
Hybrid Tuning of an Evolutionary Algorithm for Sensor Allocation

Myriam Abramson
Naval Research Laboratory

Washington, DC 20375
Myriam.Abramson@nrl.navy.mil

Ian Will
Naval Research Laboratory

Washington, DC 20375
ian.will@nrl.navy.mil

Ranjeev Mittu
Naval Research Laboratory

Washington, DC 20375
ranjeev.mittu@nrl.navy.mil

Abstract—The application of evolutionary algorithms to the
optimization of sensor allocation given different target configu-
rations requires the tuning of parameters affecting the robustness
and run time of the algorithm. In this context, parameter settings
in evolutionary algorithms are usually set through empirical
testing or rules of thumb that do not always provide optimal
results within time constraints. Design of experiments (DOE)
is a methodology that provides some principled guidance on
parameter settings in a constrained experiment environment
but relies itself on a final inductive step for optimization. This
paper describes a sensor allocation tool developed for intelligence,
surveillance and reconnaissance (ISR) in the maritime domain
and introduces a hybrid methodology based on DOE and machine
learning techniques that enables the tuning of an embedded par-
ticle swarm optimization (PSO) algorithm for different scenarios.

I. INTRODUCTION

A sensor allocation tool (SAT) has been brought up as part
of the Interactive Scenario Builder (BUILDER) to automate
the optimal placement of sensors for intelligence, surveillance
and reconnaissance (ISR). Builder is a 3D tactical decision
aid and mission planning system that provides insight into,
and visualization of, the radio frequency (RF) environment
and is accessible to the DoD community [1]. One of the key
capabilities that BUILDER offers is its suite of RF propagation
models implemented by another DoD owned software tool
called EMPIRE. A user typically creates a scenario consisting
of platforms and threats (and their anticipated or projected
movements) within the BUILDER environment. When con-
structing a scenario, the different types of sensors on the
various platforms must also be specified as well as their
operating characteristics.

Platform allocation optimization is a complex problem
that involves (1) the optimization of path planning for the
platforms, (2) the configuration of the sensors on a platform,
and (3) the coordination of the platforms themselves. Previous
work has included team models of unattended ground sensor
networks [2] and cooperative path planning of unmanned aerial
vehicles (UAVs) [3]. By discretizing the geospatial search
space, platform allocation optimization can be solved as a
combinatorial optimization problem similar to role allocation
problems where the tasks are waypoints on a grid. A signal
graph within BUILDER discretizes the geospatial space and
stores the RF propagation from the predicted ISR targets

at each node taking into account terrain, no-fly zones, and
other constraints such as weather. ISR targets may be physical
objects (target for radars, infrared or optical), electronic trans-
missions (targets for passive electronic sensors), or areas of
interest, varying in position and altitude. Knowing the current
location of those ISR targets is a wicked problem involving
the successful tracking of those targets and therefore implying
the optimization of the platform allocation itself. Here, the
current and predicted motion of the ISR targets in a scenario
is inferred from track pattern history. Figure 1 illustrates the
signal graph as an overlay to the problem space. Finding a
possible allocation of platforms is then a matter of checking
whether a sensor on a platform can “receive” a target signal
at this location. The size of this signal graph (i.e. the number
of nodes) is manually set but ultimately should depend on the
density of the platforms and the targets and could affect the
run-time of the optimization algorithm. Using the nodes of the
signal graph, the A* algorithm, native to BUILDER, computes
the feasibility of a path from the location of the platform to its
destination. This evaluation is included in the optimization of
the platforms location in the sensor allocation tool in order to
minimize distance cost. The planning horizon, determined by
the length of the scenario, is the time at which the allocation
of sensors is optimized although the period can be discretized
to continuously optimize against a dynamic situation. The time
step discretization should therefore be a function of the change
in situational awareness. Figure 2 describes the architecture of
SAT within BUILDER.

While intelligence analysts are trained to manipulate the
scenario parameters, it is desirable that the optimization
parameters automatically adjust to the scenario without the
human-in-the-loop. This paper is a step in this direction.
The remainder of this paper is organized as follows. Sec-
tion II describes the particle swarm optimization used by
the sensor allocation tool. Section III summarizes previous
work in parameter tuning and introduces our hybrid approach
while Section IV presents experimental results followed by
conclusions in Section V.

II. OPTIMIZATION

Several optimization algorithms apply to the sensor al-
location problem. Evolutionary computation is particularly

1672978-1-4244-7835-4/11/$26.00 ©2011 IEEE

Figure 1. Signal Graph

Figure 2. SAT architecture as a BUILDER plugin

attractive because of the ease with which to combine objective
functions (i.e. metrics) through multi-objective optimization
and its capability to address non-linear classes of optimization
problem. Evolutionary computation can also refine other opti-
mized solutions (for example, dynamic programming solutions
have also been applied to this problem) to achieve some global
solution metric or to replan in dynamic environments without
recomputing an entire solution.

Particle swarm optimization (PSO) is an evolutionary com-
putation algorithm (Alg. 1) based on the social learning
metaphor [4] and the reinforcement of past success whereby
an agent, represented by an n-dimensional velocity vector,
adapts its solution from the solution of one of its neighbors
and past performance. It is characterized by its simplicity and

Algorithm 1 Basic PSO algorithm
Initialize weight vectors x,
parameters vmax,w, ϕ1, ϕ2

DO

pg ←argmaxi f(pi) % global best particle
FOREACH particle i

pl ←argmaxj f(pj) % local best particle
FOREACH dimension d

r1 ← random(0, 1)
r2 ← random(0, 1)
vid ← wvid+ϕ1r1(pld−xid)+ϕ2r2(pgd−xid)
vid ← sign(vid)min(abs(vid), vmax)
xid ← xid + vid

ENDFOR
decrement w
ENDFOR

UNTIL termination criterion

efficiency due to its small population size and number of
parameters. The search through the problem space, controlled
by the n-dimensional velocity vector, gives the learning agent
a “particle” movement characteristic. In summary, three types
of interaction are usually distinguished: (1) a top-down type
of interaction based on normative knowledge of the “global
best”, gbest; (2) a bottom-up type of interaction based on
internal personal performance, pbest (in addition, pbest acts as
the agent’s episodic memory of past performances); and (3) a
neighborhood knowledge of the “local best”, lbest. The cogni-
tive (pbest) and social influences (gbest or lbest) are modulated
by the stochastic parameters ϕ1 and ϕ2 respectively. The shape
of neighborhood models determines the choice of gbest or
lbest and affects the convergence of a swarm [5]. An inertia
parameter w, decreasing with time, acts as the momentum
in neural networks in controlling the exploration-exploitation
trade-off of the search. The velocities v are bounded to a value
±vmax to control the search. As agents interact, subsets of the
population become more similar and successful together. The
topology of the population determines the local best neighbor
and not the similarity of the vectors themselves as is found in
instance-based learning.

In addition to N, the population size, and C, the maximum
number of iterations (cycles), the parameters of the PSO
algorithm, vmax,w, ϕ1, ϕ2, are usually set to default values
(±∞, [0.9− 0.7] , 1.49, 1.49) that have been shown to work
empirically [4]. It has also been shown that the parameters
must satisfy the relationship 1 > w > 1

2 (ϕ1 + φ2) − 1 > 0
for convergence [6]. The number of iterations specified serves
also as an upper bound for other parameters detecting conver-
gence (for example, the number of consecutive iterations with
minimum diversity radius in the population) but that capability
is hard to achieve. The topology of the swarm can also affect
results. A small neighborhood size l slowly increasing with
time in proportion to the number of iterations can have slow
convergence but has better chances not to get stuck in a local
minima by exploring the search space more thoroughly [7],
[6]. Assuming that ϕ1 and ϕ2 divides equally and assuming the
full range of w, the parameters left to optimize for PSO are N,
C, and ϕ, the sum of ϕ1 and ϕ2, where 2 < ϕ < 4 to satisfy

1673

Figure 3. Red/Blue platform motions visualization in BUILDER

the convergence relationship with w. In addition, the size of
the signal graph R (asuming equal dimensions for rows and
columns) is another parameter specific to the sensor allocation
tool. The size of the search space is the Cartesian product
of the dimensions of each parameter N × C × ϕ × R with
appropriately discretized ranges. The n-dimensional vector
to be optimized is a list of candidate destinations for each
friendly platform (asset) with varying range [−r, r] where
r is the number of nodes in the signal graph. A negative
value for r indicates to ignore this platform in the sensor
allocation problem. For example, [-41,33,25,-5] indicates to
allocate platform 2 to grid point 33 and platform 3 to gridpoint
25 and to ignore platform 1 and 4. Algorithm 2 describes
the sensor allocation optimization routine where the update of
the particle position follows Alg. 1. The platform motions are
automatically updated and visualized within BUILDER from
the best solution obtained (Fig. 3).

Multiple PSO populations optimized with different fitness
functions can combine through the velocity vector update
equation in Alg. 1 [8]. The selection of a population to
influence another can either be made randomly or through
a topological arrangement of the populations (e.g. ring topol-
ogy). The “best” solution is then the solution on the Pareto
frontier of the different fitness functions. We have decomposed
a coordination quality metric designed for multi-agent systems
[9] into its different components – resources, performance
and failures – to offer some flexibility through multi-objective
optimization in achieving desired outcomes. Figure 4 illus-
trates the interface for the optimization settings while the
PSO parameters proper and the size of the signal graph are
specified through an auxiliary input file hidden from the user.
Providing automated guidance on those latter parameters given
a scenario is needed for the robustness of the optimization in
an operational environment.

III. PARAMETER TUNING

Given a certain configuration of sensors, platforms and
targets, an automated parameter tuning capability is necessary
for making allocation algorithms robust and usable while
preserving optimality. A good survey of tuning methods for
evolutionary algorithms can be found in [10] where algorith-
mic and search approaches are distinguished. The main charac-

Figure 4. Interface for optimization settings in SAT. The coverage redun-
dancy index indicates whether a penalty should incur due to overlaps in target
coverage.

Algorithm 2 Sensor Allocation Optimization Loop
Random restart reintializes a particle that fails to meet the
solution constraints.

INPUTS: assets, targets, signal graph,
fitness metric

OUTPUT: Best platform assignments and paths
Initialize population vectors
ITERATE

FOREACH candidate solution

Evaluate fitness of solution:
Check destination feasibility with A*
Check for signal received
Check for time-to-destination constraint
Update particle position (Alg. 1) or

random restart

END

teristics of these approaches as they relate to sensor allocation
optimization where different scenarios define different fitness
spaces are summarized below.

While it is possible to evolve local parameters together
with the solution parameters in an evolutionary algorithm,
thereby increasing the search space, it is difficult to evolve
the meta-level parameters such as the population size and the
number of iterations themselves in this manner. Toward this
end, another evolutionary algorithm, dimensioned with default
values, can search the metal-level parameter space [11]. This
meta-evolutionary approach does not however infer directly
from the problem space (our scenario) to the search space
parameters and needs to be run anew with each new scenario.
Estimating probability distributions for the parameters corre-
lated with increased performance provides some robustness to
noise and situation changes [12] but still no direct inference
from different scenarios is possible.

Search methods such as racing [13] and sharpening [10]
manipulate the parameter vectors to be evaluated to incremen-
tally converge to an optimal set of values. Sequential parameter
optimization [14] is a search method that evaluates new pa-
rameter vectors with a principle approach based on a sampling
technique. A regression tree can guide the search for optimal

1674

Run A B
1 -1 -1
2 -1 1
3 1 -1
4 1 1
5 0 0
6 0 0
7 −

√
2 0

8
√
2 0

9 0 −
√
2

10 0
√
2

Table I
2-FACTOR CCD DESIGN TEMPLATE

values by progressively dividing the parameter space [15]. Our
approach differs from search method techniques in that we
obtain optimal parameter values from the interpolation of a
minimal set of experimental values and where the interpolation
is done with a machine learning technique to take into account
the interaction of the parameters. This approach enables the
decoupling of the characteristics of the simulation itself from
the characteristics of the evolutionary algorithm.

Experimental design provides a principled way of finding
parameter values that will produce the desired optimization
with a minimum number of experiments. Unlike ablation
studies that vary one parameter at a time, this approach
takes parameter interactions into account. The parameter levels
(values) are standardized and encoded so templates for exper-
imental design can apply to different problems with a simple
mapping. There is a linearity assumption between input and
output in 2-level designs (designs where only high and low
parameter values are considered and encoded as ±1). When
that assumption fails, intermediary levels of the input values
are explored as in the central-composite design (CCD) [16]
and a quadratic model can then be applied to obtain a model of
the input feature relationships with the output response (Table
I). Characteristics of the situation to include the conditions
under which the algorithm will apply as well as the parameters
of the optimization algorithm can be part of the experimental
design. This approach can therefore provide a direct inference
from the problem space to the search space but provides
no guidance for complex problems where we don’t have a
model bias. In addition, we also want to minimize certain
input parameters such as the population size and the number
of iterations while maximizing the response but experimental
design does not give any guidance on constrained optimization.

Our approach leverages from the experimental values found
in the CCD design and classifiers from machine learning to
learn the optimization algorithm responses to inputs and pa-
rameters. The CCD design is a flexible and efficient “classical”
design for capturing the feature interactions of quantitative fac-
tors. It consists of a full or fractional design portion augmented
by a set of intermediate points. We explore the representation
change to multi-dimensional tile coding in this problem. Tile
coding (derived from CMAC [17], [18]) discretizes continuous
state spaces into overlapping regions with possibly different

Run A B C D E
1 -1 -1 -1 -1 1
2 -1 -1 -1 1 -1
3 -1 -1 1 -1 -1
4 -1 -1 1 1 1
5 -1 1 -1 -1 -1
6 -1 1 -1 1 1
7 -1 1 1 -1 1
8 -1 1 1 1 -1
9 1 -1 -1 -1 -1
10 1 -1 -1 1 1
11 1 -1 1 -1 1
12 1 -1 1 1 -1
13 1 1 -1 -1 1
14 1 1 -1 1 -1
15 1 1 1 -1 -1
16 1 1 1 1 1
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 α 0 0 0 0
25 −α 0 0 0 0
26 0 α 0 0 0
27 0 −α 0 0 0
28 0 0 α 0 0
29 0 0 −α 0 0
30 0 0 0 α 0
31 0 0 0 −α 0
32 0 0 0 0 α
33 0 0 0 0 −α

Table II
5-FACTOR CCD DESIGN TEMPLATE WHERE −α AND α MAP TO THE

MINIMUM AND MAXIMUM VALUE RESPECTIVELY AND 0 TO THE
MIDPOINT. ±1 MAPS TO SOME DISPLACEMENT FROM THE MIDPOINT. THE

FACTORS MAP TO OUR PARAMETERS N, C, ϕ, R AND SCENARIO TYPE.

orientations and resolutions (Fig. 5). Tile coding is a useful
technique for dimensionality reduction in large state space.
Each tile becomes a binary feature in a binary vector that
compactly describes a state. This binary vector can in turn be
fed to an associative neural network, such as the perceptron, to
learn the association of the optimization algorithm’s response
to a set of inputs and parameters. This change of representation
promotes the generalization of the input space such that points
close together in the input space are also close in the output
space while points that are distant stay distant and capture non-
linear feature interactions with a simple associative algorithm.
The degree of generalization corresponds to the number of
overlapping tile layers (or tilings). Tile coding has been
successfully coupled with reinforcement learning methods to
learn the value of state-action pairs in continuous state spaces
as a weighted linear combination of binary features [19].
Tile coding is similar to hash coding techniques [20] for
approximate evaluation. Tile coding can also be used as a
technique for projecting a problem from a finite dimensional
space where no linearity between inputs and outputs can be
found to a higher dimensional space. Support vector machines
[21] generalizes this concept for classification problems with

1675

Figure 5. Tile coding: Counting from top-left to bottom-right, the dot is in
tile 4 of the first set, tile 5 of the second set, and tile 11 of the third set and can
be represented by the feature vector “00010000100000000000000100000”.

a kernel function mapping data points and their dot products
to a higher dimensional space.

While tile coding enables the discretization of continuous
state spaces, experimental design tests for corner points in the
space. To resolve this difference, we tile the space so that
the experimental design points are at the center of the tile.
Fig. 6 illustrates the one-dimensional mapping of the central
composite design points (corner, center and axial) into a 2-
layer tile coding with 3 overlapping tiles where −α and +α
maps to the minimum and maximum range of the dimension
respectively. Each data point in the input space is mapped to
two layers and therefore has at least two binary features. In
a multidimensional setting, the first tiling has np tiles where
n is the number of range increments and p is the number of
parameters. The second tiling subdivides further the first into
np tiles leading to a combinatorial explosion of order nnp.
Our approach is to reduce the multidimensional encoding to a
one-dimensional encoding with overlapping tiles and different
tile width at each layer. The amount of overlap, tile width, and
number of layers affect the generalization quality. Automated
approaches to tile generation [22] can find an optimized tile
configuration to achieve best prediction performance. The
following steps summarize our approach:

1) Collect experiments for the CCD design of the four
parameters N,C, ϕ, and R, in each scenario.

2) Generate tile coding layers (see Alg 3).
3) Convert multi-dimensional encoding of parameters ac-

cording to their discretization increment from CCD
design experiments to one-dimensional encoding.

4) Set binary features by checking one-dimensional encod-
ing tile memberships in each layer to obtain a binary
feature vector associated with a response outcome.

5) Train with machine learning methods on binary feature
vectors obtained in Step 3.

Then, given a scenario, we’ll iterate through the possible
parameter values, N×C×ϕ×R, to obtain the set of parameter
values S given a scenario that will maximize the estimated
responses ŷ from the trained model obtained in Step 5 while
minimizing costs such as population size and cycles (Alg. 4).

Figure 6. One-dimensional mapping of CCD data points into 2-layer tile
coding with 3 overlapping tiles in the first layer

Algorithm 3 Tile generation for a layer given range and tile
width with random offset

INPUT: range, tileWidth
OUTPUT: tiles
tiles ←{}
overlap ← random(tileWidth

2
)

start ←0
end ←0
WHILE (end < range)

end ← start+tileWidth
tiles ← tiles ∪(new Tile(start,end))
start ← end-overlap

END

S = argmin max
N×C×ϕ×R

ŷ

To scale up to large number of dimensions, a fractional
design rather than a full factorial design can be used to
gather prototype experiments and a randomized algorithm
could replace the iteration through the possible parameter
values (Fig. 5). Randomized algorithms provide an approx-
imate solution while bounding the probability of an incorrect
solution. Let Ei the event of not picking the right optimal
value for parameter i. The probability of picking the right
optimal value is at most 1

vi
for vi values of parameter i so that

P (Ei) ≥ 1 − 1
vi

. Let M = max(v1, ..., vk), the probability
of not selecting a set of optimal value for k parameters is
P (∪k

i=1Ei) ≤
(
1− 1

M

)ksince each parameter value selection
is independent. We can repeat the execution of the inner loop
N times such that the probability of not selecting a set of
optimal value is less than a certain threshold δ:

N(1− 1

M
)k ≤ δ

1676

Algorithm 4 Minimize parameter values while maximizing
outcome given one fixed parameter

NAME: GETBESTPARMS
INPUT: paramIndex, instance, params
OUTPUT: BestOutcome {Instance, response}
BestOutcome ←{instance, 0}
IF (paramIndex == params.length)

outcome ←classifyInstance(instance)
RETURN BestOutcome ←{instance, outcome}

END
parameter ←params[paramIndex]
IF fixed parameter

Outcome ←GETBESTPARMS (paramIndex+1, instance)
BestOutcome ←
maxresponse(BestOutcome, Outcome)

END
FOREACH parameter value of parameter

modify instance to include value
Outcome ←GETBESTPARMS (paramIndex+1, instance)
BestOutcome ←
maxresponse(BestOutcome, Outcome)

END

Algorithm 5 Randomized GETBESTPARMS where N min-
imize the error according to a threshold δ.

NAME: GETBESTPARMS
INPUT: paramIndex, instance, params
OUTPUT: BestOutcome {Instance, response}
BestOutcome ←{instance, 0}
IF (paramIndex == params.length)

outcome ←classifyInstance(instance)
RETURN BestOutcome ←{instance, outcome}

END
parameter ←params[paramIndex]
IF fixed parameter

Outcome ←GETBESTPARMS (paramIndex+1, instance)
BestOutcome ←
maxresponse(BestOutcome, Outcome)

END
REPEAT N times

value ←select a random parameter value
modify instance to include value
Outcome ←GETBESTPARMS (paramIndex+1, instance)
BestOutcome ←
maxresponse(BestOutcome, Outcome)

END

IV. EXPERIMENTAL RESULTS

In addition to the four parameters for our PSO optimization
(using a global best topology), our scenario variable is repre-
sented by the ratio of assets over targets, #assets

#targets . Finding a
continuous representation of the scenario is essential to this
problem. Other characteristics of a scenario could include
the terrain elevation, atmosphere refraction, particulate count
(air clarity), sea-state, wind, and precipitation. Five distinct
scenarios were generated to correspond to the five levels of the
central composite design (including center and axial points).
The range of the variables are described in Table III. The data
for a CCD design (including a half fractional design where
interaction variables are aliased with a main factor) with 5
factors (Table II) and 16 runs was generated using the sensor

Input Range Increment
N 10-100 10
C 100-500 100
ϕ 2.1-3.9 0.3
R 10-50 10

#assets
#targets

0.23-0.44 given

Table III
VARIABLE RANGES AND INCREMENTS FOR EXTRAPOLATION

allocation tool taking performance, #target received
#targets , as our

response variable. Including the CCD points, our experimental
sample size was 33 combinations of parameter values of 16
runs each or 528 examples. While the optimization is bounded
by the size of the scenario, there are trade-offs between pa-
rameter values and response quality. For example, more cycles
will not improve the optimization in a large scenario as much
as in a smaller scenario. Figure 7 describes the interaction
between cycles and scenario size. A linear regression model
of the response variable from the CCD design experiments is
as follows with a correlation coefficient of 0.88:

response = 0.0005N + 0.0001C − 0.01ϕ+ 0.001R+ 1.80S + 0.1734

In our experiments, only the scenario was found to signif-
icantly influence the response in a linear regression model.
The resources to maximize the response, i.e. population size,
cycles, and graph size, might be unnessary or prohibitive to
obtain a good solution within timing constraints. A multi-
layer (ML) perceptron (from Weka’s toolbench [23]) with
default values (3 nodes in the hidden layer) trained with the
same experimental data points from the CCD design gives
us more flexibility in selecting those parameters using Alg.
4. In addition, using tile coding with 2 layers of 23 and 41
tiles respectively with random offsets (generating 88 binary
features), we also trained a multi-layer perceptron with the
same dataset converted to tile coding. In both instances, we
obtained a correlation coefficient (accuracy) of 0.90 with 10-
fold cross-validation. The comparative results presented in
Table IV shows that the ML perceptron can give us more
flexibility in setting the population size while agreeing with
the general results of a linear regression model for the other
parameters to achieve maximum performance. There is a
significant difference in the results obtained with the ML
perceptron in Scenario 1 when compared with default values
and tile coding over 10 runs (t-tests p-values less than 0.001).
The results also show that the representation change to tile
coding with the ML perceptron was not always better than the
default values in those experiments but that it has the potential
to provide more refinement in setting those parameter values
and enlarge the parameter space.

V. CONCLUSIONS

We have shown how design of experiments methods can
provide guidance on obtaining sample data points from which
to train a non-linear classifier to estimate the response given
certain parameter values. This capability enables the interac-
tive tuning of an optimization algorithm for a sensor allocation

1677

Scenario Default Performance ML Perceptron ML Perceptron ML Perceptron
Recommended ML Perceptron Recommended w/ Tile Coding

#assets
#targets

(20,200,2.98,20) Settings Performance Settings w/ Tile Coding Performance

1 0.23 0.59±0.05 (30,500,2.1,50) 0.65±0.0 (40,400,3.6,50) 0.60±0.03
2 0.28 0.68±0.05 (10,500,2.1,50) 0.74±0.06 (40,100,2.7,50) 0.72±0.03
3 0.33 0.79±0.05 (30,500,2.1,50) 0.83±0.03 (10,100,3.9,20) 0.75±0.03
4 0.40 0.92±0.06 (10,500,2.1,50) 0.95±0.05 (10,100,2.1,40) 0.90±0.06
5 0.44 0.89±0.04 (10,500,2.1,50) 0.91±0.03 (10,100,3.9,30) 0.85±0.03

Table IV
COMPARATIVE RESULTS BETWEEN DEFAULTS SETTINGS AND SETTINGS FROM ML PERCEPTRON MODEL (AVERAGED OVER 10 RUNS)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 150 200 250 300 350 400

R
e

s
p

o
n

s
e

 (
o

v
e

r
1

6
 r

u
n

s
)

Cycles

Interaction Plot

Small Scenario
Large Scenario

Figure 7. Interaction plot between cycles and scenarios

tool where the complexity of a scenario can be encoded as a
parameter itself. More precision in this encoding is needed to
capture the different aspects of a situation. The results have
shown that the ML perceptron can provide refined guidance on
the setting of the parameters for particle swarm optimization
while additional encoding of the training set with tile coding
was not necessary to obtain better parameter values than
default values in those experiments. It was shown however
that tile coding can provide more refinement in the settings
of the parameter values and additional work would consist
of automating tile encoding in conjunction with the standard
encoding of experimental design.

The authors would like to acknowledge the Tactical SIGINT
Technologies Program Management Office for sponsoring this
research and development activity and providing valuable
feedback.

REFERENCES

[1] “BUILDER.” Retrieved from https://builder.nrl.navy.mil, September
2010.

[2] A. S. Yilmaz, B. N. Mcquay, H. Yu, A. S. Wu, and J. C. Sciortino,
“Evolving sensor suites for enemy radar detection,” in Genetic and
Evolutionary Computation GECCO, 2003.

[3] T. Shima and C. Schumacher, “Assigning cooperating uavs to simulta-
neous tasks on consecutive targets using genetic algorithms,” Journal of
the Operational Research Society, vol. 60, no. 7, 2009.

[4] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kaufmann,
2001.

[5] H. Liu, B. Li, Y. Ji, and T. Sun, Applied Soft Computing Technologies:
The Challenge of Complexity, ch. Particle Swarm Optimization: from
lbest to gbest. Heidelberg: Springer-Berlin, 2006.

[6] A. P. Engelbrecht, Computational Intelligence: An Introduction. Wiley,
2007.

[7] P. Suganthan, “Particle swarm optimiser with neighborhood operator,”
in Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 1958–1962, 1999.

[8] K. E. Parsopoulos, D. K. Tasoulis, M. N. Vrahatis, and K. Words,
“Multiobjective optimization using parallel vector evaluated particle
swarm optimization,” in In Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications (AIA 2004,
pp. 823–828, ACTA Press, 2004.

[9] M. Abramson and R. Mittu, Challenges in Large-Scale Coordination,
ch. Multiagent Coordination in Open Environments. Springer, 2005.

[10] S. K. Smit and A. E. Eiben, “Comparing parameter tuning methods for
evolutionary algorithms,” in Proceedings of the Eleventh conference on
Congress on Evolutionary Computation, 2009.

[11] J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Transactions on Systems, Man, and Cybernetics,
1986.

[12] V. Nannen and A. E. Eiben, “Relevance estimation and value calibration
of evolutionary algorithm parameters,” in International Joint Conference
of Artificial Intelligence IJCAI, 2007.

[13] O. Maron and A. W. Moore, “The racing algorithm: Model selection
for lazy learners,” Artificial Intelligence Review, vol. 11, pp. 193–225,
1997.

[14] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss, “Sequential pa-
rameter optimization,” in IEEE Congress on Evolutionary Computation,
pp. 773–780, 2005.

[15] T. Bartz-Beielstein and S. Markon, “Tuning search algorithms for real-
world applications: A regression tree based approach,” in IEEE Congress
on Evolutionary Computation, pp. 1111–1118, 2004.

[16] G. E. Box and N. R. Draper, Empirical Model-building and response
surfaces. John Wiley and Sons, Inc., 1987.

[17] J. Albus, Brains, Behaviour, and Robotics. McGraw-Hill, 1981.
[18] W. Miller, F. Glanz, and L. Kraft, “CMAC: an associative neural network

alternative to backpropagation,” in Proceedings of the IEEE, pp. 1561–
1567, 1990.

[19] R. Sutton, “Generalization in reinforcement learning: successful ex-
amples using sparse coarse coding,” Advances in Neural Information
Processing Systems, vol. 8, pp. 1038–1044, 1996.

[20] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Communication of the Association of Computing Machinery CACM,
vol. 13, pp. 422–426, 1970.

[21] V. Vapnik, Estimation of dependencies based on empirical data.
Springer-Verlag, 2006.

[22] S. lin and R. Wright, “Evolutionary tile coding: An automated state
abstraction algorithm for reinforcement learning,” in Workshop at the
Twenty-fourth AAAI Conference on Artificial Intelligence, 2010.

[23] “WEKA.” Retrieved from http://www.cs.waikato.ac.nz/ml/weka/, De-
cember 2009.

1678

