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Summary. This paper proposes a new approach to multi-agent systems leveraging from re-
cent advances in networking and reinforcement learning to scale up teamwork based on joint
intentions. In this approach, teamwork is subsumed by the coordination of learning agents.
The intuition behind this approach is that successful coordination at the global level gener-
ates opportunities for teamwork interactions at the local level and vice versa. This unique
approach scales up model-based teamwork theory with an adaptive approach to coordination.
Some preliminary results are reported using a novel coordination evaluation.

1.1 Introduction

Open environments such as Peer-to-Peer (P2P) and wireless or Mobile AdHoc Net-
works (MANET) provide new challenges to communication-based coordination al-
gorithms such as joint intentions [13] as well as the opportunity to scale-up. Our
framework is based on the proxy architecture of Machinetta [17] where proxy
agents perform the domain-independent coordination task on behalf of real, domain-
dependent agents. This framework is extended with a coordination mechanism of
individual actions based on reinforcement learning. This adaptive proxy agent ar-
chitecture is illustrated in Figure 1.1. In this approach, local teamwork outcomes
provide the feedback for learning the coordination task on a larger scale. The team-
work theory of joint intentions and its associated problems in open environments are
presented first and then our general approach, OpenMAS, is introduced with illustra-
tion from the prey/predator example [3]. An implementation addressing some of the
issues is presented followed by conclusions for future work.

1.2 Joint intentions and Open Environments

Joint intentions [5, 13] form the cornerstone of teamwork theory of BDI (Belief, De-
sire, Intention) agents. It differentiates joint actions from individual actions by the
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Fig. 1.1. Adaptive proxy agent architecture

presence of a common internal state (beliefs) and the joint commitment of achieving
a goal. It is based on the communication of critical information among team mem-
bers. However, the mutual responsiveness expected of team members at a local level
is difficult to achieve on a larger scale. Open environments are characterized by their
dynamic nature and the heterogeneity of the agents as well as asynchronous and un-
reliable communication on a large scale. The problems addressed can be categorized
as follows: team formation, role allocation, synchronization of beliefs, communica-
tion trade-offs, and information sharing.

1. Team Formation. An open environment gives the opportunity to find teammates
appropriate for a task instead of relying on a fixed group of agents. What is the
best way to find teammates? When is the best time to find teammates? How to
decide whether to join a team? In open environments, peers form “groups” by
similarity of individual interests. Likewise, similarity of individual intentions is a
necessary stepping stone for team formation in open environments. An intention
is defined here [5] as the decision to do something in order to achieve a goal and
can be construed as a partial plan.

2. Role Allocation. While direct point-to-point communication with any node can
be expensive and uncertain, access to neighbors is readily available in open envi-
ronments. P2P middleware, such as JXTA (Juxtapose) [1], provides the function-
ality needed to communicate reliably and cheaply with neighbors. In MANET,
the possibility of disconnecting the network is another constraint in accepting a
role requiring a change in location. Figure 1.2 describe the connection role that
peers play in communication in MANET. In open environments, multiple teams
are involved. How to adjust the connectivity role of the agents so that each team
can accomplish its goals most effectively?

3. Synchronization of Beliefs. The theory of joint commitments is based on the
ability to synchronize beliefs regarding “who is doing what”. Teamwork breaks



1 Multi-Agent Systems in Open Environments 3

down when roles do not match expected beliefs leading to coordinated attack
dilemmas [14]. How to adjust gracefully to uncertainties in communication?

4. Communication Selectivity. The tradeoffs involve the robustness that redun-
dancy of messages can provide in open environments versus the costs of com-
munication to the network. When reliable communication cannot be assumed,
selective communication of critical information might be detrimental to the co-
ordination task.

5. Information Sharing. Sharing information is critical to the formation of a com-
mon internal state. The redundancy of messages from different sources provides
corroborative evidence to support the information transmitted while conflicts
undermine certainty. However, a problem in open systems is the unnecessary
replication of messages from the same source through the network leading to
false corroborative evidence.

Synchronization of beliefs, communication selectivity and information sharing are
areas that are complicated by open environments, while team formation as well as
role allocation are the problems we are interested in addressing given these compli-
cating factors.

Fig. 1.2. Multi-hop routing in a MANET

1.3 OpenMAS Approach

Our proactive approach consists of leveraging from the belief framework of cognitive
agents at the local level but endowing the agents with the adaptative capabilities of
reinforcement learners as an additional coordination mechanism at the global level
where communication is unsure and unreliable. The objective is to find a contin-
uum between large-scale coordination and local teamwork. The overarching issues
addressed in support of this objective are (1) how to integrate general models of co-
operation with reinforcement learning in distributed, open environments (2) what are
good evaluation measures for the propagation of beliefs to heterogeneous agents and
(3) how to integrate multiple teams.
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Methodology

Through the propagation of beliefs, the agents have some knowledge of the global
situation, albeit imperfect and decaying with time. This capability relaxes the in-
validation of the Markov property for multi-agent reinforcement learning systems.
Instead of committing to a non-local role, the agents just commit to the next indi-
vidual step. This is a least-commitment approach that addresses the problems out-
lined above of teamwork in open environments. Local environmental beliefs on the
other hand trigger a role allocation mechanism among neighbors sharing the same
beliefs. Role allocation of mutually exclusive tasks among agents can be modeled
with distributed resource allocation algorithms based on constraint satisfaction [24].
The joint actions generated are preferred over the individual actions generated by the
coordination learning mechanism. Similarities between joint actions and individual
actions produce the terminal rewards needed for the learning algorithm. In this ap-
proach, there is a tight integration between the local level of teamwork and the global
level of coordination. The overall approach is described in Algorithm 1. Figure 1.3
illustrates the approach in the prey/predator example.

Algorithm 1 Intention/Action loop

INPUT: intentions
OPENMAS-interpreter:
do
<information, intention> 4— receive-information()
if similar-intentions(intention)
accept-information ()
update—-current-state ()
endif
state—-estimation ()
take-next-step ()
reinforce-learn()
propagate <next-step, intentions>
forever

The information received includes information communicated from peers and/or perceived
local information from the environment

The environment of agents acting under uncertainty can be conveniently modeled as
a POMDP (Partially-observable Markov Decision Process). POMDP can be refor-
mulated as continuous-space Markov decision processes (MDPs) representing belief
states [10] and solved using an approximation technique. When propagating local
environmental beliefs, the redundancy of messages reinforces current state beliefs
through corroborative evidence while discrediting others. The most likely state of
the global situation is then modeled as an MDP and the action to take determined by
a stochastic policy approximated by a policy gradient method [19]. Through commu-
nication, the agents are able to construct a global, albeit imperfect, view of the world
validating their assumption of the Markov property for independent autonomous
decision-making based on trial and error. However, even assuming the same global
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Fig. 1.3. Prey/predator example
The agents propagate changes of position and changes in the prey’s status to their neighbors
recursively according to a time-to-live (TTL) parameter. The TTL parameter ensures that a
message does not bounce around needlessly when the destination cannot be found and can also
be used to disseminate information within a certain range. Role allocation strategies resolve
local conflicts.

knowledge of the world and optimization algorithm, coordination imposes the addi-
tional constraint that the agents choose the action leading to pareto optimality. For a
deterministic policy, this constraint can be met through conventions or through the
transmission of knowledge. Another way to meet this coordination constraint is to
learn a stochastic policy that approximates a mixed strategy.

Role allocation endows the agents with a goal-driven behavior. In addition to ac-
complishing their roles and searching for possible role instantiations, agents in open
environments have the additional implicit task of maintaining the connectivity of the
network. It is necessary to balance those sometimes conflicting goals. The capabil-
ity to assume multiple roles is a characteristic of intelligent and flexible behavior.
Instead of modeling each goal separately in an MDP given the state of the envi-
ronment, the goals themselves, as formulated by a role allocation strategy for each
target, are part of the environment. This soft-subsumption architecture for multiple
roles is illustrated in Figure 1.4.

1.4 Problem Modeling
The world is modeled as the problem space:
W ={S,5",A,T,R}

where



6 Myriam Abramson and Ranjeev Mittu

Role
—»|  Allocation —
| Strategy \

State —»

Learning
Engine

v

Action
Fig. 1.4. Soft-subsumption architecture for multiple roles

e S is the believed perceived local state of the world.
e S'is the believed global state of the world through propagation of information.
e A s the set of actions.

e T'is the set of transition probabilities

SxAxS—0,1]

R is the set of roles.

and

SXR—)A,

SI X Aj - R
where

e A; is the action determined to achieve a role.

e A; is the action determined by coordination in the believed state space S'.

A reward r is obtained if A; = A;.
The goal of each agent is to find a policy m maximizing the sum of expected rewards
such that:

Vse S, V™(s)=r+ Z T(s,m(s),s")yV7(s")

s'eS’

where s is the next state following the action prescribed by 7(s), r is the reward in
state s, and y is the discount factor weighting the importance of future rewards.
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1.5 An Example

An prototype evaluation of the OpenMAS general methodology has been conducted
with some simplifying assumptions with the RePast simulation tool [6]. Further
experiments are planned for a large-scale MANET simulation in ns-2 [2] using
P2PS [22], a P2P agent discovery infrastructure designed to work in ns-2 simula-
tions.

1.5.1 Prey/Predator Example

The prey/predator pursuit game is a canonical example in the teamwork literature
[3,11] because one individual predator alone cannot accomplish the task of capturing
a prey. Practical applications of the prey/predator pursuit game include, for example,
unmanned ground/air vehicles target acquisition, distributed sensor networks for sit-
uation awareness, and rescue operations. The original problem can be extended to
multiple teams by including more than one prey. Prey/predators can sense each other
if they are in proximity but do not otherwise communicate. Predators communicate
with other predators individually or can broadcast messages through their neighbors.
Four predators are needed to capture a prey by filling out four different roles: sur-
round the prey to the north, south, east and west. Those roles are independent of
each other and can be started at any time obviating the need for scheduling. The only
requirement is that they have to terminate at the same time either successfully when
a capture occurs or unsuccessfully if no team can be formed. The predator agents are
homogeneous and can assume any role but heterogeneity can be introduced by re-
stricting the role(s) an agent can assume. The prey and predators move concurrently
and possibly asynchronously at different time steps. In addition to the four orthog-
onal navigational steps, the agents can opt to stay in place. In case of collision, the
agents are held back to their previous position. Several escape strategies are possi-
ble for the prey. A linear strategy, i.e. move away in the same random direction, has
been shown to be an effective strategy while a greedy strategy, i.e. move furthest
away from the closest predator, can lead to capture situations [9].

The preference or utility u;; of predator agent 4 for a role j is inversely proportional
to the Manhattan distance d required to achieve the role. Other factors such as fatigue,
speed, resources, etc. can affect the preference for a role and are grouped under a
capability assessment C' [16].

1
uijzg XC," (1.1)

The predators move in the direction of their target when assigned a role or explore the
space according to a pre-defined strategy. The decision space for the role allocation
of P predators and p preys is O(pT) where T is the number of teams of size ¢ that
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can be formed with P predators'. This problem belongs to the most difficult class of
problems for constraint satisfaction in multi-agent systems [15] due to the dynamic
nature of the environment and the mutually-exclusive property of role allocation.

1.5.2 Role Allocation Strategy

An optimization algorithm can be used in parallel fashion by each agent based on
sensed and communicated information from the other agents in the group to au-
tonomously determine which role to assume. It is assumed that the other agents
reach the same conclusions because they use the same optimization algorithm [8].
The Hungarian algorithm [12] (see below) is used as the optimization method by
each agent. Information necessary to determine the payoff of each role needs to be
communicated. Therefore, it is the current local state within the perception range,
or augmented with second hand information, that is communicated to the neighbors
instead of the intended role in a trade-off between performance and privacy.

This algorithm, also known as the bipartite weighted matching algorithm, solves
constraint optimization problems such as the job assignment problem in polynomial
time. The implementation of this algorithm follows Munkres’ assignment algorithm
[4]. The algorithm is run over a utility matrix of roles x agents. The maximization
of utilities is transformed to a cost minimization problem:

cost = arg max E Ui
2

Minimize Z(cost — uij)
i3

The algorithm consists of transforming the matrix into equivalent matrices until the
solution can be read off as independent elements of an auxiliary matrix. While addi-
tional rows and columns with maximum value can be added to square the matrix, the
optimality is no longer guaranteed if the problem is over-constrained, i.e. there are
more roles to be filled than agents. A simple example is illustrated in Table 1.1.

When multiple teams are involved, an agent chooses the role in the team that has the
maximum sum of utilities rather than maximizing the sum of utilities across teams,
thereby ensuring team formation.

1.5.3 Policy Search

In reinforcement learning, there are two ways to search the state space of a problem.
We can search the policy space which is a mapping from current state to actions

1_ P
(P-0)1
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Table 1.1. A 4 x 4 assignment problem

The optimal assignment is (r1, z3), (r2, z2), (r3, z4), (T4, 1)

EESEAEAEN
r1]0.79(0.28(1.00{0.89
r2(0.29(0.51(0.83(0.38
r3(0.33]0.03(0.47(0.91
r4]0.92(0.14(0.82(0.80

or we can search the value space which is a mapping from possible states to their
evaluation. Because there are only a limited number of actions that can be taken from
a state, it is usually faster to search the policy space. Both methods however, should
converge to the optimal greedy strategy whether by taking the best state-action value
or the action that leads to the best valued state as the expected sum of rewards.

A function approximator generalizes to large state space. For gradient methods, it
was shown that a small change in the parameter space can lead to large changes in
the output space when searching for the value function while policy search where the
output are action probabilities is assured locally optimal convergence [19]. Learning
a stochastic policy has some advantages in dynamic and uncertain environments es-
pecially in pursuit games where the opponent might learn to escape a deterministic
adversary.

1.5.4 Coordination Evaluation

Because coordination is an emergent property of interactive systems, it can only be
measured indirectly through the performance of the agents in accomplishing a task
where a task is decomposed in a number of goals to achieve. The more complex the
task, the higher the number of goals needed to be achieved. While performance is
ultimately defined in domain-dependent terms, there are some common characteris-
tics. Performance can be measured either as the number of steps taken to reach the
goal, i.e. the time complexity of the task, or as the amount of resources required.
An alternative evaluation for coordination is the absence of failures or negative in-
teractions such as collisions, lost messages, or fragmentation of the network when
no messages are received. Figure 1.5 illustrates a taxonomy of coordination solution
metrics. To show the scalability of a solution, the evaluation must vary linearly with
the complexity of the task [7].

A combined coordination quality measure is defined as the harmonic mean of goals
achieved g, net resources expanded r and collisions ¢ as follows:

_ #PreysCaptured

#Preys 12)
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Fig. 1.5. Taxonomy of coordination solution quality for communicating agents

. #Predators 1.3)
"~ log2(#Messages Received) + # Predators '
P
o= . # redators (1.4)
#Collisions + #Predators
L 3gre
coordination = ————— (1.5)
gr+rc+cg

Although the message size required by the different predator strategies was roughly
equivalent, further work should measure the number of information bits per message
[20].

1.5.5 Experimental Evaluation

In the prey/predator example, actions leading to collisions with other predators are
negatively reinforced while actions leading to the capture of the prey are rewarded.
Experiments were conducted on a 20x20 grid with 2 preys and a variable number
of predators moving concurrently but synchronously at each time steps. The preys
move to a random adjacent free cell 70% of the time except edge cells to avoid
toroidal world ambiguities. The predators communicate their location and sensory
information about the preys to their neighbors according to pre-defined communica-
tion and perception range. The probability of receiving a message vary according to
a normal distribution based on (Euclidean) distance and the communication range of
each agent. The current state is represented by the one-dimensional locations of the
preys, the current location of the agent, and the location of the closest other three
predators known. A feed-forward neural net was implemented with 54 binary input
nodes, 7 hidden nodes and 5 output nodes to translate to the four possible orthogonal
directions to move and an option to stay in place. Each output node o; represents the
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probability that the direction will lead to success. The sigmoid transfer function was
used for all internal and output nodes.

The agents learn to coordinate through trial and error in simulation using temporal
difference learning between the value of the current direction in the output vector and
the value of the direction in the last output vector. They train following the optimized
role allocation strategy (see 1.5.2) when available as their behavior policy. The di-
rection to take is then conventionally derived according to the differences between
the destination of the role assignment and the current location of the agent along the
x-axis first and then the y-axis. When no role allocation is found, a softmax policy is
followed where the direction ¢ is selected stochastically according to the probability
P@) = z:‘% A reward of 1.0 is received when a goal is reached or when a role

allocation was found and a penalty of 1E-6 is received when colliding.

In the performance phase, the neural net from the most successful agent is selected.
Table 1.2 summarizes the different parameters used. Figure 1.6 shows coordination
quality results averaged over 1000 runs comparing different policies followed when
restricting the optimized role allocation strategy above a certain utility threshold
comprising about 5% of the interactions. There is a significant difference between the
results obtained following the greedy policy learned through reinforcement learning
and a random policy (t-test p-values were 2E-5, 0.0001, 0.004 for 7, 8 and 9 preda-
tors respectively). The memory-based approach consists of moving to an adjacent
cell that was not visited in the last 7 steps. Interestingly, although memory-based
exploration performs better than random walk for a single reinforcement learner
agent [21], they rate worse for multi-agent coordination. Those experiments have
shown that learning from past experiences can produce a viable behavioral policy
on a larger scale that is conducive to teamwork on a local scale and that can pro-
duce domain-dependent coordination rules. Further application of state estimation
techniques should enhance this approach.

Table 1.2. Parameters

Input nodes 54
Hidden nodes 7
Output nodes 5
Learning rate o* 0.3
Penalty 1E-6
Reward 1.0
Role utility threshold 3.0
Communication range 7
Perception range 2
Cycles 1000
Tmax 3000

*decreasing with time ¢ at the rate ﬁ

Tmaz
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1.6 Related Work

The dissemination of information enables agents to obtain some global, though im-
perfect, knowledge of the world. This capability is taken into account in scaling
up teamwork approaches based on communication and our approach also takes this
capability into account to enhance multi-agent learning. Our approach is different
from the large-scale coordination of Machinetta proxies [18] because (1) individ-
ual actions lead to joint actions through on-line adaptation and (2) the uncertainty
and ambiguity of information is taken into account through state estimation. Our
least-commitment approach is however similar to a token-based approach to team-
work [16].

The importance of communication in solving decentralized Markov decision pro-
cesses was noted in [23] where the goal was to develop a communication policy in
addition to the navigation policy. For agents in open environments, those policies
overlaps since the location of the agent determines its communication range.

1.7 Conclusions and Future Work

Open environments such as P2P and MANET forces a reexamination of teamwork in
large scale systems relying more on adaptive coordination than explicit cooperation
requiring synchronization points. The capability to acquire global, albeit imperfect,
knowledge through the propagation of information makes it possible to use indepen-
dent reinforcement learners for coordination tasks in multi-agent systems. Similarity
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of intentions can help relieve the burden placed on the network by selectively prop-
agating information while state estimation based on evidence reasoning calibrates
incoming information. A local teamwork model drives the rewards of the overall
coordination task. This proactive approach scales well to any dimensions and its
precision can be modulated by the TTL parameter. Future experiments are planned
for large MANET network simulations and P2P agent discovery of heterogeneous
agents.
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