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1 ABSTRACT 

A variety of anomaly detection algorithms have been applied to surveillance tasks for detecting threats with some 
success. However, it is not clear which anomaly detection algorithms should be used for domains such as ground-based 
maritime video surveillance. For example, recently introduced algorithms that use local density techniques have 
performed well for some tasks, but they have not been applied to ground-based maritime video surveillance. Also, the 
reasons for the performance differences of anomaly detection algorithms on problems of varying difficulty are not well 
understood. We address these two issues by comparing families of global and local anomaly detection algorithms on 
tracks extracted from ground-based maritime surveillance videos. Obtaining maritime anomaly data can be difficult or 
even impractical. Therefore, we use a generative approach to vary and control the difficulty of anomaly detection tasks 
and to focus on borderline and difficult situations in our empirical comparison studies. We report that global algorithms 
outperform local algorithms when tracks have large and unstructured variations, while they perform equally well when 
the tracks have only minor variations.   

2 INTRODUCTION 

Anomaly detection is the task of finding patterns in data that do not conform to expected behavior [1].  It is an 
important problem in applications such as maritime video surveillance, which is typically performed from one 
of two perspectives: 1) wide area coverage, where vessels are tracked across large geographical areas (e.g., 
such as when tracking international shipping vessels using AIS), and 2) ground-based coverage, where vessels 
and their activities are tracked over comparatively small distances (e.g., 1000-5000 yards). We focus on 
ground-based video surveillance of maritime locations such as ports, harbors, and rivers [2]. Maritime assets 
are vulnerable to attacks from a variety of near-shore threats such as small boats Currently, such threats are 
predominantly countered by watchstanders and manual video surveillance processes. We are developing 
automated techniques for monitoring and recognizing activities in video, and for detecting threatening 
behavior [3]. We model this as an anomaly detection task, which requires selecting and applying anomaly 
detection algorithms to the problem of maritime threat detection.   
Two broad categories of unsupervised anomaly detection algorithms exist. First, global methods consider 
information contained in an entire data set to identify anomalies. Most clustering algorithms fall into this 
category. Second, local methods operate on only the information in the neighborhood of the query. Recent 
work on applications of anomaly detection to complex structured data such as credit card transactions have 
shown that local, non-clustering anomaly detection algorithms can outperform global algorithms on some 
tasks [4][5][6]. However, detailed results have not been published on applications of local anomaly detection 



 

 

algorithms to ground-based maritime video surveillance tasks, they have not been compared against global 
methods on these tasks, yet the structural complexities of maritime traffic data, which are not well understood, 
may benefit from using local methods.   
We test this conjecture by comparing the performances of local and global anomaly detection algorithms on 
ground-based maritime video data. In our investigation, we focus on borderline/boundary cases of anomalous 
behavior. This is challenging because anomalies may rarely occur in the maritime domain. Obtaining real data 
of anomalous behavior can be impractical, and even more so for borderline cases. We address this by 
generating synthetic anomalous instances using a parametric statistical approach from real, non-anomalous 
data, which allows us to control the frequency and degree of abnormal behaviors present in the generated 
data. We evaluate two global and two local algorithms on three categories of ground-based maritime video 
traffic data with varying complexities and noise. We found that, for difficult cases, density-based global 
anomaly algorithms outperform local algorithms on a data set characterized by tracks with high variance or 
noise (e.g., tracks from sailboat traffic), while local anomaly detection algorithms perform as well or better 
than the global algorithms when the tracks have low variance (e.g., tracks from recreational boats and ferries).  
Our paper is organized as follows. In Section 2, we review anomaly detection research in the context of 
maritime threat analysis. Section 3 describes the anomaly detection algorithms we comparatively evaluate, 
while Section 4 describes our evaluation method and presents the results of our analysis. We discuss our 
findings in Section 5, and conclude the paper with directions for future research in Section 6. 

3 BACKGROUND AND RELATED WORK 

Our goal is to provide watchstanders with tools for automated surveillance using ground-based videos of 
littoral locations such as ports, harbors, and rivers. Given this, we are developing methods that can 
automatically assess the threat status of detected surface vessels given their tracks and raise alerts when 
warranted. We can model this as an anomaly detection task, in which a set of normalcy models, anomaly 
models, or some combination could be acquired and then applied to predict whether to respond to an observed 
track with an alert.  
Anomaly detection tasks, models, and algorithms for surveillance tasks can differ along many dimensions. 
We characterize the relevant literature along five dimensions: (1) the model acquisition method (manually 
elicited vs. learned), (2) the application focus (maritime vs. non-maritime), (3) the type of coverage (ground-
based vs. wide area), (4) whether they integrate contextual domain knowledge, and (5) their model category 
(i.e., global vs. local).  
Some models for anomaly detection can be created manually, such as by eliciting anomaly models in the form 
of rules from experts[7], but this may be impractical if experts are not available, they cannot easily provide 
these models, or the elicitation cost may be high. In this paper, we focus on algorithms that automatically 
learn anomaly detection models for maritime vessels, where the tracks are derived from ground-based optical 
video, and no domain-specific knowledge is employed. In this context, we will compare the performance of 
global with local methods.  
Many algorithms for automated anomaly detection exist [1], and have been discussed in the KDD, machine 
learning, pattern recognition, and related literatures. Some of them have been applied to maritime surveillance 
tasks. For example, Kraiman et al.’s [8] Automated Anomaly Detection Processor (AADP) uses self-
organizing maps (SOMs) to cluster tracks, and couples Gaussian mixture models (GMMs) with Bayesian 
techniques to perform decision making. Rhodes et al. [9] instead use Fuzzy ARTMAP to continuously learn 



 

 

normalcy models for designated maritime regions. Johansson et al. [10] instead propose a Bayesian approach, 
while Dahlbom and Niklasson [11] find that trajectory clustering has practical limitations, and propose a 
method that instead models normal trajectories with splines. Laxhammar [12] describes a greedy expectation-
maximization (EM) algorithm for learning the parameter settings of multivariate GMM models, while 
Laxhammar et al. [13] report a study in which its performance does not significantly differ from that of an 
adaptive kernel density estimator. Although these approaches were all knowledge-poor, some recent 
algorithms leverage substantial domain knowledge. For example, Bostwick et al. [14] describe a probabilistic 
case-based reasoning (CBR) approach for identifying anomalous tracks that accesses and reasons about 
supplemental information such as weather patterns, piracy events, and vessel ownership changes. Willems et 
al.’s [15] system instead derives piecewise linear segmentation models from tracks and uses an event model 
that integrates sensor data with information derived from the Internet. Their model can be queried via a visual 
analytics tool to search for abnormal spatial-temporal tracks. In summary, while these automated anomaly 
detection algorithms vary substantially (e.g., in the sensors they use to derive tracks, the track representations 
they operate on, and the contextual knowledge they leverage), they all employ a wide area coverage 
perspective, which differs from our focus on ground-based coverage. That is, we derive tracks from optical 
land-based video cameras, and do not assume, for example, that the small vessels being monitored are 
outfitted with AIS.  
With few exceptions, most of the algorithms mentioned above employ statistical techniques that fit 
distributions to the observed track data, learn normalcy models, and use an outlier detection method to 
identify anomalies. Also, most employ global algorithms, and cluster tracks over a large geographical area. 
Unfortunately, global algorithms that use standard clustering algorithms cluster outliers, and can perform 
poorly when their distributional assumptions are violated or when the data exhibit complexities such as large 
variances in distribution densities. To ameliorate these problems, some of the approaches mentioned above 
(e.g., [12]) employ a hybrid global/local method that divides the geographical area into grid cells and applies 
a global method in each cell. However, this fix has several limitations. For example, it ignores contextual 
information and does not reflect a natural geographical partition [13]. 
We conjecture that maritime surveillance applications exhibit complex structures where local anomaly 
detection algorithms may perform comparatively well. Among those mentioned above, only Bostwick et al. 
[14] learn local models, but their method does not use standard density-based methods for outlier detection 
(e.g., LOF [3], LOCI [6]), and we are not aware of any comparisons of local and global anomaly detection 
algorithms in the literature on maritime surveillance. In the following sections, we describe a set of global and 
local anomaly detection methods and detail their empirical comparison on a ground-based maritime 
surveillance task.  

4 ANOMALY DETECTION ALGORITHMS 

We expect that different kinds of maritime traffic are characterized by different levels of complexity and 
noise. For example, small sailboats may have complex chaotic behavior patterns that differ markedly from 
those of mid-sized ferries. Thus, an anomaly detection algorithm’s performance could vary depending on the 
type of maritime traffic. We investigate this conjecture by comparing two global and two local anomaly 
detection algorithms. The global algorithms we consider are an EM version of k-means clustering and the k-
NN Localized p-value Estimator (KNN-LPE). K-means is a popular distance-based clustering algorithm while 
KNN-LPE performs global density-based anomaly detection. The local algorithms we consider are a variant 



 

 

of the Local Outlier Factor (LOF) and k-NN Normalized Average Density (NAD), which are both density-
based anomaly detection algorithms. We describe these algorithms in the following subsections. 

4.1 Expectation Maximization k-Means Clustering  

Clustering is the assignment of a set of observations into subsets called clusters that, typically, minimizes the 
distance between observations within a cluster and maximizes the distance between observations that belong 
to different clusters. Clustering can be used to detect anomalies based on one or more of the following 
assumptions[1]:  
1. Normal data instances lie close to the closest cluster centroid while anomalies are further away. 
2. Normal data instances belong to large and dense clusters, while anomalies belong to small or sparse 

clusters.  
3. Normal data instances belong to a cluster, while anomalies do not belong to any cluster. This assumption 

is somewhat at odds with the traditional clustering techniques that require all nodes to belong to some 
cluster. 

In this paper, we test the k-means clustering algorithm [16] for anomaly detection and adopt assumptions 1 
and 2. It starts with a random selection of k observations as the cluster centers. Next, it iterates over an 
assignment step and an update step to find the optimum clusters. In the assignment step, it assigns an 
observation to its closest cluster center. In the update step, the cluster centers are recomputed based on their 
member observations. The algorithm terminates when the assignments do not change during two consecutive 
iterations. The standard k-means algorithm requires a manual specification of the number of clusters k as 
input. However, an optimal k and its associated clusters can be automatically obtained using an EM approach, 
which performs probabilistic assignments of observations to clusters instead of deterministic assignments and 
maintains multivariate Gaussian distributions instead of means as cluster centers.  
The EM k-means clustering algorithm for anomaly detection has two phases: training and decision making. 
The training phase includes the following steps:  
1. Expectation maximization clustering: Observations are used to generate the clusters. The distance of an 

observation to a centroid along one feature is computed using log normal probability density. The overall 
distance of an observation to a cluster center is the sum of the log normal densities of its n features. 
     ݂݂݀݅ሺݔ௜ሻ ൌ ݔ െ ௜ሻݔሺݕݐ݅ݏ݊݁ܦ݈ܽ݉ݎ݋ܰ݃݋݈ ݊ܽ݁݉ ൌ ቆ݂݂݀݅ሺݔ௜ሻଶ2ߪଶ ቇ െ ܥ െ logሺߪሻ 

ሻݔሺݕݐ݈ܾܾ݅݅ܽ݋ݎܲ݃݋݈ ൌ ሺ෍ ௜ሻሻ௡ݔሺݕݐ݅ݏ݊݁ܦ݈ܽ݉ݎ݋ܰ݃݋݈
௜ୀ଴  

where ߪ is the standard deviation of the cluster, C is a constant, x is a test instance, and ݔ௜ is a feature of 
x.  ݄ܶ݁ ݏݎ݁ݐݏݑ݈ܿ ݂݋ ݎܾ݁݉ݑ݊ ݉ݑ݉݅ݐ݌݋ is the one that maximizes the log probabilities of observations in 
a validation set.  



 

 

2. Sparse cluster identification: Sparse clusters are used to identify anomalous instances during the test 
phase. We identify sparse clusters as those that have a low prior and a standard deviation that is 
significantly higher than the standard deviations of other clusters. The identification rule is as follows: 

IF ((σcl > µσcl + A⋅σσcln   ) ∧ (prior < α)) 

     THEN label cl as a sparse cluster 

where σcl is the deviation in a cluster, µσcl is the mean of cluster deviations, σσcln is the deviation of cluster 
deviations, and A and α are constants.  

In the decision making phase, we label an instance as anomalous or normal by computing the distance of the 
instance to the clusters and identifying the closest cluster. The instance is anomalous if it is either associated 
with a sparse cluster or the distance to its closest cluster is greater than a specified threshold (τ). 

4.2 k-NN Localized p-value Estimator 

Conventional k-nearest neighbor (k-NN) approaches use local neighborhood information to detect anomalies 
[17]. They label an instance as anomalous when the distance to its kth nearest neighbor exceeds a specified 
threshold.  In contrast, a k-NN Localized p-value Estimator (LPE) [5] is a global anomaly detection algorithm 
that uses the entire training set to compute a score, which is an estimate of the probability that it is anomalous. 
This score (ܵ௧௘), or p-value estimate, for a test instance te is computed as follows: ܵ௧௘ ൌ 1ܰ௧௥ ෍ 1ሺ݀௧௘ ൑  ݀௜ሻே೟ೝ

௜ୀଵ  

where ௧ܰ௥ is the number of training instances, the node density di of an instance i is defined as the distance 
between i and its kth nearest neighbor in the training set, and 1() is the indicator function.  
A test instance is labeled as anomalous if its score ܵ௧௘ is greater than a specified threshold α, which represents 
the probability of an alarm. This threshold can be adjusted for a desired false alarm rate. This algorithm’s 
runtime complexity for a single test instance is O( ௧ܰ௥ଶሻ as it must identify the k nearest neighbors of each 
training instance. When applying this to test instances, we mitigate this computational cost by caching the 
training node densities. 

4.3 Local Outlier Factor 

The Local Outlier Factor (LOF) is a measure of the degree to which an instance is an outlier or an anomaly 
[4]. It is a local anomaly detector since it relies on only a restricted neighborhood of the test instance. It is 
particularly suitable for outlier analysis in large multi-dimensional data sets. The restricted neighborhood is 
defined by the input parameter k (the notation MinPts was instead used in the original paper).  
Computing LOF of an instance x includes the following elements: 
• k-distance(x): is the density estimate of an instance x, defined as: 

k-distance(x) = d(x, xk) 

where d(x, xk) is the distance between x and its kth nearest neighbor. 



 

 

• Nk(x): is the k-neighborhood of x, which includes all instances whose distances from x are not greater than ݀ሺݔ,  ௞ሻ. This allows instances to be equally far away, which may occur when distances are measured inݔ
discrete units rather than real numbers. Since we compute distances as real numbers, we define the k-
neighborhood of x to be its set of k-nearest neighbors. 

• lrd(x): is the local reachability density of an instance x: ݈݀ݎ௞ሺݔሻ ൌ 1/ሼ∑ ௥௘௔௖௛ିௗ௜௦௧ೖሺ௫,௢ሻ೚ ച ಿೖሺೣሻ |ேೖሺ௫ሻ| ሽ 

where reach-distk(p,o) is the reachability distance for an instance x with respect to another instance o (o ∈ 
Nk(x)), defined as: 

reach-distk(x,o) = max {k-distance(o), d(x,o)} 

The reachability distance tempers the effect of high-density neighborhoods on the LOF computation. It 
forces the density of instances p that are close to o to the same value (i.e., Nk(o)) and those instances that 
are far away from o to retain the larger densities d(x,o). 

• LOF(x): is the local outlier factor of an instance p, defined as:   ܨܱܮ௞ሺݔሻ ൌ  ∑ ௟௥ௗೖሺ௢ሻ௟௥ௗೖሺ௫ሻ௢ ఢ ேೖሺ௫ሻ| ௞ܰሺݔሻ|  

A LOF value of 1 indicates an instance has the same density relative to its neighbors, while a value less 
than 1 indicates an inlier, and a value significantly greater than 1 indicates that it is an outlier/anomaly. 
We classify an instance as anomalous if it is greater than a specified threshold (τ), whose value may be set 
based on a desired false positive rate.   

Our preliminary trials showed that LOF, as defined, does not perform well on our task. Consequently, we 
created LOF Normalized (LOFN), a version of LOF that linearly scales the feature values of all instances to 
[0,1].  We perform this normalization as follows:  

fi
Normalized =(fi – fmin)/( fmax – fmin) 

where fi is the non-normalized value of feature f in instance i, fmin is the minimum value of f in the training set, 
and fmax is the maximum value of f in the training set. LOFN’s runtime is also O(N2). 

4.4 k-NN normalized average density 

We introduce k-NN Normalized Average Density (NAD), a variant of LOFN that simplifies its density 
calculation and reduces its run time. Instead of computing local reachability distances, we estimate a node’s 
density as the distance between itself and its kth nearest neighbor. In particular, we replace the lrd(x) 
computation in LOFN with  ݈݀ݎ௞ௌ௜௠௣௟௘ሺݔሻ ൌ 1/ሺ1݇ ෍ ,௜ݔሺݐݏ݅݀ ௞ሻሻ௞௜ୀଵݔ  

The k-NN NAD score is computed in the same way as in LOFN (item 4, Section 3.3) and is compared to a 
threshold (τ) to determine whether it is an anomaly. The runtime of this algorithm is also O( ௧ܰ௥ଶ), as it must 
compute the nearest neighbor of each training instance.    



 

 

5 EVALUATION 

5.1 Objective 

Our goal is to compare the performance of local and global anomaly detection algorithms on a ground-based 
maritime anomaly detection task. An important consideration in our investigation is the degree of prediction 
difficulty. We expect the algorithms to differ only on borderline cases and not when the anomaly cases are 
clearly distinct from normal instances. 

5.2 Method 

Data. We created a data set of maritime tracks from a combination of observed surveillance data and 
synthetically generated data.    
Potomac River Surveillance Tracks. We collected two weeks of video data of maritime traffic on the Potomac 
River using a fixed camera mounted on a building at the Naval Research Laboratory in Washington, DC. Our 
camera recorded black and white digital images. We used background subtraction for object detection and 
tracking techniques [2]. These automatically extracted tracks were annotated for objects and activities by 
subject matter experts (SME) using a maritime ontology extracted from United States Coast Guard navigation 
guidelines [18].  

Table 1: Potomac maritime traffic data summary 
Vessel Category Number of Occurrences in Tracks  

Sailboat 949 
Recreational Vessel 375 
Passenger 365 
Utility Vessels 106 
Row Boat 43 
Cargo Vessel 24 
Fishing Vessel 4 

Table 2: Standard deviations across features of three categories of surface vessels 
Feature Sailboat Recreational Vessel Simulated Vessel  

x 311.7 364.9 256.3 
y 25.7 19.3 9.0 
vx 2.0 10.0 11.4 
vy 3.3 4.8 0.1 

 
Table 1 displays the set of vessels detected in this video data and the number of tracks in which they were 
observed. We selected tracks from the two most frequent vessel categories (i.e., Sailboat and Recreational 
Vessel) to evaluate the anomaly detection algorithms. We also generated synthetic tracks for a Simulated 
Vessel category with fewer positional and velocity variations using a uniform distribution. Our motivation for 
creating this simulated data was that we expected large algorithmic performance differences when feature 
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Test Set Generation. For each vessel category, we sampled 64 instances of non-anomalous data from the 
surveillance set and combined them with random samples of 24 anomalies from the synthesized tracks for 
each perturbation level. 

Algorithm Implementations and Optimal Parameter Settings.  We implemented the four algorithms 
described in Section 3: 
1. Expectation Maximization k-Means Clustering (EM-KMC): We used the Weka implementation for this 

algorithm.1 We also implemented the sparse cluster identification rule we described in Section 3.1.    
2. k-NN Localized p-value Estimator (KNN-LPE): We implemented this using the Nearest Neighbor 

Classification Library available in the Knexus Classification Workbench (KCLAW). We used the 
Euclidean metric to measure the distance between instances.    

3. Local Outlier Factor Normalized (LOFN): This was implemented as described in Section 3.3.   
4. k-NN Normalized Average Density (KNN-NAD): This was implemented as described in Section 3.4. 

Algorithm Parameter Settings 
The global and local density-based anomaly detection algorithms input the parameter k, which is the number 
of nearest neighbors. We identified the value of k, between 3 and 30, that optimized each algorithm’s AUC 
performance values on each category using a validation set. The validation set was generated in the same way 
as the training sets using data set aside for validation. These values are displayed in Table 3.   

Table 3: Optimal k values for each density-based anomaly detection algorithm per category 

Vessel Categories 
Local Global 

LOFN KNN-NAD KNN-LPE 
Sailboat 18 5 3 
Recreational Vessel 17 23 3 
Simulated Vessel 9 9 8 

Performance Metrics. We use the Area Under the Receiver Operating Characteristic (ROC) curve (AUC) to 
assess the performance of these algorithms. ROC curves are often used to compare the performance of binary 
classifiers [19]. A ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR).    

TPR = #anomalies correctly classified/Total number of anomalies  
FPR = #non-anomalies classified as anomalies/Total number of non-anomalies  

For each anomaly detection algorithm, we generate a ROC curve by plotting the TPR (y-axis) against the FPR 
(x-axis) while varying the threshold τ until the TPR reaches 100%. We compute the AUC using the Gini 
coefficient [20]. A larger value of AUC indicates a superior performance. A straight line from (0,0) to (1,1), 
called an indifference curve, serves as the baseline detector. 

We also report the runtime of the algorithms in milliseconds.   

Test Procedure. We presented each algorithm with the same training and test sets. For each set, we trained an 
anomaly detector and recorded their TPR and FPR against the test sets for the range of incremental detection 
thresholds needed for the ROC curve. 

                                                 
1 http://www.cs.waikato.ac.nz/ml/weka/ 



 

 

Analysis. We ranked the algorithms’ performances according to their AUC values, and report their average 
rankings.     

5.3 Results and analysis 

Table 4 summarizes the AUC values and runtimes obtained for the local and global anomaly detection 
algorithms on the three categories of maritime vessels in our study. As shown, the density-based global 
algorithm KNN-LPE is the dominant performer in the Sailboat category for the AUC metric, while the 
density-based local algorithm KNN-NAD is the second best performer for this metric. Figure 2a shows that, 
for a 10% false alarm rate, KNN-LPE achieves a 94% TPR, while the second highest TPR for this rate was 
recorded by EM-KMC (82% TPR).   
For the Recreational Vessel category KNN-LPE remains the best AUC performer, although KNN-NAD is a 
very close second. Figure 2b shows that, for a 10% false alarm rate, KNN-LPE (TPR 94.3%) outperforms 
KNN-NAD (TPR 91.7%). 
For the Simulated Vessel data, at 20% perturbation, the local density-based algorithms marginally outperform 
the global algorithms. For example, the KNN-NAD and LOFN have perfect AUCs of 1 and the EM-KMC 
and KKN-LPE have AUCs of 0.990 and 0.998, respectively. This difference is practically inconsequential 
(see Figure 2c).   

Table 4: AUC values and average run times for the local and global anomaly 
detection algorithms on three categories of maritime data 

 Local Global 
 LOFN KNN-NAD EM-KMC KNN-LPE 
Sailboats     

20% 0.901 0.944 0.911 0.987 
40% 0.726 0.915 0.911 0.991 
60% 0.813 0.927 0.971 0.993 

Average Rank 4 2.33 2.66 1 
Average Runtime (ms) 15443 322 29417 465 

Recreational Vessels 6758    
20% 0.970 0.980 0.971 0.987 
40% 0.995 0.995 0.999 1.000 
60% 1.000 1.000 1.000 1.000 

Average Rank 2.66 2 2 1 
Average Runtime (ms) 2682  217 3728 38 

Simulated Data     
20% 1.000 1.000 0.990 0.998 
40% 1.000 1.000 1.000 1.000 
60% 1.000 1.000 1.000 1.000 

Average Rank 1 1 1.66 1.33 
Average Runtime (ms) 1382 164 2167 80 
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substantially reduced.  As shown in Table 4, KNN-LPE, despite being a global algorithm, has the fastest run 
time. Thus, it is a promising algorithm to use for these conditions. 

 

6 DISCUSSION 

Anomaly detection using normalcy models is among the most commonly used technique for maritime threat 
detection. For example, Rhodes et al. [9] and Laxhammer et al. [13] describe applications of global anomaly 
algorithms to large vessels maritime traffic in open ocean. However, Rhodes et al [9] do not report any 
empirical evaluation. Furthermore, they focus on ocean going vessel traffic, which compared to small boat 
traffic is well behaved and less noisy because the vessels can be tracked via their Automated Identification 
Systems.  Under such conditions we conjectured and demonstrated, at least for our data, that there are no 
notable performance differences across anomaly detection algorithms. 
In this paper, we were predominantly concerned with small vessel traffic in coastal areas and in rivers, whose 
activities are erratic and noisy when tracked via ground-based video surveillance. These situations are likely 
to include difficult to detect or borderline anomalies.  Given the availability of a wide variety of anomaly 
detection algorithms [1], their application to small vessel maritime traffic and can result in unpredictable 
performances. We expected the performance differences between anomaly detection to be substantial for such 
borderline cases.  As expected, our comparative evaluation of global and local algorithms shows that, indeed, 
there are substantial performance differences between them.  However, the surprising result is that the global 
algorithms outperform the local algorithms both on accuracy and speed.  This is in contrast to the evaluations 
reported by Jassens et al. [6], possibly because they evaluated performance on non-maritime data where the 
problem characteristics are likely to differ from ours.  Additionally, we systematically controlled the degree of 
anomalies, which enabled us to isolate the differences between the two categories of algorithms.  
Our ultimate objective is real-time threat detection using ground-based surveillance. Thus, the computational 
speed of anomaly detection algorithms is of significant concern. Typically, the global algorithms are more 
computationally expensive in time than local algorithms. However, we find that the KNN-LPE, a global 
density based approach, has the lowest runtime on two of the three vessel categories we examined, possibly 
because it lends itself to caching of distance computations.  
Our investigations in this paper have several limitations. First, we evaluated the algorithms on only two 
categories of (real) vessels. Second, although we created simulated tracks based on actual data, our simulation 
algorithm made independence assumptions across features. This could generate unrealistic tracks. We will 
address these limitations in our future work by increasing the categories of vessels and using multi-variate 
distributions for synthetic data generation.  

7 CONCLUSION 

Threat detection in maritime environments is of vital interest to the US Navy and the Department of 
Homeland Security.  In particular, threat of attack on assets and maritime infrastructure from small vessels is 
a key concern. We addressed this by systematically evaluating performance differences among anomaly 
detection algorithms on small vessel maritime traffic. Our contributions in this paper are twofold.  First, we 
show that  some small boat traffic characteristics can be markedly different in nature than open ocean 



 

 

maritime traffic. This difference must be considered in the selection and application of anomaly detection 
algorithms to the threat detection problem. Using generated data, we showed that a density based global 
algorithm outperforms two local algorithms in accuracy and speed for two of the three vessel categories we 
examined,  making them attractive for ground-based real-time surveillance of small vessel traffic. Second, we 
showed that the performance differences between local and global algorithms are inconsequential for more 
simpler anomaly detection problems. 
There are several avenues of future research that we intend to pursue.  We will consider the temporal aspects 
of anomalous scenarios and model them using approaches for sequence or activity labeling such as Hidden 
Markov Models [21] and Conditional Random Fields [22]. Most existing work on threat detection focuses on 
analyzing the behavior of single vessels. However, threats from coordinated activities are also a serious 
concern.  We intend to address coordinated threats using probabilistic relational models such as Markov 
Logic Networks [23]. 
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