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Abstract—This work studies centrality metrics as forwarding
load predictors, for both unicast and multicast traffic, within dy-
namic ad hoc network topologies. We present results from a series
of emulation experiments based around an emergency response
mobile network scenario. From collected temporal topological
and traffic data, we calculate a rank correlation measure between
predictive centrality metrics and actual observed traffic forward-
ing by nodes using several mobile topologies. We include the
examination of a localized bridging centrality metric, previously
developed, along with several well-known centrality measures.
We show that under static conditions, all predictive metrics are
extremely accurate; whereas under different motion conditions,
there are reduced levels of accuracy. Yet, even during mobility
cases, the ranking correlation between measured forwarding and
the predictive metrics stays moderately positive throughout the
experiments. We demonstrate stronger overall correlation in the
unicast traffic flow cases and our localized bridging centrality
tracks well in accuracy with other global state centrality metric
variations. As expected, multicast forwarding scenarios are more
challenging and show somewhat lower correlation in overall
ranking prediction. Perhaps surprisingly, localized bridging cen-
trality frequently outperforms other centrality metrics in mixed
mobility cases for the multicast routing flows examined. Much
of this work is preliminary and we discuss ongoing challenges,
potential applications, and further planned work. Early results
regarding the use of localized bridging centrality as a predictive
measure for traffic forwarding are encouraging.

I. INTRODUCTION

The technical objective of this work is to apply complex
network analytics as an aid in traffic load prediction and man-
agement of dynamic routing mobile ad hoc network (MANET)
systems. Such a capability, if effective, will provide improved
analytics for dynamic wireless networks that can aid both
mission planning and real-time management of such systems.
Since the goal is to provide dynamic prediction estimations
of relative traffic forwarding and loading, the techniques can
also inform related cyber systems, such as helping to determine
key network nodes or links in an evolving routing structure. In
addition, analytic feedback can also be used to further defend
or optimize a local routing neighborhood in a distributed
system. The application is not limited to MANET systems, but
we will focus on specific MANET-type dynamic routing such
as connected dominated set (CDS) based multicast forwarding.

While there are many potential approaches to structural
analytics, here we focus on examining a variety of central-
ity measures [1], [2] and apply the resulting coefficients to
predict relative rankings of a network node’s likelihood to
perform traffic forwarding within a particular mobile topology.

Centralities generally represent the statistical ranking of the
importance or influence of vertices (i.e., nodes) or edges
within a network graph, based upon a particular structural
or interaction model. Many centrality measures have strong
relationships to statistical mechanics models and are therefore
often useful in predicting forms of behavior or dynamic perfor-
mance of topological node interaction. This paper focuses in
particular on applying centrality concepts to predict the relative
importance of certain nodes and links as traffic forwarders
within a MANET.

Different forms of MANETs exist and they often have
differing concepts of forwarding behavior that may include
multipath or mesh forwarding behaviors. Multiple routing
protocols may also run simultaneously within a network and
serve different types of network traffic (e.g., unicast vs.
multicast routing). As an example, betweenness centrality
and shortest cost path unicast routing classes are closely
aligned conceptually, so we expect this centrality to be a
good predictor of shortest path routing behavior. However, the
dynamic mesh forwarding nature of multicast and some other
multi-path or adaptive mesh routing protocols are perhaps
better served by alternative flow-based centrality models. The
bridging centrality we will examine includes both shortest
path and relative density properties to better identify nodes
that serve as structural bridges important across a class of
forwarding strategies for both unicast and multicast. Addi-
tional congestion, loss, and link dynamics within a network
can actually cause the network protocol to redirect traffic even
without mobility; therefore, we are interested in examining a
a variety of centrality measures and combinations of routing
protocol classes within more realistic wireless system scenario
models.

The bridging centrality metric we will examine is also a
localized variant that may help reduce control communication,
convergence time, and computation complexity. Centralities
requiring the collection of global topology information are
prohibitive in environments that include temporal disconnec-
tions of clusters, mobility, and/or bandwidth limitations. The
localized 2-hop bridging centrality estimator was developed
by the author in previous work [3]. Past related work showed
potential benefits of localized bridging centrality to better
manage MANET protocols, such as the dynamic MANET
routing enhancements demonstrated in [4].

Another contribution of the work, beyond the use of a
localized centrality to predict loading, is that we examine



performance in a non-uniform, mobile emulation model of
a wireless emergency response network. While we do not
examine the specific management, optimization, and cyber
applications in this paper, we feel the proposed work has
broad transition potential as a means to help classify, plan,
design, and validate mobile networks intended to structurally
operate while undergoing disruptive conditions. Motivation for
this work is stimulated by ongoing proliferation of lower-
cost heterogeneous wireless technology, autonomous mobile
systems, and embedded computing devices resulting in novel
opportunities for networking in disrupted battlespace opera-
tions. Distributed collaboration systems are also of interest
within commercial and civil applications for safety, disaster
relief, distributed sensor, robotics, and community networking
applications.

The paper is organized as follows: In Section II, we in-
troduce and review the centrality metrics used in the experi-
mentation. Then in Section III, the routing approach is briefly
described, followed by Section IV discussing the emulation
modeling components used for experimentation. In Section V,
we present temporal analytics of the various motion scenar-
ios in terms of global invariant metrics, such as algebraic
connectivity and density coefficients. Section VI presents and
discusses the rank correlation results across several unicast and
multicast test cases. Section VII discusses future work and we
conclude in Section VIII with a summary discussion.

II. CENTRALITIES AND STATISTICAL TRAFFIC FLOW
MODELS

For the purpose of centrality-based structural analysis and
prediction, we model our mobile dynamic networks as a time
series of weighted graphs represented as G = (V, E,w,t),
where V' is the set of vertices (representing the data or nodes
in the network) and E is the set of edges connecting the
vertices in V. w represents a set of edge weights in E that
may be asymmetric. In our examples, w represents a stochastic
probability of packet reception given a wireless link quality
and mobility model. As was demonstrated in [5], dynamic w
values can be extracted from routing link quality metrics, such
as expected transmission count (ETX) variants. ¢ represents
the time of the topological snapshot in a time-ordered graph
sequence.

A. Variants of Flow-based Centrality Models

While there are a wide variety of centrality measures that
have been developed to study complex network structures
and behavioral relationships, we concentrate on a few flow-
based centrality models. Variations of betweenness are one
such class of centralities and several types and definitions are
well covered in [6] and we have also considered variations of
current flow models discussed in [7].

B. Betweenness and Load

The basic Betweenness Centrality is defined in Equation 1.
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In Equation 1, oy is the total number of shortest paths
from node s to node ¢ and o4 (v) is the number of those
shortest paths that pass through v. Betweenness centrality is
a popular complex network measure and as mentioned in the
introduction, its flow model assumptions are similar to many
link-state based unicast protocols that calculate shortest path
routes. One such protocol is the MANET Internet Standard
Optimized Link State Routing (OLSR) protocol [8], [9]. In
this work, we also examine load centrality, a close relative to
betweenness centrality. The differences between betweenness
and load centrality are summarized in [6]. Load centrality fun-
damentally differs from betweenness centrality by introducing
a hypothetical flow model that splits commodity traffic equally
among minimum geodesic distance paths towards the destina-
tion node. We also examined communicability betweenness [2]
in our experiments, a metric which includes a model of all
walks in the network, but overall the results generally showed
lower correlation ranking than other centralities and we did
not include these summaries.

C. Localized Bridging Centrality

Localized Bridging Centrality (LBC) was first presented
in [10] and a localized k-hop variation (LBC-k) with weighted
graphs was provided and studied in [5] for the 2-hop case. The
2-hop neighborhood variant is of direct interest in our study
of MANET type routing, as 2-hop local graph information is
often gathered and maintained by each node within a MANET
routing domain as part of normal neighborhood discovery sig-
naling. Equation 2 shows the formulation of LBC-k from [5].
The first term is altered from the global centrality definition
and it converts a global betweenness centrality calculation to
one that is localized within the k-hop ego network [11] of the
node. The second term measures the relative density between
a node’s neighborhood and its neighbor’s neighborhoods. We
refer the reader to [5] for additional details and related studies.
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III. ROUTING MODELS USED

As mentioned in Section I, centrality measures often rep-
resent statistical models of information flow, similar to how
routing protocols may be designed with different forwarding
models. In this study, we limit analysis to two different
forms of MANET routing and traffic patterns. For unicast
routing tests, we use a working prototype of the OLSRv2
protocol [9] as a variant of shortest cost link state routing.
This implementation supports the use of dynamic link costs
such as the Expected Transmission Count (ETX). To support
multicast routing tests, we use a working prototype of the
Simplified Multicast Forwarding (SMF) protocol [12] with a
connected dominating set (CDS)-based forwarding relay set
that is dynamically elected using the Essential Connected
Dominating Set (ECDS) protocol specified in the Appendix
of [12]. Localized 2-hop election information is gathered



using a version of the Neighborhood Discovery Protocol
(NHDP) [13].

IV. EMULATION MODELING APPROACH

To examine a number of different mobility conditions
and different traffic flow distributions, we extend a 21-node
emergency disaster response scenario developed at the Naval
Research Laboratory (NRL) as a fictitious, mission-oriented
wireless ad hoc network deployment. We orchestrate this sce-
nario using virtual network emulation components including
the Common Open Research Emulator (CORE), the Network
Mobility Framework (NMF), and the Extendable Mobile Ad
hoc Network Emulator (EMANE) [14]-[16]. The scenario
involves both pre-planned motion and causal event-driven
motion elements. The non-causal motion pattern involves
the looping of patrol vehicles orbiting a critical inner area
perimeter road. For the static case, these nodes are kept at their
initially distributed locations. We also include experiments
that orchestrate motion causally induced by the exchange of
network communication messages. An example is received
orders causing repair teams, helicopters, or medical rescue
teams to move to particular destination locations to perform
further tasking. A snapshot of the scenario topology and node
names are shown in Figure 1.
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A. Measuring Rank Correlation

For each network experiment, our goal is to measure the
ranking correlation between two data sets: traffic forwarding
load amongst network nodes in time and some predictive
centrality metric for a given temporal topology estimate. To
do this, we require two data sets: mobile network topology
estimates and traffic forwarding measures in time. Topologies
are estimated within a given time interval (10 seconds) given
relative node position and communication link quality and are
extracted as a time series from the EMANE mobile network
emulation system. For our 30 minute emergency response
scenarios, we therefore have approximately 180 temporal
graphs for each trial. These topology sequences provide the
basis for the analytic baseline in calculating predictive metrics.
For the LBC-2, only local 2-hop neighborhood information is
used for each node’s calculation, therefore simulating limited
state using information from a localized signaling protocol like
NHDP [13].

B. Traffic Generation

The Multigenerator (MGEN) traffic tool [17] is used to load
the network scenario with unicast and multicast traffic flows
respectively. To provide a baseline traffic load for prediction,
a set of all-to-all unicast and multicast network traffic flows
are established so that each node in the test is both a source
and sink of each traffic type. One packet per second is sent
on each flow type from each source where a unicast packet is
512 bytes and a multicast packet is 100 bytes. Other mixed
traffic flows were added to the experiment as well, but only
limited testing of this nature was performed. Throughout the
experiment, standard packet capture (pcap) and MGEN logs
were collected. Individual node network forwarding data was
extracted from a set of distributed pcap logs and summarized
within a time window for the unicast and multicast routing
experiments performed.

V. ANALYSIS OF MOTION SCENARIOS

Prior to examining rank correlation results, we here analyze
a set of global invariant metrics on the topologies collected for
the different motion scenario cases. In each plot, we show the
time-varying values for the Fiedler value and a density coeffi-
cient on a 10 sec window of topology snapshots. The Fiedler
value, also known as the algebraic connectivity, of a graph
is the second-smallest eigenvalue of the Laplacian matrix of
that graph. Its magnitude has been shown to reflect how well-
connected an overall graph is. If the topology is disconnected
in any manner, this value equals zero. The density coefficient
is another indicator of average connectedness throughout the
graph and we plot this as well.

Looking at the static motion case in Figure 2A, we see
that all coefficients are stable throughout the scenario as
they should be. The Fielder value indicates the network is
connected, but perhaps weakly. The density coefficient is also
relatively low in value indicating the initial condition of the
network may be somewhat sparse.
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Fig. 2: Global Topology Metrics for Motion Cases



From the causal motion case in Figure 2B, we see that
the coefficients begin at values consistent with the static case
and that the Fiedler value and density coefficient increase
in the first half of the scenario and then settle out to fairly
stable values once causal nodes complete movement to event-
driven locations. While fluctuating in topological strength in
the beginning, the network settles out in a more strongly
connected condition in the second half of this scenario since
the causal nodes move to more central topological locations.
In Figure 2C, we see a more interesting case of looping
motion only, which has significant temporal strengthening
and weakening of the topological structure. The Fiedler value
shows periodic events in which the topology is temporarily dis-
connected and then reconnected as nodes proceed around the
looping pattern. The overall density coefficient stays roughly
consistent for the connected components during these periods.
In Figure 2D, we see the mixed effect of looping motion and
causal motion together. In this case, we see connected but
periodically fluctuating conditions due to the combined effects
of causal nodes and looping nodes within the topology.

As the Fiedler value may be a good single value indicator
of strengthening and weakening of graph connectivity, we
present a violin plot in Figure 3 which summarizes the
temporal density distributions of coefficient values for each
experimental case. We can see clearly that each case, except
static, has temporal variability in values and that the looping
motion case has more topological degradation and periodic
disconnection events, shown by the broader distribution of
lower Fiedler values. While it is not the main purpose of this
paper, such analytic representations of complex dynamic topo-
logical scenarios may help better categorize non-parametric
scenarios and further aid in interpreting complex network
results in future work.
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VI. ROUTING TESTS AND FORWARDING LOAD RANK
CORRELATIONS

In this section, we briefly present a series of experiments for
both unicast and multicast routing cases and discuss summary
results using collected temporal rank correlation data. The title
of each graph in this Section indicates the motion case of the
scenario as previously discussed in Section V. The term A2A
indicates all-to-all traffic flow was measured to perform the
rank correlation. In each graph, we plot the Spearman rank

correlation scores [18] of three centrality values (betweenness,
load, and local bridging (LBC-2)) in comparison to the relative
traffic forwarding loads measured. In the Spearman correlation
graphs to follow, we only plot the positive range [0,1] even
though the Spearman coefficient range is [-1,1], as we ob-
served only positive correlation scores in the cases presented.

A. Unicast Forwarding Tests

This section briefly presents a series of unicast traffic and
routing tests and observations. Figure 4 shows the static mo-
tion case and it is somewhat trivial that load and betweenness
centralities correlate well with observed OLSRv2 forwarder
rankings within the network. What is perhaps more surprising
is that LBC-2 also has a strong rank correlation value of
around 0.9 throughout most of the test.
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In Figure 5, we observe the causal motion case and we
see that the relative load and betweenness centralities have
fluctuating periods of correlation during periods of significant
causal motion occurring during the first 10 minutes of the
experiment. Again, LBC-2 performs slightly poorer at times,
but tracks well with the correlations of the other two metrics.
Throughout the whole experiment, the results stay positively
correlated and relatively high.
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Fig. 5: Unicast Causal Motion Experiment
In Figure 6, we show the looping motion case and observe
that load and betweenness centralities have fluctuating periods
of correlation, but the correlation with forwarder ranking
remains strong throughout the testing, generally much higher
than during causal motion testing. Again, LBC-2 performs
slightly poorer at times, but tracks well with the overall



dynamic correlations of the other two metrics and also re-
mains in a strong correlation region for all looping motion.
Again, throughout the experiment the results stay positive and
relatively high. This is interesting to note, as we know from
the algebraic connectivity that these topologies go through
periods of disconnectivity which could have caused significant
inaccuracy between the estimators and the dynamic MANET
routing protocol.
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In Figure 7, we show the mixed case of looping and causal
motion and we see that relative load and betweenness cen-
tralities along with the local bridging centrality have stronger
fluctuating periods between strong and moderate correlation.
These fluctuations continue to occur after the causal motion
has stabilized. As seen from the motion analytics in Section V,
the network reaches a higher density but the algebraic connec-
tivity and the density coefficients continue to periodically fluc-
tuate. This may possibly be explained by the fact that there are
more opportunities for route changes once causal nodes have
moved to more central locations within the network topology.
Throughout the whole experiment the results stay positive, but
they do now fluctuate between moderate and strong correlation
coefficients. Again, local bridging centrality tracks well with
the global centrality predictors and remains a viable alternative
for predictive application with good correlation results.

Full Motion (A2A Unicast)

0.8

0.6

Spearman Corr (-1,1)
o
.

02 —— betweenness
===-local bridging
00 540 1545 1550 1555 1500 1605

Experiment Time (mins)
Fig. 7: Unicast Mixed Motion Experiment

B. Multicast Forwarding Tests

This section briefly presents a series of multicast traffic
and routing test results and observations. In these cases,
SMF with a self-organizing ECDS relay set was used as
the multicast routing mechanisms within all networks under

test (with classical flooding, all nodes forward every packet
so centralities are uncorrelated with forwarding statistics).
Figure 8 shows the static motion case, and we now observe
that centralities presented are only moderately correlated with
actual forwarding statistics and fluctuate roughly between 0.3
and 0.6 through the testing. We should point out that the
routing flow model has now moved away from a shortest path
model to a multipath mesh forwarding model and we do expect
less correlation. ECDS does provide some routing structure but
it is not necessarily a shortest path structure.
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For the multicast case, Figure 9 now shows higher cor-
relation for periods and improves in general over the static
case. The increasing density caused by causal motion may
provide a benefit in terms of multicast forwarding prediction
correlation. Perhaps surprisingly, we now see at times the
local bridging centrality is more strongly correlated than the
global centralities. This may be simply due to the fact that the
bridging statistical model has an element of density coverage
similar to ECDS election heuristics. With looping motion,
Figure 10 shows slightly poorer performance in general for
local bridging but higher overall performance again versus
the static case. Again, this may be due to the density in-
creases after the initial phases of the motion scenarios. In
the multicast forwarding case for mixed motion, Figure 11
shows some interesting results for local bridging centrality
in that it seems to outperform other global centralities and
has periods of relatively high correlation (0.6-0.9) vs. other
mobility scenarios. This demonstrates perhaps some benefit in
moving beyond purely shortest geodesic path metrics in more
complex communication networks.
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Loop Motion (A2A Multicast)
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VII. FUTURE WORK AND CHALLENGES

Centrality metrics which consider all nodes as balanced
traffic sources/receivers have limitations. At present, centrality
extensions exist for network subset computations, where cer-
tain sources and destinations can be provided to adjust the
centrality flow model. This is applicable when portions of
network nodes may serve primarily as network relays and not
as active traffic sources and receivers. However, we are not
presently aware of centrality work that addresses unbalanced
flow models, so we see this as a future challenge to address this
gap. An imagined approach is to combine work on predictive
mission workflows at the communication level with the com-
modity exchange models underlying a centrality calculation,
resulting in a cross-layer, mission traffic aware model. This
could be adjusted during mission phases or transitions.

Significant levels of congestion and contention likely reduce
the correlation resulting from simplistic centrality predictions.
In these tests, we did use an underlying wireless model that
included contention effects, but we did not directly measure
the levels of contention. More work is planned to focus on
contention and congestion conditions. Finally, we presented
work with relatively small scenarios and plan to do work with
larger scale systems and scenarios. However, the scale we
tested at may be appropriate for many collaborative, tactical
subnetwork deployments.

VIII. SUMMARY AND CONCLUSIONS

We presented a series of emulation results examining the
ranking correlation between a set of complex network cen-
trality coefficients and actual measured dynamic network for-
warding load within a MANET. We included four motion cases

and modeled an emergency response wireless network scenario
including unicast and multicast routed traffic. We examined a
number of interesting effects by performing dynamic corre-
lation metric studies comparing a class of centrality metrics
to measured network forwarding load across the temporal
network topologies in each case. We showed that as motion
increases, the ranking correlation between the relative loading
and centrality metrics stays moderately positive. We also
demonstrated that LBC-2, a localized bridging centrality, does
surprisingly well in predicting forwarding load as compared to
a set of globally computed centrality metrics. In the multicast
case, with mixed motion models, it was shown that LBC-2
often outperformed the other global centrality correlations as
a rank predictor of network forwarders. This is encouraging
and while the work is preliminary, effective prediction aids
can improve distributed management, network cyber tactics,
and localized optimization within such networks.
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