As can be seen in Figure 3(b), the estimates
lie in two main clusters. The first cluster lies to the
left and is near the intersection between the range and
bearing estimates. The second cluster lies to the right
and is, in fact, behind the range sensor. The results
from the pseudo-Chernoff algorithm are shown in Fig-
ure 3(c) and, as can be seen, all the components lie at
the intersection region.
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Figure 3: The state of the estimate at time step 30.
The location of the true target is ? (most clearly seen in
the first figure). The locations of the sensing platforms
are ◦. The measurements taken by the bearing sensors
are shown as lines, those for the range circles as sensors.
The 4σ covariance ellipses for each component in each
node estimate is plotted.
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Figure 4: The mean squared errors in the estimates.



The above results illustrate, not surprisingly, that
the naive Bayes algorithm leads to an extremely poor
approximation to the state estimate. Furthermore, it
could be argued that the PCCI is more conservative:
rather than place all of the components in one location,
it tends to distribute them more. These results are
partially confirmed by Figure 4 which plots the mean
squared errors in each algorithm. As can be seen, the
MSE in the naive Bayes and PCCI are similar to one
another. The MSE in the pseudo-Chernoff algorithm
is significantly smaller.

However, the apparently conservative nature of the
PCCI algorithm is not evident in Figure 5. This fig-
ure plots the actual mean squared error in x versus
the mean standard deviation (calculated from the co-
variance matrix) for 100 Monte Carlo runs. As can be
seen, the errors in the PCCI algorithm show regular
spikes due to the distributed updates. In a number
of instances, the true mean squared error is greater
than that calculated by the filter. In contrast, the
mean squared error in the Pseudo-Chernoff algorithm
actually falls at each update step and the true mean
squared error is less than that estimated by the filter.

5 Conclusions

This paper has conducted an empirical study into the
use of Chernoff information to provide robust algo-
rithms for the fusion of GMMs with unmodified corre-
lations in distributed environments. We have derived a
first order approximation which we have shown is con-
sistent and more accurate than the PCCI. These results
provide additional evidence that Chernoff information
provides a potentially valuable extension of CI to more
general classes of probabilistic distributions.

There are several issues to be addressed. First and
foremost, it is still unclear what properties are actually
guaranteed by the Chernoff Information. The CI algo-
rithm has the property that, providing the conditions
in (1) are satisfied, then (2) is satisfied as well. How-
ever, it is not clear if an equivalent condition can be
specified in the input and output distributions. Sec-
ond, a more detailed analysis of the effects of the first-
order approximation must be carried out. A higher
order expansion will, for example, lead to a more accu-
rate estimate. Third, experiments should be conducted
to explore the effect of using different, and potentially
more accurate, cost functions on the estimate.
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