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Abstract - In this paper we consider the use

of Covariance Union (CU) with multi-hypothesis

techniques (MHT) and Gaussian Mixture Models

(GMMs) to generalize the conventional mean and

covariance representation of information. More

specifically, we address the representation of multi-

modal information using multiple mean and covari-

ance estimates. A significant challenge is to define

a rigorous fusion algorithm that can bound the com-

plexity of the filtering process. This requires a mech-

anism for subsuming subsets of modes into single

modes so that the complexity of the representation

satisfies a specified upper bound. We discuss how

this can be accomplished using CU. The practical

challenge is to develop efficient implementations of

the CU algorithm. Because of the novelty of the CU

algorithm, there are no existing real-time implemen-

tations for use in real applications. In this paper

we address this deficiency by considering a general-

purpose implementation of the CU algorithm based

on general nonlinear optimization techniques. Com-

putational results are reported.
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1 Introduction

Level-1 information management has matured signif-
icantly over the last decade with the development of
rigorous algorithms that are robust to the effects of
unmodeled correlations and corrupt and/or spurious
information in the context of general distributed data
fusion networks. Despite the dramatic theoretical and
practical results in the Level-1 arena, there have been
very few inroads made into higher level information
management applications. This is due in large mea-
sure to the discrepancy between the relatively simple
types of information encountered in low level tracking
and control applications and the much more varied and
richer forms of information that must be processed in
high level applications.

In this paper we explore a methodology for general-
izing the unimodal information representation scheme
used in Level-1 contexts to permit the representation of
information that has a more complicated multimodal
structure. This is accomplished by the use of a set of

unimodal state estimates to capture the multiplicity of
possible states of the target of interest. The challenge
is to be able to bound the computational complexity
issues that arise from this approach. In this paper
we describe how a mechanism called Covariance Union
(CU) [5, 2] can be applied to reduce the complexity of a
multimodal representation to satisfy a fixed complex-
ity budget while rigorously guaranteeing information
integrity.

The structure of the paper is as follows: Section 1
discusses the issue of information representation. Sec-
tion 2 discusses the need for an information compres-
sion mechanism to bound the computational complex-
ity of the fusion process. CU is shown to be a solution
to this problem. Section 3 discusses computational is-
sues that must be addressed in order for CU to be ap-
plied in practice. Practical algorithms for implement-
ing CU are described. Section 5 provides experimental
results demonstrating the application of CU. Section 6
discusses the results presented in the paper.

2 Information Representation

Determining how to represent information and uncer-
tainty is a key first step that impacts all aspects of the
data fusion problem. The representation must provide
both an estimate of the state of the target or system
of interest and its associated degree of error or uncer-
tainty, and the uncertainty must be defined in a form
that permits it to be empirically determined. There
must be a rigorous algorithm for fusing information in
the representation, and the computational complexity
of the representation and its associated fusion algo-
rithms must be bounded for practical application.

By far the most widely used information represen-
tation is the mean and covariance form, where the
mean vector defines the best estimate of the state of
the target and the error covariance provides an up-
per bound on the expected squared error associated
with the mean. For example, the measured position
of an object in two dimensions can be represented as
a vector a consisting of the object’s estimated mean
position, e.g., a = [x,y]T , and an error covariance ma-
trix A that expresses the uncertainty associated with
the estimated mean. If the error in the estimated mean
vector is denoted as ã, then the error covariance matrix
is an estimate of the expected squared error, E[ããT ].



The estimate is said to be consistent (or conservative)
if and only if A ≥ E[ããT ] or, equivalently, A - E[ããT ]
is positive definite or semidefinite (i.e., has no nega-
tive eigenvalues). The full estimate of a target’s state
is given by the mean and covariance pair (a,A).

Given two mean and covariance estimates (a,A)
and (b,B), the data fusion problem consists of deter-
mining a fused estimate (c,C) that is guaranteed to
be consistent and summarizes the information in the
two estimates with error (in terms of the size of C)
that is less than or equal to that of either estimate. If
the two estimates are consistent and have a precisely
known degree of correlation, the Kalman filter can be
applied; otherwise, Covariance Intersection (CI) must
be used. Both algorithms yield guaranteed consistent
results when used appropriately. The limitations of
the mean and covariance representation of information
can be found in a variety of practical contexts. For ex-
ample, suppose a vehicle is being tracked along a road
in an urban environment. Assuming that it travels at
a speed that is average for the road, its future posi-
tion can be predicted forward a short length of time
reasonably accurately; however, if it encounters a T-
junction at which it must turn left or right, there are
two distinct possible future positions. The future state
can be represented with a single mean and covariance
estimate, but doing so requires establishing a mean po-
sition at the junction with a covariance large enough to
account for its position after a left or right turn. This
produces a clearly unsatisfactory result in which the
mean vector does not correspond to either of the pos-
sible states of the vehicle and consequently has a very
large error covariance. Intuitively it seems clear that a
better option would be to maintain information about
the two possible future states rather than subsuming
them into a single mean and covariance estimate.

Historically there have been two distinct approaches
for representing “multimodal” information (e.g., as in
the above example). One involves Multiple Hypothe-
sis Tracking (MHT), which maintains multiple mean
covariance estimates corresponding to distinct possi-
ble states [1]. The other approach is to attempt to
maintain a parameterization of the Probability Density
Function (PDF) that defines the uncertainty distribu-
tion associated with state of the target. In practice,
PDF approximation methods typically only represent
the significant modes of the distribution in terms of
their means and covariances, thus making its repre-
sentation all but identical to MHT. A key distinction
is that the PDF-based approach treats the set of es-
timates as defining a union of Gaussian probability
distributions. More specifically, the distribution is ex-
pressed as a Gaussian Mixture Model (GMM) of the
form:

p(x) =
N
∑

i=1

piN {x;µi,Pi} (1)

where the ith mode has mean µi, covariance Pi and
weight pi. The weights are all non-negative and sum
to one.

The reason for adopting this form is that GMMs
can conveniently approximate a wide class of PDFs

and are identical in implementation to MHT. Unfortu-
nately, representation is only one aspect of the overall
information management problem. There also must be
tractable algorithms for fusing information in a given
representation.

The fusion of a set S of mean and covariance es-
timates, each defining a possible state of the target
only one of which is guaranteed to be consistent, with
another set T can be accomplished under the MHT in-
terpretation simply by forming the Cartesian product
S × T and applying the appropriate fusion algorithm
(Kalman or CI) to the pairs. Unfortunately, this yields
a combined estimate that has O(|S|∗|T |), which implies
that the complexity of the fused estimate exceeds that
of the original estimates. This increasing complexity
will tend to exhaust available resources and therefore
must be mitigated.

3 Representation Compression

One of the most important features of the mean and
covariance representation of information is its constant
complexity. Specifically, the amount of information
required to describe the state of the target does not
increase as new information is incorporated. However,
when the representation of state is generalized to main-
tain more than one mean and covariance estimate, cor-
responding to different modes, the update/fusion oper-
ation multiplies the number of modes. In order to man-
age the complexity of the representation some form of
representation compression must be applied.

In most MHT applications, the proliferation of hy-
potheses is managed by pruning the least likely ones
according to some measure. A practical problem with
pruning is that the likelihood measure typically in-
cludes many assumptions (e.g., PDF-related) that lead
to more loss of correct hypotheses than is expected, and
any loss of the hypothesis that corresponds to the true
state of the target undermines the rigor of the entire
information management framework. Therefore, prun-
ing cannot be the primary mechanism for the limiting
the representational complexity of our multimodal es-
timates.

If it is not possible to prune estimates (discard
modes), then the only alternative is to somehow co-
alesce similar modes to stay within a fixed represen-
tational complexity budget. The key question is how
to perform this coalescing so that the integrity of the
information is maintained. If it is assumed that one of
mode of an estimate corresponds to the true state of
the target, and the others are spurious, then a mech-
anism called Covariance Union (CU) can be applied.
For example, given n modes represented by estimates
(a1,A1) . . . (an,An), CU produces an estimate (u,U)
that is guaranteed to be consistent as long one of the
mode estimates (ai,Ai) is consistent. This is achieved
by guaranteeing that the estimate (u,U) is consistent
with respect to each of the estimates:

U ≥ A1 + (u − a1)(u − a1)
T (2)

U ≥ A2 + (u − a2)(u − a2)
T (3)



... (4)

U ≥ An + (u − an)(u − an)T (5)

where some measure of the size of U, e.g., determinant,
is minimized. The consistency of the CU estimate is
assured for each of the n inequalities because the dif-
ference between the mean u and ai is accounted for in
the covariance U by the addition of the square of that
difference to the covariance Ai.

Given a complexity budget of N modes, the the fu-
sion of two N-mode estimates will produce a new es-
timate with N2 modes which must be reduced to N

modes. This can be achieved by applying a clustering
algorithm (e.g., standard k-means clustering based on
a covariance-weighted distance measure such as Maha-
lanobis). Each of the N clusters can be combined into
a single mean and covariance estimate using CU, and
the rigor of the framework is guaranteed because one
of the N estimates will be consistent as long as one of
the original N2 estimates was consistent.

This application of CU for mode reduction is appro-
priate for MHT-type applications. However, CU must
be generalized to accommodate weights/probabilities
associated with modes when the representation is in-
terpreted to be a Gaussian mixture approximation of
a multimodal probability distribution. This requires a
generalization of the definition of consistency for mul-
timodal estimates. We require that each probability
pi be greater than or equal to the actual probability
that estimate/mode i corresponds to the true state of
the target. The problem is that any small but nonzero
probability implies that the associated estimate may
represent the true state of the target, so consistency
requires it to have the same influence on the CU re-
sult as an estimate with a much higher probability.
The only difference is that the final result can be in-
terpreted as having an associated probability that is
equal to min(1,

∑

i pi), where the min function is re-
quired because the weights are assumed to be conser-
vative and thus may sum to a value greater than unity.
Thus, the MHT case is equivalent to having no prob-
ability estimates, which requires unity to be assumed
for every mode.

4 Computational Methods

Unlike Covariance Intersection, for which efficient
semidefinite matrix optimization methods can be ap-
plied, Covariance Union involves inequalities with
terms that depend on the means of the estimates. This
dependency on the means requires a more sophisticated
variant of the methods that are applied for straight
semidefinite matrix equations. For our experiments,
however, we have applied simpler generic optimization
methods, which are discussed in this section.

The optimization problem’s feasible region is the in-
tersection of a set of inequalities, each of which can be
written as a linear matrix inequality in u and U:

[

(U − Ak) (u − ak)

(u − ak)
T

1

]

≥ 0 (6)

The intersection of all of the constraints can then
be represented as a larger block-diagonal inequality
in which the diagonal elements are the LMI’s shown
above. This defines a region which is convex but non-
smooth. The fact that the constraints are nonsmooth
rules out most commonly available high-performance
optimization packages since they typically expect the
objective and constraint functions to be twice contin-
uously differentiable.

The trace measure is linear and so can be posed as
a standard SDP problem [6]. There is no such formu-
lation for other measures such as determinant or the
Frobenius norm, so a general-purpose nonlinear opti-
mizer such as SolvOpt [3] must be used to handle ar-
bitrary norms. SolvOpt is an implementation of Shor’s
r-algorithm [4]. The initial feasible solution is gen-
erated by simply setting u to zero and summing the
right-hand sides of the simplified constraints:

u0 = 0 (7)

U0 =
n
∑

k=1

(

Ak + aka
T
k

)

(8)

We have developed several approximate solutions
that can also be applied which are much faster while
still preserving consistency. These methods are suit-
able for real-time use and could also be used to gen-
erate better starting points for iterative improvement.
Most of them rely on separation of the u and U op-
timizations to achieve computational savings. If the
u vector is fixed at a specific value then the problem
is considerably simplified: find a minimal U such that
U ≥ Fk where the Fk are constant. This simpler prob-
lem can yield closed-form solutions when there are only
two estimates to be combined. For example, if deter-
minant is the measure used then the resulting U can be
computed directly via simultaneous diagonalization:

U =
(

VT )−1 max(VT AV,VT BV
)

V−1 (9)

where max is the component-wise maximum of two di-
agonal matrices. V contains the generalized eigenvec-
tors of A and B. Using Matlab it would be computed
as [V,D] = eig (A,B).

One such approximation is to assume that real-life
applications produce estimates in which the optimal
mean u can be modeled as a convex combination of the
input means. This constrains u to a bounded region
in Rn. Indeed if there are only two estimates (a,A)
and (b,B) to be unioned then u is constrained to the
line segment between a and b:

Let c = b−a,u = a+ωc. The convex combination
problem can then be stated as:

Find a minimal U such that:

U ≥ A + ω2ccT (10)

U ≥ B + (1 − ω)
2
ccT (11)

This can easily be solved via any number of sim-
ple one-dimensional search techniques, using the pre-
viously noted formulae to compute U for a fixed value
of u.



In our experiments it has been observed that
convex-combination CU produces reasonably good ap-
proximations to the optimal values when applied to two
estimates in low dimensions. However, its performance
has not yet been fully characterized. It was evaluated
using a determinant on pairs of estimates whose mean
components and covariance eigenvalues were randomly
chosen on the interval (0, 1) and the dimensionality n

varied from 2 to 20. For the two-dimensional data the
determinant of U produced by the convex-combination
CU averaged only 4% larger than the optimal value.
However, for n = 20 it was 20% larger. So its per-
formance degraded as n was increased (as could be
expected from the definition of determinant and the
method used to construct the test set) but the increase
appeared to be only proportional to

√
n.

Another fast real-time approximation can be de-
rived by noting that the optimal two-element CU up-
date tends to produce a u vector for which the two con-
straints are similar in size and shape. In other words,
it has a tendency to select a u vector for which:

A + (u − a) (u − a)
T ≈ B + (u − b) (u − b)

T
(12)

This observation suggests a strategy in which u is
fixed at the point where the difference is minimized. If
the Frobenius norm of the difference is minimized then
it leads to a closed-form solution for u:

u =

(

a + b +
((

c
T
c

)

I + cc
T
)

−1

(A − B) c

)

/2 (13)

c = (a − b) /2 (14)

This solution has only been tested with random data.
It produces good estimates when the differences be-
tween the estimates’ means is large compared to the
differences between the estimates’ covariance matrices.

Large problems with many estimates can be broken
down into a set of smaller problems by recursively solv-
ing two estimates at a time. For example, if there are
three estimates (a1,A1), (a2,A2), and (a3,A3) they
can be separated into two smaller problems:

1. Compute (u1,U1) as the union of (a1,A1) and
(a2,A2).

2. Compute (u2,U2) as the union of (u1,U1) and
(a3,A3).

3. (u2,U2) is the solution.

The main advantage of this approach is that two-
element unions can be solved quickly via convex com-
bination CU using closed-form formulas described ear-
lier. But the method has one serious drawback that is
illustrated in Figure 1: it does not guarantee consis-
tency. It does guarantee that the covariance matrices
Uk will never shrink and will most likely grow on every
iteration, but there is no guarantee that when Uk+1 is
re-centered at a new mean uk+1 that it will still be
consistent with the earlier estimates. Previous experi-
ments did not observe this effect due to the extra slack
provided by the convex-combination formulation. The
solution can be expected to be consistent as long as
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Figure 1: An example illustrating inconsistency with
recursively applying the two-element unions. The
means and 1σ ellipses of the input set (a,A) are shown
as the set of thin solid ellipses with their means at +.
The batch CU estimate is the thick solid ellipse with
the mean at ◦. The pairwise CU is the thick, dashed
ellipse with its mean at ×. A necessary condition for
(u,U) to be consistent is that all of the input means
should lie within the 1σ covariance ellipse. However,
many of the means for the input set lie outside for the
pairwise fused result.

the errors/biases in the combined estimates are statis-
tically independent. The CU equations can be easily
generalized to account for potentially correlated biases
in the means1.

4.1 Implementation

The SolvOpt package is able to find a minimizing vec-
tor x according to a cost function f (x), which may
be optionally constrained by some function g (x). We

choose x to be the n elements of u plus the n(n+1)
2

elements of the upper triangle of U.

We minimize the determinant of the covariance, U,
subject to the constraint that

Xk = U − Ak − (u − ak) (u − ak)
T

(15)

has non-negative eigenvalues, for all k ∈ [1, . . . ,m],
where m is the number of estimates given.

To find |U|, we perform an LU decomposition of
matrix U, to generate an upper triangular matrix W
and a lower triangular matrix L, such that LW = U.
L and W are given by

Lii = 1 (16)

Lij =
1

Wii

(

Uij −
j
∑

k=1

LikWkj

)

; i > j (17)

1The case of common bias terms just requires an additional
parameter αi per estimate: U ≥ Ai/αi +(u−ai)(u−ai)

T /(1−
αi)



Wij = Uij −
i
∑

k=1

LikWkj (18)

Then |U| = Πn
i=1Wii. The complexity cost of this

operation is O
(

n3
)

.
The single value SolvOpt uses to constrain the min-

imization must be nonpositive. Since we want to con-
strain the eigenvalues of (15) to be nonnegative for all
k ∈ [1, . . . ,m], we simply find the most negative of all
nk eigenvalues, λmin, and return −λmin as the con-
straint.

To compute the n eigenvalues of each Xk, we follow
a two-step procedure:

1. Find the Hessenberg form of Hk = Hess (Xk)

2. Apply the QR transform to Hk until the eigenval-
ues are isolated on the diagonal

The Hessenberg form of a symmetric matrix is tridiago-
nal, which simplifies the actual eigenvalue calculations.
This technique works because the original matrix Xk

and its Hessenberg form Hk have the same eigenvalues.
The QR algorithm iterates on Hk until it ap-

proaches the Shur normal form, which contains the
eigenvalues on the diagonal.

Each QR decomposition of Hk results in Q, which
is orthogonal, and R, which is upper triangular, such
that QR = Hk. The algorithm proceeds as follows

QR = Hk,s (19)

Hk,s+1 = RQ (20)

for s = 0, 1, 2, . . ., until Hk is in the Shur normal form.
As has been discussed, SolvOpt evaluates the cost

and constraint function callbacks to minimize |U| over

the n + n(n+1)
2 elements of u and the triangle of U.

To merge m estimates, the cost function performs
O
(

n3
)

operations, the constraints function O
(

mn3
)

.
The number of iterations which SolvOpt must perform
varies widely, from 1500 to 15000, depending on the
batch dimensions and also the input data values. In
the next section we present results showing the overall
computational cost of this approach.

5 Experimental Results

In this section we present experimental results for
different implementations of the CU algorithm, using
SolvOpt, written in both Matlab and C. We have
timed the application of CU on sets of random data to
explore actual execution times for various dimensions
n, and modes N . The times listed in the following
tables were obtained on a single 1.5 GHz Pentium
computer.

Avg. execution times for Matlab (in secs)

Dimensions 2 Modes 4 Modes 8 Modes 16 Modes
2 0.91 1.21 1.94 2.22
4 22.76 10.75 12.78 21.63
6 40.95 80.58 55.68 74.41
8 230.50 204.36 231.83 276.55

Average execution times for C (in seconds)

Dimensions 2 Modes 4 Modes 8 Modes 16 Modes
2 0.00 0.00 0.01 0.03
4 0.43 0.62 1.89 2.73
6 2.42 6.25 14.18 30.61
8 11.50 37.05 63.16 146.87

These results show that the generality of the
SolvOpt algorithm incurs a significant computational
cost that makes it impractical for most real-time appli-
cations when the dimensionality and number of nodes
is high.

6 Discussion

In this paper we have examined the problem of rep-
resenting multimodal information using MHT and
GMMs. We have discussed the fusion of informa-
tion represented in the form of multiple mean and co-
variance estimates corresponding to distinct possible
states, or modes of a distribution, for a tracked tar-
get. We have discussed how the fusion operation re-
sults in a multiplicative increase in the complexity of
the representation that will grow exponentially over
time unless bounded by a mechanism that can com-
press the representation to a fixed number of modes.
We have described ow Covariance Union can be used to
coalesce modes while preserving the rigor of the infor-
mation management framework. Experiments demon-
strate the effectiveness of our approach.

The main result of this paper is our SolvOpt-based
algorithm, with implementations in Matlab and C, for
computing CU solutions. Experimental results corrob-
orate the correctness of the algorithm, but they also
show that it is is not practical for real-time applica-
tions. It is expected, however, that our experimental
codes will provide the “gold standard” against which
faster approximations of CU can be derived.
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