
Estimating and Adapting to Registration Errors in Augmented Reality Systems

Blair MacIntyre
Enylton Machado Coelho

GVU Center, College of Computing
Georgia Institute of Technology

Atlanta, GA, USA
{blair, machado}@cc.gatech.edu

Simon J. Julier
ITT Advanced Engineering Systems

Virtual Reality Laboratory
Advanced Information Technology

Naval Research Laboratory
Washington DC

julier@ait.nrl.navy.mil

Abstract

All augmented reality (AR) systems must deal with regis-
tration errors. While most AR systems attempt to minimize
registration errors through careful calibration, registration
errors can never be completely eliminated in any realistic
system. In this paper, we describe a robust and efficient
statistical method for estimating registration errors. Our
method generates probabilistic error estimates for points in
the world, in either 3D world coordinates or 2D screen co-
ordinates. We present a number of examples illustrating
how registration error estimates can be used in AR inter-
faces, and describe a method for estimating registration er-
rors of objects based on the expansion and contraction of
their 2D convex hulls.

1 Introduction

For the past decade, we have been developingaugmented
reality (AR) systems that use see-through head-worn dis-
plays to overlay computer generated visual media on a
user’s view of the physical world (e.g., the KARMA sys-
tem [4]). A successful AR system must be able to accurately
register the computer generated visual media with the real
world. If the graphics are not properly registered, the result
will be distracting and annoying (at best), or misleading (at
worst). For example, an AR maintenance system, such as
KARMA, might need to identify a resistor on a circuit board
by drawing an arrow which points to that resistor; the arrow
should point at the correct resistor and not at some other
component near it.

To achieve accurate registration, an AR system needs to
know the geometric relationship between the user’s eyes,
the display(s) and the objects in the world. Careful mea-
surement of these geometrical relationships will eliminate

some of these registration errors, but it is usually not pos-
sible to know these relationships with absolute precision.
For example, the user’s location in the world (and thus the
relationship between their eyes and and the objects in the
world) is typically measured by some sort of tracking sys-
tem, which introduces geometric errors. These errors are
caused both by sensor inaccuracy, and by the unavoidable
delay between sampling a sensor and modifying the display.
While very good registration has been demonstrated in well-
controlled laboratory experiments (e.g., [1, 8, 16]), and in
time-delayed entertainment applications (e.g., the “1st and
Ten” system that superimposes a virtual first down line on
live football broadcasts [13]), perfect (pixel-level) registra-
tion will not be attained in real-time AR systems in the near
future, especially when using optical see-through displays,
even in well-controlled laboratory environments. Further-
more, errors are more difficult to avoid when we move out
of the lab, and create mobile AR systems where the user
roams over a large, imperfectly modeled environment.

We believe that the effects of registration errors can be
mitigated through the development of adaptive user inter-
faces that tailor the information display as a function of
registration errors. For example, if a mobile AR system
needs to highlight a window on a building, but the user’s
position and orientation are not known precisely, it could
render the highlight in a way that guarantees the window
will fall within the highlighted area, as illustrated in Fig-
ure 1. Notice that, while such illustrations avoid mislead-
ing the viewer by highlighting the wrong window, the user
may need additional information to disambiguate the result-
ing display (e.g., there are two windows within the upper-
left window’s highlighted area). To avoid this ambiguity,
the system should change the highlighting techniques as a
function of the error estimate. For example, in [12], we
introduced the concept of alevel-of-error(LOE) rendering
technique, analogous to the popularlevel-of-detail(LOD)
techniques used in traditional 3D graphics and VR. Unlike

1

Figure 1. An example of the use of registra-
tion error estimation. In this image, the sys-
tem highlights a building and two of its win-
dows by outlining the area of the screen the
objects could occupy. Each outline was cre-
ated by growing the convex hull based on an
estimate of the registration error. The simple,
misregistered computer model of the build-
ing is shown for clarity. While the model is
not registered with the world, the intended
objects fall within the highlighted areas of the
screen.

LOD techniques, which change how an object is displayed
based on its distance from the viewer, the LOE technique
changes how an object is displayed based on a quantitative
estimate of how accurately the object can be registered with
the world. In Figure 1, a programmer might use LOE to
switch between precisely highlighting the window, high-
lighting it with a elliptical region (as shown), and adding
a textual description when the registration becomes suffi-
ciently poor. Other researchers have also explored how to
build AR interfaces that adapt their presentation based on
the accuracy of the trackers (e.g., [5]), although they do not
compute a quantitative estimate of registration error, instead
relying on qualitative heuristics based on the programmer’s
knowledge of the trackers being used.

For the purpose of the work reported in this paper, the
causes of registration errors can be divided into two groups:
spatial errors (such as those caused by inaccurate mea-
surement of the geometric relationships in the system) and
temporal errors(such as those caused by system latency).
In [12], we estimated the registration errors caused by spa-
tial errors in the tracking system using a straightforward
metric based on the manufacturer-reported error range for
a single tracker. In this paper, we presents a general, ro-
bust and efficient statistical method for estimating regis-
tration errors, and show how these error estimates can be
used in AR interfaces. We currently estimate the effects

of spatial errors arising from tracking and head mounted
display calibration, but do not account for temporal errors
(see Section 8). We assume that spatial errors may vary
through time, and with the user’s context, so our method is
fast enough to be used to continuously estimate dynamically
changing registration errors.

The structure of this paper is as follows. In the next two
sections, we present a variety of uses for registration error
estimates in AR interfaces, and discuss related work. In
Section 4, we summarize our framework for estimating reg-
istration error bounds in an AR system. The first part of
the framework is a statistical method to estimate the error
bounds of a single 3D point as a probability distribution in
3D world coordinates or 2D screen coordinates; this method
is described in Section 5. The second part of the frame-
work is a method for estimating the registration error for
an object, by aggregating the probability distributions of its
vertices. In Section 6, a fast method of approximating these
regions using 2D convex hulls is described. In Section 7, we
summarize some important details of the testbed we used to
test the algorithms. Future work is described in Section 8,
and conclusions are drawn in Section 9.

2 Uses of Registration Error Estimates

This work is motivated by the need to know where phys-
ical objects appear on the display in a mobile AR system. In
particular, we want to identify three possible regions: where
a single point might appear on the display, where an object
might appear on the display, and what part of the display
definitely contains part of an object. In Section 5, we de-
scribe a statistical method for computing the region of the
screen that a single 3D point might intersect. This region
appears as an ellipse, as shown in Figure 2. The two re-
maining regions are illustrated in Figure 1. In Section 6, we
describe how to find these two regions for convex objects.
Intuitively, we can find the region of the screen thatmightbe
occupied by an object by expanding the object based on the
its vertices. Similarly, we can find the region of the screen
that isdefinitelyoccupied by an object by contracting the
objects based on these error regions. Examples of specific
uses of these regions are:

• A compelling method of highlighting an object in AR
is to render a silhouette around the object. For convex
(or nearly convex) objects, we can use the convex hull
as a reasonable approximation to the object silhouette.
By using the expanded hull, we end up with a highlight
that encloses the region where the object is, even if it
does not precisely highlight the object (see Figures 1
and 2).

• When an object is labelled, the label should remain on-
screen as the user moves if part of the object is visible,

2

Figure 2. A simple 3D object, with error es-
timate ellipses displayed around its vertices.
The convex hull of the object can be expanded
(dashed outline) and shrunk (dotted outline)
based on the elliptical error estimates.

as is done by the labeling system in [4] (which placed
the labels at the top and bottom of the screen, and con-
nected them to the physical objects with a line). If we
clip the compressed hull (such as the one shown in Fig-
ure 1) to the screen, we have the region of the screen
that is guaranteed to contain the object. Therefore, if
we point to some point inside that region, we can be
sure that the line connects the label to the object. Sim-
ilarly, if we want the label to appear on the object, as
was done by the rendering engine in [3], we can place
the label in this region. This is especially useful for
objects that occupy a large field of view, such as the
buildings in [3], since the best place for the label will
change dramatically as the user moves their head.

• In the past, we have used gaze-based selection as an
input technique for mobile AR systems (e.g., [3]). We
have usually denoted an object (even a large one, such
as a building) by a single point, or by its label. Know-
ing the region on the screen occupied by the object
would let us more accurately approximate what the
user is looking at. A combination of all three object
regions (normal, contracted and expanded) could be
used, depending on the density of the objects and the
specific interaction techniques. For example, poten-
tially ambiguous registration of two closely spaced ob-
jects might occur if their expanded error hulls overlap.

3 Related Work

A number of authors have attempted to quantify and deal
with the effects of registration errors (e.g., [1, 6, 8, 10, 16]).
Probably the best-known and most comprehensive analysis

was conducted by Holloway, who studied the causes of reg-
istration errors in a surgical planning system [7]. His analy-
sis accounted for a range of parameters, including system
latency, optical distortion in the head-worn display, cali-
bration and measurement errors, and dynamically changing
tracker errors. The errors were expressed in terms of angu-
lar error, lateral error and depth error. He demonstrated that
the hardest source of error to eliminate in a carefully engi-
neered AR system was system latency, where a delay of a
single millisecond could cause transient registration errors
of the order of 1mm when the user or tracked objects are in
motion.

Holloway’s analysis provides a useful foundation for
identifying the causes of modelling errors, but is not well
suited for generating the error estimates needed by adaptive
display algorithms. It does not present a single, comprehen-
sive computational model which combines all of the com-
ponents together. Furthermore, the analysis only discusses
points, rather than objects. Objects are especially relevant
in outdoor situations, where the size of an augmented ob-
ject (such as a building) can occupy a significant portion (or
even all) of the display.

Estimating error bounds, especially in vision-based
tracking systems, is not a new idea. For example, Hoff used
error estimates as the basis for fusing multiple sensors [6].
The contribution of our work is twofold. First, we describe
a more general, robust and efficient method for estimating
registration error. Unlike Hoff’s method, for example, ours
can take into account errors that affect any parameter in the
entire viewing model (including the parameters to the pro-
jection operators caused by calibration errors), as long as
those errors can be modelled as probability distributions.
Second, we illustrate how to use these error estimates to
improve the AR interfacein the presence of error, rather
than only focusing on minimizing the error.

4 Method Overview

There are a number of issues that must be addressed by
any method for estimating registration errors in an AR sys-
tem:

• The effects of these errors are a function of the distance
of an object from the observer: as the object moves
further away the effects of position-related errors di-
minish, while angular errors do not.

• The underlying causes of registration errors are time
varying, and can depend on the user’s current location
or activity. For example, the noise of magnetic track-
ers increases with the distance from the transmitter.
The accuracy of systems which rely on beacons (either
passive or active) depends on the number of beacons

3

which are visible, and their configuration. These is-
sues affect systems ranging from GPS (each satellite
is, in effect, a moving active beacon) to sonar-based
navigation systems (such as the InterSense IS900) to
optical systems (such as the Vicom). Another property
of these systems is that the position and orientation er-
rors are frequently correlated with one another and the
errors cannot be correctly modeled independently.

• The causes of some errors may be well understood,
but still be difficult or impossible to correct or to even
quantify; for example, the presence of ferrous metal
or magnetic fields can radically affect the direction re-
ported by a magnetic compass, but the magnitude of
the error cannot easily be detected [16].

Our framework for registration errors consists of two
steps: estimating the registration error of individual 3D
points, and aggregating these estimates for objects as fol-
lows:

• For each object to be augmented, construct its list of
vertices.

• Calculate, for each vertex, the statistical properties of
the registration errors. In particular, we calculate the
mean and covariance of the registration errors for each
point.

• Use the covariance ellipses for each vertex to expand
or contract the object. When working in 2D screen
space, we can use the 2D convex hull of the object
instead of the object itself.

This method has several advantages. First, the registra-
tion errors are assessed in real time. Therefore, the dynamic
effects of object position and time varying tracker errors can
be incorporated. Second, robust error terms can be used.
Third, the metric can be used to assess the impact of reg-
istration errors on non-point like objects. Fourth, the ap-
proach can be used to construct 3D error volumes or 2D
error areas in the viewport. The latter is the main focus of
the techniques illustrated in this paper. Finally, the 2D error
measure has a direct intuitive appeal — it is the area of the
viewport which is occupied by the registration errors.

The next two sections describe the steps for estimating
the registration errors and constructing the convex hulls.

5 Statistical Registration Error Estimation

The effects of registration errors can be estimated by ob-
serving their effects on the projection equations. Because
the analysis is fundamentally time varying, all the following
quantities are referenced with respect to the discrete time

indexk. Each time step can, for example, refer to an indi-
vidual frame. It is not necessary for each time step to be of
equal length.

Consider the problem of determining the pixel coordi-
natey (k) of a point p (k) in world coordinates. The
projection can be broken into two steps — transforming
from world coordinates to head coordinates (with coordi-
natesp′ (k)), and then applying the perspective transforma-
tion to project the point to the view plane. The transforma-
tion fromp (k) to p′ (k) is governed by the (homogeneous)
model transformation matrixM (k),

p′ (k) = M (k)p (k) . (1)

M (k) is a composite transformation that includes the in-
verses of the transformation matrices formed by the sensor
readings. Therefore, tracking errors contribute registration
errors through an erroneous value ofM (k). These errors
can be both spatial and temporal.

For simplicity, assume that the model transformation ma-
trix is composed oft separate transformations derived from
t different tracker readings (any fixed transformations be-
tween the tracker transformations can be collapsed into the
tracker transformations, without loss of generality). Multi-
ple nested tracker transformations can arise when both the
user and an object in the world are tracked, or in mobile AR
systems when two different sensing modalities can be used
to estimate position (a GPS) and orientation (an inertial sen-
sor). In these situations, the model transformation matrix is
given by cascading the individual transformations together,

M (k) = M1 (x1 (k))× . . .×Mt (xt (k)) .

wherexi (k) is the reading from theith tracker. Such a
situation arises in the mobile augmented reality system de-
scribed in Section 7 — the position and orientation trackers
are two physically different devices which yield a different
set of measurements with different update rates and noise
characteristics.

To calculatey (k), a perspective transformation is ap-
plied top′ (k). The projection matrix,P, is given by:

P (k) =


f
a 0 0 0
0 f 0 0
0 0 znear+zfar

znear−zfar

2znearzfar

znear−zfar

0 0 −1 0

 (2)

wheref = cot[fov
2], a is the aspect ratio andznear andzfar

are the near and far clipping distances. We define

y′ (k) = P (k)p′ (k) . (3)

Therefore, the pixel coordinate on the viewport is

y (k) = y0 (k) +
1

2y′4

[
w(y′1 + y′4)
h(y′2 + y′4)

]
(4)

4

wherey0 (k) is the top left corner of the viewport,w andh
are the width and height of the viewport, andy′i is theith
coefficient iny′ (k).

Combining Equations 1, 3 and 4, the projection operator
can be written as

y (k) = h [p (k) ,x (k) ,u (k)] (5)

where x (k) is the n-dimensional tracker reading vector
(including any parameters that have error associated with
them) andu (k) is the control input vector (that includes
the remaining parameters, which have no error distribution
associated with them, such as the various control or calibra-
tion parameters that define the projection matrix). Because
the tracker reading is corrupted by noise, it is modeled as
a random variable with mean̂x (k) and covarianceX (k).
We require[x̂ (k) ,X (k)] to be a conservative estimate of
x (k), but do not require it to satisfy other constraints (such
as being zero-mean, uncorrelated, or Gaussian distributed).

The problem of calculating the error bounds can be
stated as follows. For a pointp (k) with tracker measure-
ment [x̂ (k) ,X (k)], calculate the mean and covariance of
y (k), [ŷ (k) ,Y (k)].

5.1 Limitations of Linearization

Because Equations 3 and 4 are nonlinear, the conven-
tional assumption is to utilizelinearization. Taking the Tay-
lor series expansion and truncating the series after the first
term, it can be shown that the mean and covariance are

ŷ (k) = h [p (k) , x̂ (k) ,u (k)] (6)

Y (k) = ∇xhX (k) ∇T
xh (7)

where∇xh and∇vh are the Jacobians ofh [·, ·, ·] with
respect tox (k) andv (k), evaluated atx (k) = x̂ (k) and
v (k) = 0.

However, there are two well-known problems with this
approach. First, deriving the expression for the Jacobian
matrix can be cumbersome, especially if the system is high
order or nonlinear. Second, the errors due to the first or-
der approximation can be significant. For example in [11],
Lerro and Bar-Shalom illustrated that linearization errors in
the transformation between polar and Cartesian coordinates
can be significant at angular errors of only a few degrees.
Since we are concerned with the problem of registration er-
rors with potentially large angular errors, these difficulties
need to be addressed. A number of authors have developed
filters which are capable of propagating information at a
higher order than the extended Kalman Filter (EKF). How-
ever, higher order filters require more information about the
transformation equations (such as their higher order deriva-
tives), and these difficulties compound the implementation
problems. To overcome these difficulties, we utilize theun-
scented transformation.

5.2 The Unscented Transformation

The unscented transformation works on the principle that
it is easier to approximate a Gaussian distribution than it is
to approximate an arbitrary nonlinear function or transfor-
mation[9, 15]. A set of points (orsigma points) are chosen
so that their sample mean and sample covariance arex̂ (k)
andX (k). The nonlinear function is computing using each
sigma point, and applied in turn to the pointp (k) to yield a
cloud of transformed points; the statistics of the transformed
pointsŷ (k) andY (k) can then be directly computed.

The n-dimensional random variablex with meanx̂ (k)
and covarianceX (k) is approximated by2n + 1 weighted
points given by

X 0 = x̂ (k) W0 = κ/(n + κ)

X i = x̂ (k) +
(√

(n + κ)X (k)
)

i
Wi = 1/2(n + κ)

X i+n = x̂ (k)−
(√

(n + κ)X (k)
)

i
Wi+n = 1/2(n + κ)

(8)

whereκ is a real scaling factor,
(√

(n + κ)X (k)
)

i
is the

ith row or column of the matrix square root of(n+κ)X (k)
(which can be calculated from the Cholesky Decomposi-
tion), andWi is the weight which is associated with theith
point. EachX i can be thought of as a perturbation of the
tracker readingx (k) that falls on the boundary of the es-
timated error region defined by the covarianceX (k). The
transformation procedure is as follows:

1. Instantiate the pointp (k) through the function once
for eachX i, to yield the set of transformed sigma
points,

Yi = h
[
p (k) ,X i,u (k)

]
.

2. The mean is given by the weighted average of the
transformed points,

ŷ (k) =
2n∑
i=0

WiYi. (9)

3. The covariance is the weighted outer product of the
transformed points,

Y (k) =
2n∑
i=0

Wi

{
Yi − ŷ (k)

} {
Yi − ŷ (k)

}T
.

(10)

In this application, the optimal choice ofκ is κ = 3 −
n [9].

5.3 Advantages of The Unscented Transformation

The unscented transform has three important advantages.
First, it is easy to implement and can be readily extended

5

to include additional error terms. The projection opera-
tor h

[
p (k) ,X i,u (k)

]
can be treated as a “black box” —

given an input set of parameters, the function need only gen-
erate the output results. Therefore,h [·, ·, ·] can be imple-
mented in any appropriate manner (for example, OpenGL’s
matrix routines could be used, or the non-decomposable
projection matrix returned by a calibration procedure such
as [14] could be used). Furthermore, additional error terms
(caused, for example, by rendering latencies, or modeling
errors in the graphics scene) can be incorporated in a sim-
ple and uniform manner.

Second, it can be proved that this algorithm is more ac-
curate than linearization [9]. The reason is that the UT
precisely captures the first two moments of the distribu-
tion of x (k). Therefore, the mean and covariance terms
precisely capture the second order terms (linearization only
captures the first order term in the mean). Furthermore,
theκ parameter allows the transformation to exploit partial
fourth order information, without any increase in compu-
tational costs. Third, by changing the point set, it is pos-
sible to extend or change the statistical information which
is propagated. Recent work has also proved that, forn
dimensions, onlyn + 2 sigma points are required.

6 Convex Hulls

Theconvex hullof a set of pointsS is the smallest con-
vex regionR that contains the points inS. The convex hull
of Q is denoted asCH(Q). A planar convex hull can be
computed efficiently inO(n log n) time, using well known
algorithms such as the Jarvis’s March algorithm (Gift Wrap-
ping) [2].

We generate the convex hull of a 3D object by first pro-
jecting its vertices into 2D screen coordinates, and then tak-
ing the convex hull of the 2D points. The error propagation
algorithm described above can be used to generate an error
estimate for each vertex as a 2D ellipse in screen coordi-
nates. We use these ellipses toexpand(grow) or contract
(shrink) the 2D convex hull, as illustrated in Figure 2 (these
operations are similar to the morphological operations of
dilation anderosion).

6.1 Expansion and Contraction

Expansion of the setA by the setB, denoted byA⊕B,
is defined by:

A⊕B = {x| x ∈ B, Bc ⊆ A},

whereBc is the centroid ofB.
The contraction of a setA by a setB is denoted byA	B

and is the dual of the expansion in the sense that it is the
complement of the expansion byB of the complement of a

Figure 3. Expansion adds all neighboring
points at distance smaller then the radius of
the kernel, in a given direction. Contraction
removes all points closer then the radius of
the kernel.

6

setA:
A	B = [Ac ⊕B]c

Both operations can be visualized by positioning the cen-
troid of the smaller set, called thekernel, at every point of
the border of the larger set (Figure 3). Expansion adds the
region swept by the kernel to the original region. Contrac-
tion removes the region swept by the kernel from the origi-
nal set.

For our purposes, setA = CH(V) is the polygonal con-
vex hull of the projected pointsV of the object. Since the
error ellipses can be different for each vertex inV , the ker-
nel varies as it is swept along the boundary of the hull. In
our algorithms, we implicitly assume that the error bounds
should be interpolated along the edge joining any two ver-
tices. Since we are interested in obtaining a polygonal rep-
resentation of expanded and contracted hulls, we use sim-
ple algorithms that operate on polygonal approximations of
the error ellipses, rather than on the implicit form of the
ellipses. The two operations are implemented as follows:

expansion – The solution to this operator is the convex hull
CH(V E), whereV E is the union of the points on the
boundaries of the error ellipses surrounding each ver-
tex in CH(V) (as shown in Figure 2). Using polygo-
nal approximations to the error ellipses, the algorithm
computes the convex hull of the union of the vertices
of these polygons. Intuitively, the precise representa-
tion of CH(V E) includes all the points on a collec-
tion of curved segments, where each ellipse contributes
one curved segment. For each ellipse, there is an ex-
terior tangent line between the ellipse and each of the
two neighboring ellipses. The curved segment for an
ellipse is the boundary of the ellipse between the in-
tersection points of the ellipse with these two tangent
lines. We introduce slight error by computing the con-
vex hull of the approximated error ellipses, rather than
determining the exact representation and then approx-
imating the curved line segments with polylines.

contraction – To contractCH(V), we first determine the
interior tangent lines between each pair of adjacent er-
ror ellipses. Then, for each ellipse, the intersection of
these two tangent lines is computed. The solution to
the contraction operator is the convex hullCH(V C),
whereV C is the set of these intersection points (as
shown in Figure 2). The tangent line between any two
error ellipses can be computed straightforwardly. First,
the joint convex hull of the polygon approximations of
the two ellipses is computed. By maintaining vertex
order information, we can immediately find the edge of
the convex hull that lies along the tangent line. This is
the precise representation ofCH(V C) (i.e.,CH(V C)
contains no curved segments), although we introduce
slight error by computing the tangent line between the

(a) The convex hull can be
inadequate for rendering an
object silhouette on a non-
convex object, such as the
rabbit shown here.

(b) Using the error
bounds at each vertex
to grow the silhouette
yields better results.

Figure 4. Using Error Estimates with Concave
Objects

approximated ellipses rather than determining the ex-
act tangent lines.

6.2 Discussion

We use the convex hull of the vertices of an object to
approximate the silhouette of that object for two reasons.
First, convex hulls can be computed quickly, while there
is no fast algorithm to compute the external contour of an
object from an arbitrary view point. Second, even if we
could compute the silhouette quickly, most of the uses we
envision for this information would either not benefit signif-
icantly from a more accurate (non-convex) silhouette, or the
algorithms to implement them would become significantly
more complex when given an non-convex polygon.

However, an exact contour is useful when we want to
render the silhouette of a complex object, such as the rab-
bit in Figure 4. For other uses (see Section 2), we could
get better results by having the programmer break down a
concave object into a collection of convex parts, and use it-
erative algorithms on these multiple parts. For example, if
we are using the compressed hull to find a good place to la-
bel the rabbit, we could break the model into three parts that
are closer to being convex (e.g., the body and two ears), and
simply try to use each part in turn to find possible locations
for the labels. This approach also has the advantage that we
can prioritize the part of the object we wish to label.

7 Experimental Results

The framework was implemented and tested on a mobile
AR system. The system is composed of 6DOF trackers (an

7

Ashtech GG Surveyor real-time–kinematic GPS for posi-
tion, an InterSense IS300Pro for orientation), a see-through
head-worn display (Sony LDI-D100B Glasstron), a wire-
less network (a WaveLan), and a wearable computer with
3D hardware graphics acceleration. Using this system, a
user is able to walk around an outdoor environment and see
information such as the names and locations of buildings as
well as “fine-grained” details such as individual windows
and doors. Our framework is especially well suited for this
type of environment because most objects are “box like”
and are convex.

As noted in Section 4, our trackers provide limited in-
formation about the magnitude of their sensor error, so we
provide conservative estimates for their error bounds. In our
test system (see Figure 1), the error volumes are calculated
for a static set of objects. Therefore, the only error contri-
butions arise from the tracking errors. Implemented on a
Pentium II 333MHz processor, the set of sigma point pro-
jection matrices can be calculated in approximately 46µs.
The time required to project and construct the error statis-
tics for each point is approximately 17µs. For an object
consisting of 8 vertices, the error ellipses and the convex
hull can be constructed in approximately 720µs.

8 Discussion and Future Work

As can be seen, the method directly handles multiple
nested trackers, as well as any other errors that can be mod-
eled as probability distributions over the input values to the
coordinate system transformations. The method is also rela-
tively fast, although the basic method can be optimized sig-
nificantly in the context of a typical AR system. For ex-
ample, while the set of composite transformation matrices
PMX i(k) will need to be recomputed when the tracker
values change (just as the matrices used for rendering must
be recomputed), the entire process does not need to be re-
done from scratch each time. Intermediate values can be
cached, and for many trackers, the error model may not
change from frame to frame.

Notice, also, thatn is usually small for systems with
only a few trackers (e.g., each tracker introduces at most six
parameters with error), and that many places in the graph
share the same set of error parameters[x̂ (k) ,X (k)]. If two
nodes share the same error parameters, most of the compu-
tation necessary to create the2n+1 matrices can be reused.

If the overhead of computing error distributions becomes
high, even with optimization, the distributions may be com-
puted asynchronously (and more slowly) from the display.
Only a small amount of error may be introduced by reusing
Y (k), the covariance of the screen space error distribution,
for multiple frames. Similarly, it may be sufficient to mod-
ify the trackers to update the covariance of the input errors
more slowly, thus requiring less computation.

We hope to extend our system to estimate the effects of
temporal errors soon. It should be possible to model tem-
poral errors in a way that fits directly into this method, by
integrating the prediction algorithms into the set of variables
used to compute the locus of points. If we model the tracker
report as an equation of time (with the time variable be-
ing the distance into the future of the prediction), then this
time interval becomes an error term. However, we suspect
that a different approach may be needed, since the effects
of temporal error (e.g., system lag and tracker sensor laten-
cies) must be estimated much more rapidly, and will change
much more frequently, than other errors in the system.

9 Conclusions

This paper has described a method for real-time estima-
tion of dynamically changing registration errors. The ap-
proach is adaptive: at any time, it takes into account the
current tracking accuracy, as well as the geometric proper-
ties of objects which are to be augmented. The algorithm
can be readily extended to incorporate other errors that af-
fect the transformation matrices, and to use more detailed
tracker error information if it could be obtained from the
tracking hardware. We showed how error estimates for sin-
gle points can be aggregated to estimate the registration er-
ror of an object, by computing what part of the screenmight
be, and what part isdefinitely, occupied by the object. Fi-
nally, we showed how these error estimates can be used in
AR interfaces.

10 Acknowledgements

This work was supported by Siemens via a GVU In-
dustrial Affiliate Grant, ONR under Grant N000140010361,
and equipment and software donations from Sun Microsys-
tems and Microsoft.

References

[1] R. Azuma and G. Bishop. Improving static and dynamic
registration in an optical see-through HMD. InComputer
Graphics (Proc. ACM SIGGRAPH ’94), Annual Conference
Series, pages 197–204, Aug. 1994.

[2] M. D. Berg. Computational Geometry: Algorithms and Ap-
plications. Springer Verlay, 2000.

[3] S. Feiner, B. MacIntyre, T. Ḧollerer, and A. Webster. A
Touring Machine: Prototyping 3D mobile augmented real-
ity systems for exploring the urban environment.Personal
Technologies, 1(4):208–217, 1997.

[4] S. Feiner, B. MacIntyre, and D. Seligmann. Knowledge-
based augmented reality.Commun. ACM, 36(7):52–63, July
1993.

8

[5] T. Hoellerer, D. Hallaway, N. Tinna, and S. Feiner. Steps to-
ward accommodating variable position tracking accuracy in
a mobile augmented reality system. In2nd Int. Workshop on
Artificial Intelligence in Mobile Systems (AIMS ’01), August
2001.

[6] W. Hoff. Fusion of data from head-mounted and fixed sen-
sors. InProceedings of the First International Workshop on
Augmented Reality, pages 167–182, 1998.

[7] R. L. Holloway. Registration Error Analysis for Augmented
Reality. Presence: Teleoperators and Virtual Environments,
6(4):413–432, August 1997.

[8] M. Jacobs, M. A. Livingston, and A. State. Managing la-
tency in complex augmented reality systems. InProceed-
ings of 1997 Symposium on Interactive 3D Graphics, pages
49–?54, April 1997.

[9] S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte. A
New Approach for the Nonlinear Transformation of Means
and Covariances in Linear Filters.IEEE Transactions on
Automatic Control, 5(3):477–482, March 2000.

[10] G. Klinker, T. Reicher, and B. Brugge. Distributed user
tracking concepts for augmented reality applications. InIn-
ternational Symposium on Augmented Reality (ISAR 2000),
Oct 5-6 2000.

[11] D. Lerro and Y. K. Bar-Shalom. Tracking with Debi-
ased Consistent Converted Measurements vs. EKF.IEEE
Transactions on Aerospace and Electronics Systems, AES-
29(3):1015–1022, July 1993.

[12] B. MacIntyre and E. Coelho. Adapting to dynamic regis-
tration errors using level of error (loe) filtering. InInterna-
tional Symposium on Augmented Reality (ISAR 2000), Oct
5-6 2000.

[13] SportVision, Inc. 1st and Ten.http://www.sportvision.com.
[14] M. Tuceryan and N. Navab. Single point active alignment

method (spaam) for optical see-through hmd calibration for
ar. InInternational Symposium on Augmented Reality (ISAR
2000), Oct 5-6 2000.

[15] J. K. Uhlmann. Simultaneous map building and localization
for real time applications. Technical report, University of
Oxford, 1994. Transfer thesis.

[16] S. You, U. N. R., and Azuma. Orientation tracking for out-
door augmented reality registration.IEEE Computer Graph-
ics and Applications, 19:36–42, 1999.

9

