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Abstract—Autonomous gliders may be instrumented with sensors 
and used to gather data and perform surveillance in strategically 
critical areas, but their use is currently limited to low-energy 
environments due to the challenges of  path planning and 
navigation in high-energy environments, including variable 
environments (e.g., eddies and currents resulting from weather 
and seasonal effects), and particularly where ocean currents 
exceed glider speeds.  In this effort we develop a navigation 
planner for gliders in complex high-energy ocean environments 
to achieve point-to-point navigation, and explore the use of  this 
planner for optimizing a team of  underwater gliders.  These 
techniques  will extend the capabilities of teams of  autonomous 
vehicles to perform missions in strategically important areas. 

I.    INTRODUCTION

Autonomous systems offer tremendous potential for 
surveillance and other missions in the littoral zone.  However, 
coordinated route planning and navigation for autonomous 
underwater vehicles operating in a complex, dynamic, 
partially unknown undersea environment is a challenging 
problem.  In this effort we address planning and navigation of 
autonomous vehicles (such as gliders) operating in dynamic 
and/or unknown environments,  and explore the optimization 
of a team of underwater gliders to improve accuracy of 
assimilative ocean prediction models for undersea warfare.  
 Gliders may perform long-term sensing and data collection 
due to their low energy expenditures, since they use only 
gravity for propulsion. On-board computation requires little 
power,  and the gliders may be equipped with solar panels to 
recharge their batteries while on the surface.  However, as 
highly under-actuated systems (only buoyancy control for 
diving,  and control surfaces for turning, are used) they also 
present a challenge for route planning and navigation.  Glider 
navigation and control solutions developed to date generally 
assume that no ocean currents are present, or that their effects 
are negligible and can be treated as error effects.  As such, 
gliders are typically used only in ocean environments where 
the ocean current speeds are substantially less than glider 
surface speeds (i.e. speed of the glider projected onto the 
ocean surface).  In such placid environments gliders often 
follow a radiator pattern for data collection, or simple 
waypoint following for a pre-planned paths is used.  However, 
many Navy operations require using gliders in much more 
dynamic environments where currents may exceed glider 
surface speeds. To accomplish this we need a planner that will 
allow gliders to utilize localized ocean currents to move from 
one position to another, just as a sailor on a sailboat utilizes 
winds to maneuver a sailboat.

Figure 1. Complex high-energy ocean environment

 Simple glider navigation systems often rely upon the use of 
dead reckoning to navigate the glider along a predetermined 
set of waypoints. We started by solving the 2D path planning 
and navigation problem for long-term autonomous sailboat 
navigation in a dynamic environment [1], and then adapted the 
planner for use with an unmanned glider.

II. APPROACH

 The autonomous glider navigation problem is to find a near-
optimal traversable path from one position (given by latitude 
and longitude coordinates) to another. The navigation problem 
can be solved by combining a short-term iterative algorithm 
with a long-term iterative algorithm. The long-term algorithm 
provides an estimate of the optimal path to guide the short-
term algorithm. The long-term algorithm uses discretized 
dynamic programming [2] to quickly find a near-optimal path, 
avoiding land masses and other undesirable locations. For the 
purposes of simulation the path was optimized for time. 
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 A few simplifying assumptions were made. It is assumed 
that at launch time the vehicle will have access to an ocean 
model (including current estimates) for the region it will travel 
through, and that any shallow or inaccessible areas will be 
marked appropriately in the model. It is highly probable that 
there will be some noise in this data, so it is used only for 
obtaining a near-optimal long-term path. The short-term 
algorithm does not assume that the initial data is correct. The 
short-term algorithm is designed to use data about the 
immediate surroundings in real time to reach the next 
waypoint quickly and to avoid running aground. 
 For this data to be useful for planning and navigation, a 
vehicle model must be employed. The algorithms used assume 
that the vehicle's capabilities (e.g. maximum forward speed, 
glide angle, turning radius) are specified, and in this effort an 
underwater glider simulation model was used. 

The glider simulator route planner combines a long-term 
planner with a short term iterative path optimizer to generate a 
time-optimal path through ocean currents. This route planner 
attempts to find an optimal path from an initial coordinate 
position to another. Gliders are usually used in areas where the 
ocean currents are negligible or ignored as error, but in reality 
the currents can greatly affect glider path. The purpose of this 
planner is to create a path that utilizes or avoids ocean 
currents. Simple glider navigation often uses dead reckoning 
navigation. However, this is often not the most efficient route 
(especially for time-optimization), and in stronger currents 
(where current speeds exceed maximum glider speed), it may 
not even be possible for the glider to reach the goal using dead 
reckoning from the chosen starting point. 

III. ALGORITHM

 The path planning algorithm consists of two parts: a long-
term planner and a short-term planner. 

A. Long-Term Planner
 The user selects a Navy Coastal Ocean Model (NCOM) 
data file, and uses a program to extract needed current data 
into a more easily accessible data form. The user enters start 
and end coordinates, and vessel information, such as speed 
and maximum depth. The program takes the start and end 
points and creates a grid,  with each cell in the grid 
corresponding to a data point from the selected NCOM file. 
The current grid is created by averaging the currents at each 
depth less than the pre-specified maximum glider depth. After 
initializing variables, the program starts the long-term planner. 
The program constructs a cost-to-go grid, where areas with 
water shallower than the glider's deepest depth are assigned a 
cost of 1,000,000.

The long term planner starts at the start coordinate cell, and 
checks each cell around it at 45 degree intervals. It chooses the 
cell that has a lower cost-to-go value but also brings it closer 
to the goal, adds that to a path waypoint list, and repeats for 
the new cell. When it reaches the end point's cell, it removes 
waypoints that do not represent a change in direction.

Each cell in the Cost-To-Go (CTG) grid corresponds to 
exactly one cell in the grid of current vectors. The goal is 
assigned a cost of zero and then costs are assigned to the goal 

cell's children.  A cell's children are the eight cells which 
surround it in 45 degree increments. A child's cost is 
calculated as the time it would take to travel a linear path from 
the child cell to the parent cell plus the cost of its parent cell. 
The resulting total cost shown in the grid is the time it would 
take to travel from the cell to the goal. 

The algorithm continues to recursively assign costs to the 
rest of the grid. If a cell is revisited with a lower cost, the 
lower cost overwrites the previous cost unless it is has a cost 
of 1,000,000 (which is used to indicate an impassable area). 

The lowest total cost path from the start to end is 
constructed by starting at the cell containing the start point, 
and selecting the lowest of the eight adjacent CTG cells. The 
next waypoint selected is the center of the selected cell. This 
process is repeated until the goal point is reached.   

Figure 1.  Cost-To-Go Grid Data

In the CTG grid shown in Figure 1, the edges of impassible 
areas are assigned 1000000, inaccessible areas are left with -1, 
and other cells are assigned numbers based on the time it 
would take to get from them to the goal.  Figure 2 shows a 
screenshot of the glider simulation GUI using this CTG grid.

Figure 2. Screenshot of Glider Simulation GUI



B. Short-Term Planner
The short-term planner follows an algorithm that picks the 

heading that brings it closest to the next waypoint from the 
long-term planner, also taking the current speed and direction 
into account. Multiple iterations remove unnecessary turns and 
waypoints, and cut corners generated by the long-term 
planner.   

Figure 3. Path optimized for both currents and impassible 
areas (coastline). Data is from the Monterey Bay area.

Figure 4. Long-distance glider route in high-energy 
environment. Data is from the Okinawa Trough area.

Figure 4 shows that the route planner is capable of finding 
very long routes even in high-energy ocean environments such 
as the Okinawa Trough area.

In situations where it is feasible for the glider to follow a 
straight-line path to the goal, if there are currents present, even 
small ones, it may be able to reach the goal sooner (and 
conserve energy)  by using a current-optimized path.  Figure 5 
shows an example of this for a path in the Monterey Bay area.

Figure 5. Path optimized to take advantage of small 
currents. Data is from the Okinawa Trough area.

IV. ANALYSIS

A.  Optimized Routes vs. Dead Reckoning

Figure 6. Optimized route planning vs. dead reckoning. 
Data is from the Monterey Bay area.



Since most point-to-point navigation using gliders uses 
dead reckoning, our analysis of the performance of our 
planner focused on comparison of the paths produced, and 
more importantly the transit time from start to goal, using the 
two methods.
 In the Monterey Bay map shown in Figure 6 the glider must 
navigate from the starting point (shown near the top) to the 
finish (near the bottom).  The dead reckoning path (shown in 
dark green) took 477.69 hours, while the optimized path 
(shown in black) took only 385.71 hours.
! The navigation optimizer may be most useful in situations 
where there is no dead-reckoning navigation solution from 
start to finish. Figure 7 shows an example of this using data 
from the high-energy Okinawa Trough area.

Figure 7.  Optimized Route (black) vs. Failed Dead 
Reckoning Path (dark green)

   In Figure 7 the glider starts at the pink dot in the lower left 
and must navigate to the finish near the upper right.   The dead 
reckoning path (dark green) is unable to compensate for the 
strong currents of the Okinawa Trough area in time to reach 
the target, while the navigation planner is able to reach the 
target.

V.  SUMMARY & CONCLUSIONS

Glider navigation and control solutions developed to date 
generally assume that no ocean currents are present, or that 
their effects are negligible and can be treated as error effects.  
Simple glider navigation systems often rely upon the use of 
dead-reckoning to navigate the glider along a predetermined 
set of waypoints.   The autonomous vehicle navigation problem 
is to find a near-optimal traversable path from one position 
(given by latitude and longitude coordinates) to another.  We 
solve the navigation problem by combining a short-term 
iterative algorithm (locally navigating using on-board sensors) 
with a long-term iterative algorithm (using ocean model data). 
The long-term algorithm provides an estimate of the optimal 
path to guide the short-term algorithm. The long-term  
algorithm uses discretized dynamic programming to quickly 
find a near-optimal path.   The navigation planner has been 
tested using a glider simulation testbed and various !"#$%&'()*
+,(-&'"./* (.0"-+.#(.'!* !,(1"2"()*34*& Navy Costal Ocean 
Models (NCOM)5
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