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Abstract—As more people browse the Web to gather informa-
tion, recognizing Web browsing behavior signatures can replace
or complement keystroke authentication where authentication is
defined as the capability of identifying an individual within a
set of individuals. We claim that recurring temporal patterns of
Web site visits can help identify an individual of interest and,
more generally, categorize Web browsing behavior. Furthermore,
just like keystroke authentication, attribution of Web behavior
is not obtrusive and has applications in cyberwarfare as a new
biometric technique. In this paper we describe some exploratory
work and preliminary comparative results of machine learning
techniques applicable to the attribution of Web browsing behav-
ior problem.

I. INTRODUCTION

Anonymity is difficult to preserve and might not be
completely possible. Rather, it is possible to hide behind
pseudonymity and unobservability when interacting on the
Web. While pseudonimity is the capability to hide behind a
false identity, unobservability is the capability to hide in plain
sight [1]. Together, pseudonymity and unobservability make
a powerful recipe for quasi-anonymity. Consequently, there is
a need in cyberspace to know who our attackers are and to
track them wherever they might be on the network – a problem
known as attribution.

Marketers have long been interested in understanding Web
interaction behavior [2], [3], [4] in order to design Web sites
that entice visitors to finish their Web session with a checkout
of their shopping cart. Behavioral targeting is an approach used
by advertisers (e.g., DoubleClick) that track Web behavior
to deliver advertisements matching an individual’s profile.
Research in this area has concentrated on identifying the
demographic characteristics of a behavior such as age and
gender rather than authenticating a single individual [5]. There
has also been some research on understanding online browsing
behavior from an aggregate perspective in order to identify
influential websites in user navigation patterns [6].

Section II reviews the related work in the area of attribution
in cyberspace. Section III introduces our proposed methodol-
ogy in this area with some exploratory evaluation in Section
IV. Finally, we conclude in Section V with our direction for
research.

II. RELATED WORK

The attribution problem in cyberspace has been addressed
in several ways mainly by leveraging from features in the
browser (e.g., history stealing, cookies, etc.) or accessing

datasets containing partially identifying information. For ex-
ample, de-anonymization in social networking websites has
been accomplished by taking the intersection of users from
group memberships in a social network through information
from hyperlinks in the browser history and knowledge about
those groups [7]. In general, unique identification is possible
by cross-referencing independent information sets containing
partial information with a universal set in a manner equivalent
to a database join (also known as “linkage attacks”). For
example, it has been possible to link medical records to indi-
viduals in voter registration records [8]. Some success has been
reported with the classification of global syntactic features of
a Web session (e.g. length of session, average time on a page,
etc.) per user [9] but this mode of identification is easy to
defeat and only serves as a proof of concept that signature
identification is possible with data aggregated over several
sessions. It has also been shown that authorship of content can
be determined from stylometric features on an internet scale
threatening anonymity [10] but this type of attribution depends
on published content. Research in predicting user behavior in
cyberspace has also been directed toward improving tasks such
as information retrieval [11] or desktop assistance [12]. For
example, based on the content of the current Web page and a
user’s original search keywords, the most relevant hyperlinks
in the page are highlighted to guide selection of the next
page to visit. This type of prediction is oriented toward the
information presented in context to the user rather than the
specific activity that a user might pursue (e.g. send an email,
read a paper, etc.).

In contrast to previous approaches, we address the attri-
bution problem by leveraging both from syntactic patterns in
Web browsing history and the semantic content of this history.

III. PROPOSED METHODOLOGY

Our approach to the tracking and authenticating of Web
browsing behavior involves the following tasks:

1) Classify Web pages into genres at multiple levels of
granularity;

2) Encode temporal sequences of individual Web browsing
behavior consisting of Web page genres and pauses from
clickstream data;

3) Learn Web behavior signatures (profiles) with structured
prediction;

4) Recognize an individual or typical behavior or report
unknown.

In order to acquire the relevant clickstream data, we have
developed a Firefox browser extension to be used in an
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Figure 1. Web behavior attribution data flow

ethnographic user study which has been approved by our in-
stitutional review board. Other datasets will also be generated
from public social media. The overall dataflow is illustrated
in Fig. 1. We claim that genres, as functional categories of
information presentation, are more indicative of Web browsing
behavior than content alone. For example, it takes longer to
read a research paper for certain persons. Identifying Web
browsing signatures is a search through abstraction spaces:
the varying degree of generality in the semantic content of the
Web pages and the syntactic pattern of the behavior (Fig. 2)
necessary to uniquely identify someone. To borrow an analogy
from natural language processing, taking a set of genres as
our lexicon, a Web browsing history as a natural language
sentence and a profile as an encoded parse tree, the problem of
attribution reduces to the task of identifying the best matching
parse tree most suited for a given sentence.

Figure 2. Search through abstraction spaces for Web signatures. Each
signature is a dot in the problem space

A. Structured Prediction

Structured prediction is a supervised learning method that
addresses problems where the output itself is complex [13].

For example, the output can be in the form of a tree, a sequence
or a graph. Structured prediction is being activately researched
in natural language processing to predict parse trees from
sentences and in sequence matching problems such as machine
translation [14]. For example, when translating a sentence from
English to French, a word for word translation is not enough
because it ignores correlations and constraints among words.
What has to be predicted here is a set of mappings and not just
individual mappings. Because of this selective matching be-
tween two sets, the input and output set, structured prediction
methods must solve a combinatorial optimization problem.
Traditional classification methods make local predictions but
(1) what has to be predicted is different from the sum of
the parts and (2) the constraints and correlations between the
output features themselves can help improve the prediction
of the parts. Formally, structured prediction involves learning
a mapping from complex inputs x ∈ X to complex outputs
y ∈ Y from a training sample of input-output pairs (xi, yi)
drawn from an unknown distribution. There are dependencies
between Web page requests that extend beyond the last page
visited due to the non-linearity (hypertext) of Web content or
inadvertent page clicks.

Hidden Markov Models (HMMs) [15] have long been the
traditional method to model behavior from observations but
they are limited in their capability to represent constraints
between any two states of the output because of their Markov
assumption and the independence assumption of the observa-
tions. In addition, HMMs become intractable when the ob-
servations are not enumerable. Although work has been done
on overcoming those limitations resulting in complex models,
structured prediction methods provide a unified framework to
predict and learn arbitrary activity patterns. In addition, HMMs
require enough training data to obtain an accurate generative
model of observations while structured prediction methods
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leverages only from dependencies in the observation sequence
and local predictions and therefore might get away with
much less data. Structured prediction methods, like maximum
entropy Markov models, turn HMMs on their head by con-
ditioning the probability of Y on the observations X making
it possible to leverage from modern discriminative classifiers.
Structured prediction methods make it possible to solve the
HMMs’ decoding problem (i.e., finding the output sequence of
hidden states from the input sequence of observations) without
a complete model capable of generating the observations (i.e.,
HMMs’ learning problem).

B. Approaches to Structured Prediction

There are several approaches to solve the combinatorial
problem of structured prediction. They all involve a change
of representation that includes tentative predictions of the
output sequence. We review below the probabilistic approach
of conditional random fields (CRFs) [16] and a reinforcement
learning approach [17].

1) CRFs: CRFs are predicated on the interaction of neigh-
boring labels in a sequence. The Ising model, formalized by
the theory of random fields, describes how global, emergent
properties emerge from local interactions. Similarly, CRFs
exploit those local interactions with overlapping features from
the observations X and the labels Y , to predict the most likely
label sequence conditioned on the observations. The features
express correlations and dependencies between the observation
sequence and the label sequence, among the observations
themselves, or among the adjacent labels themselves. A feature
Fj(x, y) is the sum of binary features fj describing an example
x ∈ X of length n:

Fj(x, y) =
n∑

i=1

fj(yi−1, yi, x, i) (1)

For example, in describing Web page sequences, such a
feature fj for Web page x at position i could be:

fj(yi−1, yi, x, i) =


1 if title contains race

and genre = sports news
and previous genre = search page

0 otherwise
(2)

CRFs overcome the problem of dynamic length sequences
by having a fixed set of overlapping features. A discriminative
classifier, such as logistic regression, can then be used to learn
the weights wj of those features in a training phase to obtain
real-valued features gi :

gi(yi−1, yi) =

J∑
j=1

wjfj(yi−1, yi, x, i) (3)

The score U(n, yn) of the entire label sequence y of
length n ending with label yn can then be computed with
the following recurrence relation [18] computed by dynamic
programming algorithms such as the Viterbi algorithm (Alg.
1):

U(n, yn) = max
yn−1

[U(n− 1, yn−1) + gn(yn−1, yn)] (4)

In our specific problem, genre classifications can still be
ambiguous to uniquely associate a Web page genre to an
individual. For example, is the feature that a Web page
visited is a blog or a political blog important in identifying
an individual? CRFs will therefore disambiguate between
genre classifications by learning their feature weights while
searching for the best sequence of activities to construct an
individual profile according to Eq. 4. Figure 3 illustrates the
role of features in CRFs.

Algorithm 1 Iterative Viterbi Algorithm for HMMs
name: viterbi
input: M, % observations

sprobs, % state S probabilities

trans, % transition probabilities
eprobs % emission probabilities
output:path % most likely state sequence

prob % path probability
t ←0
foreach s ∈ S
a[s] = sprobs(s) * eprobs(m0, s)

path[t] ← argmaxs(a)
t ← t+1
M ←M\{m0}
foreach m ∈ M
foreach s ∈ S
maxval ←0
foreach s′ ∈ S

temp ← a[s’] * trans(s′,s)
maxval ← max(temp,maxval)

a’[s] ← maxval * eprobs(m,s)
path[t] ← argmaxs(a’)
a ← a’
return path,

∑
s
a[s]

Figure 3. CRF feature linking temporal states yi−1 and yi with document
features x.

2) Reinforcement Learning: The identification of a most
likely sequence of states was shown to be equivalent to finding
an optimal policy for a Markov decision process given a
set of states and actions by considering the maximization of
expected reward as the minimization of empirical loss on the
output training sequence [17]. The actions here are the possible
predictions yi from state {xi, yi−1}. Bellman’s optimality
equation (Eq. 5) is a recurrence relation for sequential decision
tasks where V ∗(s) is the optimal value of state s, a is the
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action executed in s that leads to s′ such that
∑

s′ P
a
ss′ = 1

and P a
ss′ = P (s′|s, a) , a ∈ A, the set of actions, r the current

reward, and γ the discount factor, 0 < γ ≤ 1, weighting future
rewards.

V ∗(s) = max
a

∑
s′

P a
ss′ [r

a
ss′ + γV ∗ (s′)] (5)

The transition probabilities, P a
ss′ , can be obtained while

training using model-based reinforcement learning [19]. After
training, the prediction and evaluation of the most likely
sequence for each user can be made by following the optimal
policy mapping states to actions learned for this user with Eq.
4 where gi(yn−1, yn) = V ∗(sn−1). In this framework, the
stepwise reward has to be proportional to the prediction loss.

Inverse reinforcement learning (IRL) [20] addresses the
problem of learning the reward function corresponding to a set
of trajectories in the training set such that an optimal policy
can be found that will approximate those trajectories. IRL
methods can then be applied to structured prediction problems
by representing the search through the output space in the
prediction problem as a sequential decision making problem
[21], [13]. By learning a specific reward function, the optimal
policy encapsulates a model of user behavior.

IV. PROOF OF CONCEPT EVALUATION

Before attempting structured induction algorithms, we eval-
uated several learning algorithms for the Web browsing identi-
fication task with the discovery challenge dataset from ECML
[22], [23] as proof of concept. In this dataset, a user session
is characterized by its timestamp, a sequence of page visited,
categorized by page type, and number of page views (page
loads) (Table I). For example, the sequence of page type visited
given as “12,1 9,3 7,2” corresponds to the chronological se-
quence “12,9,9,9,7,7”. User sessions were extracted randomly
from the training and test sets and the experiments consisted
of distinguishing them correctly in the test data based on
profiles built from the training data. The training data averaged
89 user sessions ranging from 1-183 page type visited. Four
basic types of algorithms to build profiles were compared
with random selection based on the class distribution during
training as a baseline:

1) Discrete Markov process algorithm based on profiles
built from the transition probabilities between page types
for each user during training. Each page type observation
Ot corresponds to state St. The profile with the most
likely sequence of transition probabilities between page
types was selected for identification.

2) HMMs maximum likelihood training with the Baum-
Welch algorithm implemented using Jahmm [24]. Each
user profile was built with three fully interconnected
hidden states with initial uniform probabilities to model
the continuum of a session (beginning, middle, and
end). Unlike discrete Markov processes, the page type
observation Ot is decoupled from the state St in an
HMM. The profile with the most likely sequence of
hidden states S using the iterative Viterbi algorithm
(Alg. 1) was then selected for identification.

3) Classification of users from the frequencies of page
types visited with the decision tree algorithm J48 from
the Weka machine learning toolbench [25];

4) Classification of users from global syntactic features of
the session (number of pages in the session, average
number of page views, session length, day of the week
and time of day) with the decision tree algorithm J48;

Figure 4 illustrates the comparative results obtained using
the weighted F-measure in discriminating between 10 users
for each individual Web session. This experiment shows that
machine learning techniques are promising in this domain,
achieving significant performance results for the first three al-
gorithms taking into account state transitions, state/observation
probabilities, and page types while the performance of purely
syntactic patterns degrades rapidly. The research will consist
of scaling up those results with structured prediction and rein-
forcement learning and additional information from webpages
and clickstream data.

Training Test Users Page Page Views
examples examples Types
380485 166299 4853 1-20 1-117

Table I
ECML/PKDD 2007 DISCOVERY CHALLENGE DATASET
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Figure 4. Comparative Results for discrimination between 2-10 users using
weighted F-measure

V. CONCLUSION

We claim that the genre of Web sites visited can tell us
something about an individual browser and that how and when
the browsing was done is also revealing. For example, the
time of day and the length of the pause at a page can give
some information. We have shown through simple experiments
that identification of users, or distinguishing between users,
is possible within a certain accuracy but that performance
degrades rapidly as the number of users increases. We claim
that structured prediction will allow us to scale up by lever-
aging additional information in constructing Web behavior
signatures. Web browsing has become another dimension
of human activity and this methodology could be used for
continuous or periodic identification to complement an initial
strong identification technique for authentication.
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