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ABSTRACT

We conducted a user study of the effect of registration error on per-
formance of tracking distant objects in augmented reality. Catego-
rizing error by types that are often used as specifications, we hoped
to derive some insight into the ability of users to tolerate noise, la-
tency, and orientation error. We used measurements from actual
systems to derive the parameter settings. We expected all three er-
rors to influence users’ ability to perform the task correctly and the
precision with which they performed the task. We found that high
latency had a negative impact on both performance and response
time. While noise consistently interacted with the other variables,
and orientation error increased user error, the differences between
“high” and “low” amounts were smaller than we expected. Results
of users’ subjective rankings of these three categories of error were
surprisingly mixed. Users believed noise was the most detrimental,
though statistical analysis of performance refuted this belief. We
interpret the results and draw insights for system design.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/Methodology; H.1.2 [Models and Princi-
ples]: User/Machine Systems—Human factors

1 INTRODUCTION

Registration error, the misalignment of graphical elements with re-
spect to the projection of the real world in the final image the user
sees, has been one of the persistent problems limiting the usability
of many augmented reality (AR) systems. Applications vary widely
in their need for registration accuracy and the constraints that may
be placed on the application or environment in order to achieve it.
For example, a medical application requires extremely high accu-
racy, but the designers may assert control over the environment in
order to provide favorable conditions for the component systems to
perform well enough to yield this accuracy. On the other hand, an
outdoor AR game system may be able to make few assumptions
about its environment, but users will likely accept moderate errors
in registration so long as they do not interfere with the understand-
ing of the game scenario.

Many AR systems have been built with the assumption that per-
fect registration will eventually be achieved through some combi-
nation of component subsystems. We wanted to determine the need
for registration accuracy in our applications [12]. The application
examined in this work was situation awareness; that is, providing
the user with an understanding of past, current, and potential fu-
ture events in the surrounding environment. We have typically as-
sumed that perfect registration would be achieved, and thus have
often drawn geometric structures in great detail, only to have them
wander far from the proper locations (Figure 1).
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Figure 1: A typical registration error, in which the rectangles that
represent the windows, doors, and the building outline are clearly
displaced from the correct locations. The low contrast of this image
is due in large part to the difficulty of taking a photograph through an
optical see-through display. This and similar images in Figures 2, 3,
and 4 have been enhanced to improve the visibility of the graphics.

There have been attempts to reduce registration error through
improved tracking and calibration algorithms [1, 2, 19] and intel-
ligent architectures [5, 9]. Still the problem persists for many AR
implementations. Furthermore, for open-loop systems, which in-
cludes AR systems that use optical see-through displays, there is
simply no way to eliminate registration error. Even video AR sys-
tems must often make assumptions or constraints in order to en-
able precise alignment of the graphics [11]. Additionally, scalabil-
ity limitations, numerical instability, and occlusions could always
defeat the tracking.

These practical limitations have prompted a variety of responses
by system designers. Perhaps the simplest response, used in many
systems, is to design graphics that do not need to be registered with
a particular location in the real world. Such 2D overlays can in-
clude navigational information such as a map or compass. Another
class of demonstrated approaches alters graphical objects to repre-
sentations that do not require perfect registration, such as blurring
graphical models [6] or simplifying or eliminating the geometry [4].
In the latter case, this may include the use of a 2D overlay to express
a task to be performed. This places the cognitive load on the user to
determine the correspondence between the graphics and the real en-
vironment; however, this load is generally considered to be lighter
than (or at least no worse than) interpreting misaligned graphics
that were drawn under the assumption of accurate registration.

In a typical AR system, there are many sources of registration
error [8]. In building up to our goal of analyzing the effect of regis-
tration error, we listed the following categories of registration error.
This list was not designed to match any theoretical taxonomy of
sources; to the contrary, it was designed to match with specifica-
tions typically given for commercial tracking systems.

1. Noise is perhaps the most obvious dynamic error; it causes the



graphics to jitter around the correct location on the augmented
image. This is frequently due to electrical or numerical noise
in the tracking system or repetitive interference with the track-
ing system.

2. Latency is a specific type of dynamic error in position or ori-
entation that comes from delay between the time a movement
that is being tracked occurs and the system can render the ap-
propriate image in response to that movement. This may be
due to sensing or processing delays in the tracking system or
resource constraints in the application itself. Depending on
the task and technology, latency may be the largest source of
registration error [8].

3. Position error may be static or dynamic. Static errors may
come from system calibration errors, modeling errors, or er-
rors in the tracking system. (The last two will contribute to
the first.) Dynamic errors may come from interference in the
tracking system (e.g. metallic objects distorting a magnetic
field, loss of line-of-sight in an optical tracking system) or
other operational characteristics such as poor performance at
a particular distance from a tracking source.

4. Orientation error may also be static and dynamic, and the two
subtypes have similar sources to those of position error.

This list of categories had the nice property that they were all quite
easy to systematically vary within an AR system, so that their ef-
fects could be studied. Hardware and software sources would not
have separated into completely distinct categories. For example,
multi-path errors with a GPS receiver could create an error that
would belong in the category of position error or in the category
of noise, depending on the environment and system configuration.
This list lent itself well to a study design that would enable us to
specify operating characteristics required from a tracking system,
and thus seemed appropriate for our work.

2 RELATED WORK

The difficulty of achieving quality registration gives rise to a num-
ber of possible responses to registration error. As noted above,
latency is potentially a large source of registration error in many
AR systems. Thus it was one of the first to be studied for its ef-
fect [14]. Increasing latency was found to create a linear decay
in user performance on a matching the distance of a real object
to that of a virtual object in a desktop application (maximum dis-
tance of 113 cm). Latency was also linearly related to the lateral
displacement in the virtual target location as subjects used motion
parallax to aid their depth perception. Similar results have been
demonstrated for a placement task under latency in virtual environ-
ments [20].

In many AR systems, the user is simply expected to adapt to the
latency. Under small amounts of latency, this is quite reasonable.
A just noticeable difference (JND) of 15 ms of latency was found
for virtual environments with both simple and complex scenes [13].
But the JND for AR, in which the reference for the latency is more
closely coupled to the senses, could be lower. In a tapping task
between visual and haptic feedback, users adapted to degraded reg-
istration of the view with the haptic feedback [18], showing no sta-
tistical difference between correct camera-to-image-plane distance
and 0.5 cm and 2 cm errors in this distance. Sensorimotor adap-
tation appeared to occur quite rapidly. All three conditions were
significantly worse than subjects’ performance of the same task in
the real world, however.

Position and orientation errors lead to more predictable regis-
tration errors. In a target cueing task [21], subjects were faster
at detecting virtual targets with precise head orientation for ren-
dering virtual cues (up to 7.5◦ from target center) and got pro-
gressively slower with partially degraded (7.5◦− 22.5◦) and poor

(22.5◦ − 45◦) cue precision, with the latter condition failing to
achieve a significant difference from uncued searching. This effect
was greater for low salience (e.g. smaller) targets. Subjects lost
trust in the cues as the alignment degraded, which resulted in the
benefit of wider attentional breadth and more accuracy in finding
secondary targets.

Robertson and MacIntyre [15] studied the effect of 2D position
errors resulting in registration errors on a desktop assembly applica-
tion. They divided error into three cases: no error (a baseline case),
fixed error (constant direction of position error of one unit in the as-
sembly mechanism), and random error (random direction offset for
a position error of one unit). The user was shown a graphical cue
for where to place an object, subject to one of these three cases of
error. In half the trials, another graphical object that corresponded
to a real object was shown, giving the user a context for the error in
that trial. They found that users were most accurate in the case of
no registration error the least accurate in the case of random error
direction. The contextual cue to the registration error improved the
accuracy but did not make users faster. Users gained confidence as
they learned to adapt without context, but had confidence from the
beginning in the presence of contextual cues. A second study [16]
found that registered AR yielded faster performance than a head-
up display or an AR display situated to the side of the work area;
accuracy was not significantly improved in this task.

3 MEASUREMENT OF ERROR

We embedded the control system for this experiment within our AR
application for situation awareness [12], in which tracking a target
is a potential task that would be asked of a user. Our system is de-
signed for mobile personnel, either on foot or in vehicles, thus we
designed our task around tracking the location of vehicles through
an environment in which line-of-sight contact is not maintained. As
a prelude to determining appropriate variables and values for our
experiment, we wanted to measure the four types of errors experi-
enced in our system. We wanted to assess the expected state of the
system and the worst-case scenario. For our indoor development
station and for this study, we tracked the user’s head with an Inter-
Sense IS-900 6 degree-of-freedom tracker. We set the sensitivity to
3 (default) and the enhancement mode to 2 (drift correction made
smoothly, recommended for HMD tracking). Since this was our
first experiment on this subject, we chose to discretize the variables
into “high” and “low” errors. For each variable, “low” error was
the error typical in the tracking and/or calibration system of our ap-
plication (described by the measurements below), whereas “high”
error included the addition of that type of error.

3.1 Noise

We measured the noise in the IS-900 by placing the sensor on a
tripod at the approximate height of a user, allowing the sensor to
remain motionless for a few seconds, and then recording the tracker
data. We plotted the noise and found its distribution to be consistent
with a Gaussian function with a standard deviation in the position
and orientation (per axis) up to 1.1 mm in each position axis, 0.12◦
in yaw, 0.07◦ in pitch, and 0.05◦ in roll. This is slightly higher than
other reported observations [7]. Since our task was to indicate a
direction along the ground plane, yaw was the primary variable of
interest. Since the expected value experienced by the user is thus
approximately 0.12◦, we chose to add 0.24◦ on top of the system
behavior for the “high” case.

We also wanted to include noise in the position estimates of the
vehicles. In our application, we measure the position of an outdoor
user (dismounted or vehicle) through differential GPS. Consistent
with our experience and reported measurements [10], we assumed
Gaussian white noise that in the expected state (“low”) has a vari-
ance of 0.3 m and in the “high” case has a variance of 1.0 m.



3.2 Latency
We assumed the existence of two frames of latency, one in the ren-
dering and one in transfer of the frame buffer to the display. This
implied a latency of 33 ms at 60 Hz; consistent with our observa-
tions as well as those of others [7], we expect approximately 20 ms
of latency from the tracker, for a total of about 50 ms of end-to-end
latency. For the worst case, we chose 150 ms. This was applied
to the vehicle positions, but no additional latency was added to the
user’s orientation. We decided not to do the latter due to concerns
about causing dizziness or frustration on the part of the user. Pre-
diction over short intervals has been demonstrated to improve AR
registration [1]. The IS-900 has a prediction mechanism of up to
50 ms, which is applied to its position and orientation estimates.

3.3 Orientation Error
In order to measure the orientation error, we captured images
through the optics of the display. While there is no guarantee that
the camera center was at the same position as any user’s eye, this
should give a good approximation to the orientation error the user
experienced. We placed the camera up to the display and performed
our standard calibration procedure (described in Section 4.2) using
the camera’s LCD for feedback. We then turned the display and
camera assembly approximately 45◦ to the left (i.e. in yaw), and
then back. This turn creates “new” information for the extended
Kalman filter (EKF) embedded in the tracking system and causes
any settling in the tracking and calibration to occur. (This turn is
not truly necessary for the error to occur, but some motion is needed
so that the EKF does not ignore measurements from a stationary re-
ceiver. Also, turning to the right has not been shown to make any
difference in the error, nor has the error been shown to increase over
time or with more turns.) We waited a few seconds after this turn to
capture images, so that latency was not a concern. We inspected the
captured images (Figure 2 left) for the distance in pixels between
a window edge and the corresponding (graphical) line. Using the
known measurements of the window and the distance to it, we de-
termined the angular error for that image. All of the pixel error was
attributed to orientation error, which comes from either the tracker
or system calibration; this is a suitable approximation because at
the distance of the building (61 m), orientation error dominates the
registration error for the stationary HMD [3].

We captured 18 such images, resulting in a mean error of −0.2◦
with a standard deviation of 1.2◦. (The negative sign indicates
that the error placed the graphics to the left of the real environ-
ment.) The range of errors was −2.3◦ to 1.5◦; we thus set the ad-
ditional orientation error to −2.4◦ to create a worst-case scenario.
This means that we might expect a user to experience anywhere
from −2.3◦ to 1.5◦ of orientation in the expected case and between
−4.7◦ to −0.9◦ in the worst case. We did not attempt to measure
the error for each user, let alone for each task or trial.

3.4 Position Error
We also measured the position error experienced by our users with
a similar procedure as for the orientation error. A nearby indoor
target cross-hairs (with its virtual analogue) was used, and after cal-
ibration, the display and camera assembly was translated to 1.0 m
from the physical cross-hairs. We captured 18 images (Figure 2,
right), measured the pixel error, and computed the linear error along
the ground plane (approximately aligned with the world x-axis). We
found a mean of -20 mm with a standard deviation of 6 mm. While
this measurement does not account for the effect of the orientation
error within the images captured for measurement of position error,
we use the observation [3] that when looking at a nearby target, the
position error dominates the registration error. Our measured posi-
tion error is higher than other reported observations [7]; it should be
noted that our tracking volume (10.4×5.3×3.0 m) is significantly
greater than in the other experiment, however. Also, according to

the above calculations, we may be attributing (on average) 3.5 mm
of registration error to position when it is in fact due to orientation
error (tan−1(0.2) = 0.0035).

4 EXPERIMENTAL DESIGN

Our current hardware implementation uses an nVisorST optical see-
through display (1280×1024 resolution, 40◦ vertical field of view).
The housing enables each of the left and right displays to be moved
independently side-to-side for centering on the user’s eyes. The im-
age generation platform was a 3.06 GHz Pentium4 with an NVIDIA
Quadro4 900XGL. The nVisorST display requires two 1280×1024
images at 60 Hz; we generated these as a single stereo image and
split the left and right halves into two video streams for input to the
display. We did not study stereo as a variable, on the assumption
that it would have no effect for distant objects.

We balanced the amount of light from the real environment
against the brightness of the graphics by layering neutral density
filters in front of the display. With bright (whitewashed) buildings
in our environment, this was necessary so that the brightness of the
real world did not overwhelm the brightness of the graphics. We
found that three layers of the 0.3 density filter (1 f-stop, 50% trans-
mission) were sufficient for normal light levels experienced at our
lab doorway. Two layers were used for a few subjects who com-
pleted the experiment on rainy days. Two subjects found that three
layers were insufficient for periods of intense sunshine; they used
their hands or the door frame to completely block the incident light
and see the graphics.

4.1 Experimental Task
We asked users to follow a target vehicle model, which differed in
shape and color from two distractor vehicles (Figure 3). Associated
with each vehicle was a white box that is used as a cue for the lo-
cation of moving entities in our application [12]. We used virtual
models as a proxy for real objects so that we could control the be-
havior and have their actions repeat for each subject. The virtual
vehicles thus disappeared behind buildings, whereas the box that
cued the user to the vehicle locations did not; this box behaved as
the graphics would in our application, in that it was visible even
though it may have been geometrically occluded from the user’s
view.

Upon completion of the calibration done for each task, the target
and distractor vehicles were introduced into the environment. The
user stood in a location that maximized the ground area directly
visible outside our building through a set of doors and windows
and hit a key to begin the task. At pre-determined locations of the
target, all vehicles and their augmenting boxes froze in world po-
sition. (Any latency errors in the boxes’ locations were thus also
frozen.) Prediction and noise continued to affect the tracker mea-
surement given to the renderer, as did any additional noise error
we introduced as an independent variable. (See below.) When the
target froze, a cross-hairs appeared in the center of the display in
both eyes (Figure 4), and the user was asked to align the cross-hairs
with the target vehicle (explicitly not with the associated box, even
though the vehicle may not have been visible). To indicate that the
cross-hairs was aligned with the vehicle, the user hit a key.

We strongly suggested to users that they actively follow the tar-
get, though there was no requirement that they do so. However, this
was the only method by which they could know that they were cor-
rectly following an occluded target. Some users did check whether
they had lost track of the target by searching the area for any visible
vehicles. Users did not try to achieve high accuracy until the target
froze and they were asked to be accurate.

Upon identifying the target direction, the user was also asked to
call out the number of occluding buildings between his/her location
and the target vehicle; this number was 0 (directly visible or level-0
target), 1 (one occluding building, which would itself be directly



Figure 2: Images from the measurement of error in orientation (left)
and position (right). We computed angular error from the error in
pixels (red bar near the center of the image), the width of the window,
and the distance to it. Similarly, we computed position error in the
ground plane from the horizontal displacement between a real and
virtual cross-hairs and the distance.

Figure 3: This image shows the target vehicle (gray hatchback, cen-
ter) and the two distractor vehicles, along with the geometric model
used for calibration purposes and for the task of identifying the num-
ber of occluding buildings.

visible, a level-1 target), or 2 (two occluding buildings, the second
of which was only visible in the graphics, a level-2 target). Dur-
ing a training task, the user was talked through this procedure and
informed of the possible correct answers to the number of interven-
ing buildings (including part of the building in which the experi-
ment was run, not counting the windows where the user stood). All
users should have been aware of the layout of the buildings; some
reported using this knowledge to respond.

We designed six sets of routes (Figure 5); each set contained a
route for the target and a route for each of two distractors. Each
route for the target had six points at which all three vehicles would
stop along with their augmenting boxes. Each route set was de-
signed to have two cases of visible targets, two cases of occlusion
by one building or part of a building, and two cases of occlusion
by two buildings. (The distractors and their visibility were not con-
trolled.) However, due to imprecision in the map used to plan the
routes and movement of the users during the experiment, some de-
viations occurred. Also, there were situations in which a distractor
vehicle could have occluded the target, and although users were in-
structed to consider only the buildings, we believe some considered
the distractor vehicles. Two routes turned an intended level-2 tar-
get into a level-1 target; one converted a level-2 into a level-0, and
one changed a level-1 into a level-2. Thus over all six routes, there
were 13 level-0 targets, 13 level-1 targets, and 10 level-2 targets,
ignoring potential occlusions of the target by distractors.

Figure 4: Users identified the direction to the target by aligning the
virtual cross-hairs with the 2D projection of the target’s location. In
the case of a visible target, this was indicated by the target model. In
the case of an occluded target, this was indicated by the box, except
that the box exhibited registration error.

Figure 5: Routes wound between and behind buildings. The target
(red) and distractor (blue) paths ensured that all three vehicles were
visible at the start (light blue) of each task from the user position (or-
ange). The stopping points (green) for the target indicate the number
of intervening buildings that the user should identify. Note that the
user stood in a windowed doorway, and thus had a large field of re-
gard for unobstructed viewing.

4.2 Subject Procedures
Each user completed a general questionnaire; we then measured
the user’s IPD (for rendering) and height (for calibration). The user
then donned the display and used a series of concentric circles [17]
to center the display over each eye. We then presented a calibration
image that has become standard for our system to determine the off-
set of the yaw angle between the tracker’s compass and the world.
We used this image for two calibrations. Before the user began
any tasks, the user was asked to verify the sizes of a set of virtual
rectangles against real windows and doors (visible in Figure 1) in
order to check that the field of view experienced was matched by
the rendering. The experimenter would have operated a scrollbar
to make any necessary adjustments, but no user requested any. At
the start of each task, we fixed the image relative to the user’s head.
The user was asked to turn his or her head until that set of windows
aligned with the real environment. The offset between the tracker
frame and the rendering frame of reference was recorded. After all
tasks, users completed a subjective evaluation.

Twelve subjects each completed twelve tasks with six trials, for
a total of 12*12*6=864 trials. One subject withdrew due to dizzi-
ness (a possibility that the subject noted would be likely due to a
medical condition), and one subject withdrew due to extreme diffi-
culty completing the task (likely due to color-blindness and depth



Vehicle position
“Low” value “High” value Predict

Variable System Added System Added Added
Noise 0.0m 0.3m 0.0m 1.0m
Latency 0ms 0ms 0ms 150ms

Head Orientation
“Low” value “High” value Predict

Variable System Added System Added Added
Noise 0.12◦ 0◦ 0.12◦ 0.24◦
Latency 50ms 0ms 50ms 0ms -50ms
Ori Error −0.2◦ 0◦ −0.2◦ −2.4◦

Table 1: Independent variables for error types and the values used.
The System column gives our measured value for the given type of
error, whereas the Added column indicates the additional amount
added for the two or three discretized levels of error. Prediction is
only used for head orientation.

perception difficulties). Of the twelve subjects who completed the
task, eleven were male. Subjects ranged in age from 25 to 58, with
a mean of 34.3 years. All reported being heavy computer users with
good or excellent spatial visualization capabilities; seven reported
being frequent players of computer games.

4.3 Independent Variables
Given the distance between the user and the target and to reduce the
number of variables being studied (and users required), we chose
noise, latency, and orientation error as our independent variables.
The noise values we measured were used as the standard deviation
of a Gaussian distribution from which the noise was selected in each
frame. This orientation noise error was then added to the reported
head orientation, and the position noise error was added to the vehi-
cles’ positions. Similarly, the latency we estimated and orientation
error we measured existed, and we applied additional amounts. We
used the IS-900 prediction mechanism set to 50 ms as a third dis-
cretized value for latency; it was applied to the user’s head position
and orientation. We did not create any error in the orientation of
the vehicles, under the assumption that this would have little effect
on any aspect of the task performance. Table 1 summarizes the in-
dependent variables we used in the experiment and their values as
measured or introduced for our experiment (Section 3).

4.4 Dependent Variables
We recorded the position and orientation of the user’s head when
the direction to the target vehicle was specified; we also recorded
the location of the target vehicle and the two distractors. From the
positions, we computed the actual angle to the target and each of
the distractors. With the user’s orientation, we computed the re-
sponse for the angle. The difference between these two gave us
one measure of error. We recorded the time the user took to en-
ter this response, as well as the correct and responded number of
intervening buildings at each trial. The difference in the last two
gave us another measure of error. Also, using the locations of the
target and the distractors, we could determine whether the user fol-
lowed the target or one of the distractors. Finally, we verbally and
visually explained the three types of errors and asked to users rate
the difficulty presented by each on a ten-point Likert scale. (Users
were able to properly repeat the definitions of the types of error
in their own words, so that we knew the definitions were clear.)
This subjective assessment was done once, after completing the set
of twelve tasks. We also asked users to indicate signs of general
discomfort (dizziness, eye strain, fatigue) both before and after the
experimental session.

4.5 Counterbalancing
We used a 2×3×2 Latin squares design for counterbalancing of
order effects between the noise, latency, and orientation error vari-
ables. Due to a transcription error, the actual design was slightly
unbalanced; one case of each level of orientation error was missing
for low noise and prediction on for the latency. In order to reduce
the programming, we repeated each task twice per subject (with
different values for the independent variables). We used a random
permutation of the six route sets on the first six tasks a user saw, and
then a second random permutation for the last six tasks, under the
condition that neither of the last two route sets from the first half
were used in the first two tasks from the last half. This reduced the
chance that a user would recognize a set of routes and answer from
memory rather than the system’s behavior. We further selected the
set of random permutations over all users to counterbalance order
effects of the sets of routes.

4.6 Hypotheses
We expected the following outcomes for the independent variables.

1. High noise would have the most detrimental effect on the
users’ ability to follow the correct target and would reduce
the precision with which they localized the target.

2. High latency would have a detrimental effect on the users’
precision in localizing the target but little effect on their ability
to follow the correct target. Prediction would improve their
localization, but have no effect on their ability to follow the
correct target.

3. High orientation error would have a detrimental effect on the
users’ precision in localizing the target, approximately equal
to the amount of error introduced (though the uncontrolled
system error varies widely and may affect the localization as
well). It would have little effect on the users’ ability to follow
the correct target.

In addition, we knew that certain route sets would be more diffi-
cult than others, such as when the distractors were near the target,
especially for extended periods of time.

5 RESULTS

We conducted several analyses to determine statistically significant
effects for the variables described above. All the reported numbers
were computed using factorial analysis of variance (ANOVA) with
SYSTAT 11.

5.1 Analysis of All Data
5.1.1 Following the Target
Perhaps the most fundamental measure is whether the user was able
to correctly follow the target. This was quite difficult in certain
tasks or under certain conditions of the independent variables. We
used the following Boolean expression to determine whether the
user was following the target rather than either of the distractors.{

|αt −αR| ≤
∣∣αdi −αR

∣∣ OR(∣∣αdi −αR
∣∣ < |αt −αR|&

∣∣αt −αdi

∣∣ < 10◦
) }

for i = 1,2

where α denotes an angle within the world ground plane for the tar-
get (subscript t), the distractors (di for i = 1,2), or the user response
(R). Essentially, either the user’s indicated direction was closest to
the target direction, or it was closest to a distractor that was, at that
stop, under 10◦ from the target. If this expression was true, then the
user was considered to have been correctly following the target.

We ran a 2×3×2 within-subjects, repeated-measures ANOVA.
There were, surprisingly, no main effects of any of the indepen-
dent variables for the users’ ability to correctly follow the target.
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Figure 6: The interaction of noise and latency on correctly following
the target (higher percentage indicates better performance) showed
that while low noise was generally better, prediction seemed to can-
cel the negative effect of high noise. In this and all such graphs, the
error bars indicate one standard error.

Noise and latency had a significant interaction, F(2,22) = 6.222,
p ≈ 0.002, for the users’ ability to correctly follow the target (Fig-
ure 6). The prediction mechanism available in the IS-900 appeared
to help overcome the negative effect of higher noise. One possible
explanation for this is that the prediction equations, which are based
on classical mechanics, helped smooth the noise from the tracker
(but obviously not the noise introduced by our stimulus generation
code), and thus lowered the total noise experienced in that state. It
is perhaps counter-intuitive that performance was lower with pre-
diction on and low noise than with prediction on and high noise.
However, this difference is not statistically significant; using the
Welch-Satterthwaite equation, t(250) = 1.249, p ≈ 0.106.

Noise and orientation error also had a significant interaction,
F(1,11) = 7.270, p ≈ 0.007, for the users’ ability to correctly fol-
low the target (Figure 7). High orientation error seemed to some-
how cancel the disadvantage that high noise gave to the user. Again,
that high noise allowed a better performance than low noise under
any set of values for the other variables is counterintuitive, but this
difference was not significant: t(214) = 0.5235, p ≈ 0.297. This
effect may also explain a trend, F(1,11) = 3.252, p ≈ 0.072, for
higher noise to improve performance. Based on these two inter-
actions and some user comments, we believe high noise may have
helped users differentiate a target from a distractor in certain situa-
tions. Further analysis of the routes may help us understand if this
trend may be of interest or it may help determine the suitability of
a set of routes.

5.1.2 Response Time

There were main effects for noise and latency on response time
(Figure 8). Recall that these conditions have a fundamental dif-
ference: noise in the user’s position and orientation that came di-
rectly from the tracker continued while the user was aligning the
cross-hairs to the (presumed) target. Additional noise introduced
to the user’s head orientation for purposes of this study also con-
tinued. But noise in the vehicle positions did not, and the latency
that existed at the time the vehicle froze for the user to perform the
localization task did not disappear from the location of the box as-
sociated with the vehicle. Users were about 10% faster with low
noise, F(1,11) = 4.234, p ≈ 0.037.

The overall effect of latency was for users to be faster with low
latency than prediction, and faster with prediction than high latency,
F(2,22) = 4.061, p ≈ 0.018. But the pairwise tests between low
latency and prediction – t(574) = 1.508, p ≈ 0.066 – and predic-
tion and high latency – t(443) = 1.548, p ≈ 0.061 – are merely
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Figure 7: The interaction of noise and orientation error showed an
unexpected improvement under high orientation error and high noise.
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Figure 8: The response time had main effects from noise (blue) and
latency (red). Subjects were faster with low noise and low latency.
The former is not surprising, given that the user’s orientation was
subject to jitter with high noise. The latter would indicate that users
were trying to think about the effect that latency had at the moment
the graphics froze and awaited their response.

trends. Each step added about 10% to the time required. Also, noise
and orientation error had an interaction for response time; similarly
to above, high orientation error seems to cancel the benefit of low
noise, F(1,11) = 3.969, p ≈ 0.047.

5.1.3 Occluder Level
Noise and latency had a significant interaction, F(2,22) = 3.871,
p≈ 0.022, for identifying the level – i.e. the number of intervening
objects from the user’s location to the identified target. Similarly
to the result above for following the target (and perhaps because
of the lower error rate), users were more accurate in identifying
the number of occluding buildings under high noise than under low
noise when prediction was on. For low or high latency, however,
users were more accurate when the noise was lower (Figure 9). It
could be that prediction smoothed the noise enough to help the user
in this aspect of the task as well. When restricted to inlier data
(below), the difference between the high noise, low latency condi-
tion and the low noise, low latency condition was not significant,
t(277) = 0.424, p ≈ 0.336.

5.2 Analysis with Outliers Removed
We labeled any trial for which the user was not following the cor-
rect target (as determined by the Boolean function above) as an
outlier, then re-ran the analysis. We performed a 2×3×2×3 within-
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Figure 9: The interaction of noise and latency on assessing the num-
ber of occluding buildings showed that users performed better under
high noise than low noise when prediction was enabled. Units are
positions in the order.
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Figure 10: Latency and level (number of occluders) both had a main
effect on angular error when outliers were removed. Users showed
a small but statistically significant improvement with reduced latency
and with prediction. Users showed an expected performance benefit
in localizing visible targets

subjects, repeated-measures ANOVA. The fourth variable in this
analysis is the actual number of occluding buildings between the
user and the target. The design is not balanced with respect to this
variable because we allowed users to move position. Targets that
were near corners may been have at a level other than the initial
design assumed it would be. The analysis uses the subject position
on each trial to compute the correct number of occluding buildings.

5.2.1 Angular Error

Latency had a main effect for the angular error in localizing the di-
rection to the target, F(2,22) = 4.319, p ≈ 0.014. Users appeared
to treat the location of the box as correct, even though they were
cautioned that it would be incorrect in many cases and this was
demonstrated in the early part of every task, when both the vehicles
and their associated boxes were present. Users did not appear to
reduce the registration error of the box in their minds when they lo-
calized the target. Thus their performance was best with prediction
on, in the middle with low latency, and worst with high latency (Fig-
ure 10). But these differences, though significant, were so small as
to be unlikely to be meaningful in our application, under 0.1◦ from
prediction to low latency and from low latency to high latency.

The number of occluding buildings also had a main effect for
angular error. Not surprisingly, users were most accurate for visi-
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Figure 11: Latency and the level of occlusion both had a main ef-
fect on the response time. Subjects were fastest under low latency,
appearing to think about the implications of the prediction and high
latency conditions. Subjects were faster when they could directly see
the target. Some of this time could be due to thinking about the oc-
clusion level and not the localization task.

ble targets, F(2,22) = 82.669, p ≈ 0.000 (Figure 10). Strangely,
however, subjects were better with level-2 targets than with level-1
targets, but this difference was not significant (Welch-Satterthwaite:
t(445) = 0.940, p ≈ 0.174). It may be that since occluding build-
ings often left nothing behind the target users localized level-2 tar-
gets better, though. We have not analyzed the cases where the user
succeeded on the level-2 targets, and again it is unclear that the
magnitude of the performance difference (up to 0.25◦) would have
any meaningful effect in our application.

5.2.2 Response Time

Latency had a main effect for response time, F(2,22) = 3.481,
p ≈ 0.031. Users were fastest with low latency, about 10% slower
with prediction on, and an additional 7% slower with high latency
(Figure 11). So it appears that users were indeed trying to think
about the effect of the latency condition, even though it did not im-
prove their performance in localizing the target.

The number of occluding objects also had a main effect on the
time, F(2,22) = 5.035, p ≈ 0.007 (Figure 11). As expected, users
were much faster localizing visible targets, and about 17% slower
for occluded targets (with no significant difference between one and
two occluders). However, it should be noted that we did not sep-
arate the time for the localization task and the identification of the
number of occluders, so it is possible that the slower time is due to
the level identification rather than difficulty of the localization task.

There was also a significant interaction between noise and la-
tency for time (Figure 12). High latency appeared to defeat the
benefit derived from low noise, F(2,22) = 3.016, p ≈ 0.050. This
would imply that subjects were trying to consider the effect that the
high latency had on the position of the vehicle.

5.2.3 Occluder Level

We asked subjects to identify the number of occluding buildings
each time they localized a target. It should be no surprise that the
actual number of occluders had a main effect on their ability to per-
form this part of the task, F(2,22) = 22.014, p ≈ 0.000. Subjects
were far worse in identifying cases in which there were two occlud-
ers than in cases of either one occluder or no occluders (Figure 13).
Users were slightly more accurate with one occluder intervening
than with visible targets. This difference was only a trend (using
Welch-Satterthwaite, t(554) = 1.41827, p = 0.078). This may in-
dicate a flaw in the Boolean expression for determining outliers or
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Figure 12: The interaction between noise and latency for response
time showed that high latency appeared to defeat the benefit of lower
noise. This would imply that subjects were thinking about the effect
of the latency.
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Figure 13: The target level had a main effect on the error in identi-
fying the number of occluders. Surprisingly, there was no significant
difference between level-0 and level-1 targets; users had difficulty
with level-2 targets. Orientation error showed a trend; we suspect an
unmeasured interaction with the structure of the environment.

demonstrate a need for better routes. Or perhaps a greater number
of trials would reverse this trend.

There was also a trend for orientation error on the number of
occluders (Figure 13). As one would expect generally, users were
better with low orientation error, F(1,11) = 3.455, p ≈ 0.063, al-
though why this would affect the understanding of the number of
intervening buildings is unclear. It was possible that the exact loca-
tions within the environment had some effect on users’ understand-
ing of the target location relative to the environment. This may also
speak to the sensitivity of this task to the location within the envi-
ronment of the building locations.

5.3 Analysis of Weather

We ran one final analysis to look for significant effects with the
weather outside. This is an important question for our system, be-
cause the intended application (hardware and software) must be ro-
bust enough to work outdoors in any weather conditions. Also, our
campus features white buildings which, with sunshine, can become
extremely bright relative to their surroundings. We were fortunate
in that six subjects completed the experiment in bright sunshine,
three in cloudy conditions, and three in rainy conditions. This gave
us hope that there would be sufficient data to find significance from
the weather. We ran a 2×3×2×3 mixed-design, repeated measures
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Figure 14: The interaction of noise in the tracker and the outside
weather on the localization task.
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Figure 15: Despite the high difference in error, there was a significant
interaction between the orientation error and the weather.

ANOVA; the weather is a between-subjects variable, while all other
variables are within-subjects and the repetitions of tasks and tri-
als are as described above. There were no main effects from the
weather. We report here only those effects that involve the weather
as a variable; the effects reported above appeared again in substan-
tially the same values and are not repeated.

5.3.1 Angular Error

Noise and weather showed an interaction for angular error in lo-
calizing the target, F(2,22) = 3.073, p ≈ 0.047. We would have
expected that low noise would have been better in any weather, but
under cloudy conditions, users were more accurate under high noise
(Figure 14). These differences are likely not meaningful for our ap-
plication, however, as the differences in the average are under 0.1◦.
Still, it raises the question of the importance of the brightness prob-
lem (due to sunshine) relative to the tracker errors introduced for
our study.

Orientation error and weather also had an interaction for angular
error, F(2,22) = 5.934, p ≈ 0.003. Users were clearly better – by
somewhat less than the additional error introduced – for the low
error condition than the high error condition. But in the high error
condition, users were getting better as the skies got darker, whereas
in the low error condition, users were best in sunny weather, and
slightly worse in both the cloudy and rainy conditions (Figure 15).

5.3.2 Time

Noise and weather had an interaction for time, F(2,22) = 3.005,
p ≈ 0.050. With low noise, users were slowest with cloudy con-
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Figure 16: Noise and weather had an interaction on the response
time. Users were slowest with high noise and sunny weather, but
fastest with low noise and sunny weather.
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Figure 17: Orientation error and weather had an interaction for re-
sponse time. Under cloudy weather (perhaps the ideal viewing con-
dition), there was a difference between high error and low error, but
not for bright sunny skies or the very dark rainy conditions.

ditions, whereas with high noise, users were fastest with cloudy
conditions (Figure 16). We would have thought, given the bright-
ness difficulties posed by the sunlight reflecting off the buildings,
that users would have been slowest in sunny conditions as they ad-
justed their view to make the graphics visible. But it appeared that
the combined effect of high noise and bright sunshine slowed users
down even more.

Similarly, orientation and weather had a trend for time,
F(2,22) = 2.804, p ≈ 0.061. There was no difference due to ori-
entation error for sunny or rainy conditions. But under cloudy con-
ditions, users were somewhat faster with low orientation error than
with high orientation error (Figure 17). This likely speaks to the
difficulties in adjusting the relative brightness of the display to the
sunny conditions (which can overwhelm the display) and the rainy
conditions (which were quite dark with the density filters in place).

5.4 Subjective Results

Users believed that noise was the most detrimental variable on
task performance (Figure 18); the difference was quite emphatic,
t(22) = 5.252, p≈ 0.000 between noise and latency. Of the twelve
subjects who completed the experiment, four reported an increase
in eye strain and six reported being quite fatigued. The weight of
the nVisorST is balanced on the user’s head, but the users’ reactions
reflected the lack of comfort with wearing the bulk of the display.
These results are typical for our experiments. Two subjects had
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Figure 18: Users’ subjective ratings on a ten-point Likert scale
showed their belief that noise was the most detrimental of the three
types of error; the difference in between noise and the other two
types of errors was significant, even though the performance mea-
sures did not show a significant difference in main effects.

experience wearing AR displays, but not with the nVisorST.

6 CONCLUSIONS

We expected noise to have a strong negative effect, but we did not
find a large impact on performance. It slowed users down (by small
percentages) and was displeasing in a subjective sense, however.
Thus we can not accept our first hypothesis, that noise would have
the strongest negative effect on the users’ ability to follow and to
localize the target. But it does seem safe to assert that high noise ex-
erted a negative influence on users, if not at the level or in the man-
ner that we expected. It appears that prediction to combat tracking
latency had a positive side effect of smoothing out the noise, which
was not an expected result, but certainly has implications for the
tracking systems and applications that use them.

Latency exhibited a similar behavior to noise on the task of fol-
lowing the target and on response time. When we removed outliers
from the analysis, latency was shown to have had a significant ef-
fect on the localization of the target; thus we can accept our second
hypothesis. Users appeared to simply fix their attention on the box
and ignore any extrapolation that would have enabled them to over-
come the registration error caused by latency. As expert AR users,
we are accustomed to doing this; though we instructed our subjects
to adjust, they did not. Users were slower under prediction and un-
der high latency, compared to working under low latency. It would
be easy to explain the delay under high latency as users trying to
determine how to compensate for the visible separation, but this
would not work as an explanation for the delay in responding under
the prediction condition. These results require further investigation.

It was strange to see that orientation error did not have a signif-
icant effect on the localization accuracy. This would have seemed
to have been the most obvious prediction to make. But we can offer
possible explanations. The mean error was approximately 60% of
the additional error, and there could have been significant variation
in the amount of “low” orientation error. Thus the limited amount
of control we were able to exert in this task may have made the ori-
entation error an inconsistently-coded variable. Figure 14 shows a
performance gap between low and high orientation error of approx-
imately 1.8◦. This is less than the additional error we introduced,
and the error at the “high” level was curiously close to the amount
we introduced. It would appear wise for us to search for when the
various types of error dominate the task performance.

The analysis with respect to weather was unplanned, but
nonetheless a fortunate circumstance. We have long observed that
bright sunshine presents problems for any optical see-through dis-



play. The neutral density filters reduced the brightness of the real
world in the merged view; we needed more than we expected to
contend with sunshine and less than we started to use for rainy con-
ditions. This certainly gives us some insight into the requirements
for the HMD to be useful in our outdoor application. The inter-
actions of weather with the independent variables was curious. It
would make some sense that noise was particularly challenging on
a sunny day, when the graphics were lower in salience (with a fixed
amount of transmission from the real environment). The jitter may
decrease the effective intensity such that more attention is needed
to perceive and understand them.

There are thus a number of avenues for future work. Clearly,
some aspects of the task were not well-suited for our investigation.
One route set was particularly difficult for users; it accounted for
71% of the errors in following the target (many of which occurred
in sequence). Also, we should resolve ambiguities raised by occlu-
sions near building boundaries and by the distractor vehicles. The
issue of the balance between light from the real environment and
from the graphics needs to be resolved in a more automatic way;
this is well beyond the scope of our project, but potentially useful
feedback for the display designers. For our purposes, we need to
take some measurements that will enable us to continue conducting
studies in all types of outdoor weather.

We would like to expand the variables studied to include the en-
tire list presented in Section 1. This would likely require adapting a
table-top assembly task [15] to our needs in order that each type of
registration error has a chance to be significant in the application.
It would help to have online measurements of the four errors we
categorized; this is unfortunately difficult for optical see-through
systems, which are a desired user characteristic for our application.
But it does encourage us to consider more detailed characterizations
of the error; this may help elucidate details of the effects. We would
like to recruit more subjects and a varied population; however, our
target users are Marines or soldiers, who are predominantly male
and heavy computer game players.

We devised a framework in which we can test the effect of var-
ious types of registration error from the user point of view. These
types of errors directly relate to standard performance metrics for
commercial tracking systems. We found users were surprisingly
robust to registration error caused by noise, latency, and orienta-
tion error. As previous studies had found, users tolerated latency,
although their accuracy on the task decreased. Users reacted neg-
atively to noise, but it did not hurt their performance significantly
or as much as they appeared to think it did. Orientation error and
latency predictably caused users to simply follow the cue; they did
not recognize a pattern of error. The variability of the condition in
a real system may contribute to this.

The encouraging news is that we have begun to quantify the ef-
fects of various forms of registration error. More precise studies
with greater numbers of levels of error will give us the opportunity
to give precise requirements for tracking systems in order to make
our AR system more usable in the field.
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