
Long-Term Symbolic Learning in Soar and ACT-R

William G. Kennedy (wkennedy@itd.nrl.navy.mil)
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory, 4555 Overlook Avenue SW
Washington, DC 20385 USA

J. Gregory Trafton (trafton@itd.nrl.navy.mil)

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, 4555 Overlook Avenue SW

Washington, DC 20385 USA

Abstract

The characteristics of long-term, symbolic learning were
investigated using Soar and ACT-R models of a task to
rearrange blocks into specific configurations. Long sequences
of problems were run collecting data to answer fundamental
questions about long-term, symbolic learning. The questions
were whether symbolic learning continues indefinitely, how
learned knowledge is used, and whether performance
degrades over the long term. It was found that in both
systems symbolic learning eventually stopped, ACT-R
produced three observable phases of learning, and both Soar
and ACT-R suffer from the utility problem of degraded
performance with continuous on-line learning.

Introduction
Humans take years to develop the knowledge necessary

for reasonably intelligent behavior. Building systems that
achieve intelligent behavior is a major goal of the field of
Artificial Intelligence (AI), but AI systems have not been
run for the equivalent number of years. AI’s symbolic
learning techniques are typically run only long enough to
show performance improvements attributable to the new
techniques (Kennedy & De Jong, 2003). In addition, there
appears to be a fundamental limit on current AI’s symbolic
learning techniques. When symbolic learners have been run
on series of problems, performance has been found to
eventually degrade. This behavior was named the “utility
problem” (Minton 1990). On the other hand, humans do not
suffer from the utility problem and their long-term learning
is familiar to all of us. Understanding the nature and
characteristics of learning over the long term in humans is
important to achieving intelligent behavior from artificial
systems. Explorations into long-term learning that address
the utility problem in Soar have been done (Kennedy & De
Jong, 2003). This paper reports on research comparing
long-term, symbolic learning in Soar and ACT-R.

Learning, or skill acquisition, has been proposed to
include the move from problem solving to retrieval (Logan
1988) and to go through three stages (Anderson 1982; Fitts
1964). In the first stage, the cognitive stage, the knowledge
is primarily declarative and must be interpreted. General
problem solving techniques are employed, such as means-
ends analysis, at this initial stage. In the second stage, the

associate stage, there is a mix of declarative and procedural
knowledge and the problem solving is transitioning from
general methods to methods specific to the problem domain.
By the third stage, called the autonomous stage, the
knowledge is procedural: compiled, fast, and error-free. In
this last stage, there is no problem solving and performance
improvements are based on psychomotor speedup up to
physical limitations (Anderson et al., 2004).

The three stages of behavior have been observed in the
complex Kanfer-Ackerman air traffic controller task and
correlated with observed behavior on simpler tasks
(Ackerman, 1998, 1990). The cognitive stage correlated
with general intelligence, perceptual speed correlated with
the associate stage, and psychomotor abilities correlated
with the autonomous stage. Taatgen and Lee (2003) applied
cognitive modeling to this complex task and demonstrated
learning in the three stages in one cognitive model.

By long-term symbolic learning (LTSL), we refer to the
first two stages, i.e., up to the point where the system has
reached steady-state behavior in a symbolic sense.

Computational cognitive models of learning have been
successfully built to simulate long-term learning,
specifically lifetime learning of arithmetic (Lebiere 1999).
AI learning systems typically have not been run long
enough to achieve steady-state behavior (Kennedy & De
Jong, 2003). One reason is that a performance problem was
identified in AI systems with continuous learning by Minton
(1990). Problem-solving time grew with the number of
productions in the system. His system and others
demonstrated degraded performance after 100 or fewer
problems were solved. Further research suggested the
problem was universal (Holder 1990).

On the other hand, Markovitch and Scott (1988) reported
discovering that their symbolic learner’s performance
actually improved with forgetting. After their system had
learned productions (macros) based on 5000 training
problems and had established a level of performance in
terms of a minimum number of nodes searched, as its
learned productions were incrementally removed, its
performance improved. Performance peaked when
approximately 90 percent of the learned productions had
been removed. This surprise finding and the pervasive
utility problem indicate weaknesses in the implemented

learning techniques and raise questions about our
understanding of the nature of long-term symbolic learning.

We have explored long-term learning with two of the
most widely-used systems implementing substantial
computational theories of learning, Soar and ACT-R.

Soar (The Soar Group, 2005) is a symbolic learning
system with early success modeling the observed power law
of practice (Rosenbloom 1986). In 1990, Newell proposed
Soar as a unified theory of cognition (Newell 1990). Soar
uses one form of short term memory, called “work memory”
and one form of long term memory, “chunks”. Soar also
uses a single learning mechanism, “chunking”, in which the
solution to a subproblem is formulated and kept as a
production. Consistent with the learning theory that Soar
implements, productions are retained forever and working
memory is transient. About the same time Soar was
proposed as a unified theory of cognition, Soar was
demonstrated to suffer from the utility problem (Tambe,
Newell, & Rosenbloom, 1990). A successful remedy was to
modify the theory and introduce forgetting of learned
productions based on a threshold of time since last use
(Kennedy & De Jong, 2003).

The ACT family of theories (ACT-R Research Group,
2005) has a long history of integrating and organizing
psychological data. The current version, ACT-R, derives
important constraints from asking what cognitive processes
are adaptive given the statistical structure of the
environment (Anderson 1990). It has also been broadly
tested in psychological and computational terms.

Within ACT-R, all declarative and procedural knowledge
is retained, activation levels are calculated which affects the
model’s ability to recall the knowledge. Of the productions
with activation above a threshold, selection of which one to
fire is made based on the productions’ expected gain. This
conflict resolution process allows ACT-R to learn the
effectiveness of productions. However, all productions are
maintained and subsequent experience can raise a
production’s activation.

The work reported here is our investigation of the
characteristics of long-term symbolic learning, comparing
the behavior of Soar and ACT-R on the same problem
domain, Blocks World.

Research Questions
We focus on three fundamental questions associated with
the nature of long-term learning as modeled by Soar and
ACT-R: whether symbolic learning in these computational
cognitive models will go on forever, how the learned
knowledge is use in problem solving, and whether the utility
problem applies to ACT-R as well as symbolic AI learning
systems.

The first question addresses fundamental assumptions. If
we built a system and started it learning, it seems inevitable
that it would eventually learn so much knowledge as to
suffer from the utility problem. That inevitability is based
on the expectation that learning continues indefinitely as
Newell (1990) believed. The theory behind the ACT-R

system acknowledges “great reductions in cognitive
involvement” (Anderson 2000) based on obeying the power
law (Anderson 1982) although it was also recognized that
speed up could continue until it reaches the limitations of
the physical system. That suggests that the cognitive
portion of learning ends, i.e., not including the psychomotor
phase of learning. So, Soar theory predicts that symbolic
learning continues indefinitely and ACT-R’s theory predicts
that symbolic learning eventually stops.

The second question concerns how learned knowledge is
used. In Soar, it was found that many, up to about half, of
learned productions were never used and that patterns of
production use justified excising some productions based on
lack of recent use (Kennedy & De Jong, 2003). Anderson
and Lebiere (1998) believed that Soar generated too many
productions as a result of a general problem with Soar’s
chunking. Therefore, ACT-R evolved to include more
caution in the creations of productions. Both Soar and
ACT-R support the learning of new productions based on
previous productions which would lead to productions being
subsumed and no longer useful.

The third question is whether ACT-R, a cognitive
modeling system, suffers from the utility problem that
plagues AI’s symbolic learning systems. Although ACT-R
has been used to model lifetime learning including
simulating years of learning by solving tens of thousands of
problems over hours of computer time (Lebiere 1999), no
discussions of performance problems such as the utility
problem were found in the literature.

Answers to these questions will contribute to both the
fields of AI and Cognitive Science. For Cognitive Science,
results should support the development of a theory of long-
term learning that addresses the utility of forgetting. For AI,
results should be directly applicable to developing learning
robots that are expected to operate autonomously for long
periods of time.

Method
To address these research questions, we review previous
work on long-term symbolic learning with Soar and other
symbolic learning systems and report on experiments using
Soar and ACT-R available from their user groups (ACT-R
Research Group, 2005; The Soar Group, 2005). Blocks-
World domain was used because it was simple to
implement, has a large search space, and can be scaled
easily by increasing the number of blocks. For both
systems, runs were made problems generated randomly,
with replacement, from the 30 possible three-block
problems that can be solved in one step.

The task is set up so that one learned production can solve
one problem, which would not be true for more complex
problems or problem domains. That simplicity allows us to
isolate long term learning characteristics. The expectation is
that if we find characteristics within one-step problems,
those same characteristics will manifest themselves in more
complex models.

The version of Soar used was 8.6.1 for Windows, run
within the Soar Java Debugger (in text view). The ACT-R
system, version 6 [R145] was run without modification on
several desktop PCs and Macintosh computers. Version 6
implements the latest theory on the compilation of
sequentially firing productions into new productions. For
both systems, default parameters were used except: for Soar,
learning was turned on, and for ACT-R, the latency factor
(:lf) was set to 0.4 and the declarative retrieval threshold
(:rt) was set to -1, both to keep the memory of the problem
available during problem solving. We also enabled
subsymbolic calculations (:esc T). To run long series of
problems in Soar, command files were generated and run in
batch. For ACT-R, a Lisp problem generator was run
calling ACT-R to run each problem in the series. Traces of
the systems’ behavior were analyzed off-line.

Task Description
The general task was to rearrange a small set of named
blocks on a table from one configuration to another. As an
example, a problem is to change the configuration of block-
A on block-B with block-B and block-C on the table to a
tower configuration with block-C on block-B, block-B on
block-A, and block-A is on the table, as shown in Figure 1.
Moves consist of selecting an available block and moving it
to the table or on top of another block. The criteria to move
a block is that the block be clear, i.e., not having another
block on top of it, and the destination also be clear. The
table is always a legal destination.

Figure 1: A Blocks World Problem.

Cognitive Models in Soar and ACT-R
Cognitive models of this task were implemented in Soar and
ACT-R. Both systems blindly select legal moves with no
prior knowledge. There is no planning involved because
that was to be learned. Both systems chose from available
legal moves based on its knowledge.

When either system achieved the goal configuration, it
learned the effective move. In Soar, the solution to the
subproblem of choosing the best move for the problem
resulted in a “chunk”, the new production. In ACT-R, the
move was saved as a “chunk” in declarative memory. (Note
the different uses of the term “chunk”.) When a solution
was retrieved, a new production compiling that information
was generated. After several recreations of the same
production, in accordance with the ACT-R theory, its utility
would be increased enough to compete successfully with the
solution retrieval production and fire (Anderson, et al 2004).

For Soar, three models of Blocks World are provided with
the Soar software (The Soar Group, 2005). The look-ahead
model was used because it was the only one that learns. The
model representation specifies the current and goal states
based on what each block is on top of, either the table or
another block. Soar sequentially selects and applies moves
of a block to a new location until the current configuration
matched the goal. When Soar does not have the knowledge
to immediately select a move, it establishes a subproblem to
decide the move to make. The solution to a subproblem is
saved as learned production, a Soar “chunk”, which
eliminates the need to repeat the solving of the subproblem.
Soar’s chunks are not written for specific blocks but are
generalized to descriptions of any blocks meeting specific
on-top and clear conditions.

A similar model was developed for ACT-R following the
approach common in the ACT-R community (e.g., Lebiere
1999). The ACT-R model uses its vision module to read in
a problem’s initial and goal configurations in terms of what
the blocks are on. It then attempts to recall a previous move
from the current configuration to the goal. If it finds such a
move, that move is executed. If it does not, a legal move is
created based on any block that is available to be moved and
any possible destination. After making the move, the
resulting configuration is evaluated as to whether it
achieved the goal. The move achieving the goal is saved as
a solution for the problem of achieving the goal from the
previous configuration. The model randomly tries moves
and recognizes and then saves those that achieve the goal.

Both systems begin by conducting general problem
solving, note actions that achieve the goal of solving a
problem, and save that knowledge for future use. Both
immediately save the knowledge as production. Soar makes
that production immediately available for use and ACT-R
requires the production to be generated several times to raise
its activation enough to be fired.

Results
For each research question, previous research, experimental
results, analysis, and observations are discussed.

Does symbolic learning continue indefinitely?
Few researchers have run symbolic learning systems on
long series of problems. TacAir-Soar with thousands of
productions has been run for hours but does not employ
learning (Jones 1994). ACT-R has been used to model life-
time learning on thousands of arithmetic problems with
ACT-R run for hours (Lebiere 1999), but its performance
was not discussed. We therefore assume its performance
was not an issue. When we ran both Soar and ACT-R, on
Blocks World problems, symbolic learning ended as shown
in Figures 2 and 3. The learning curves shown are plots of
the cumulative number of new productions in the system
against problem number. Plots of the average of five runs
for both systems are shown.

Both plots have the same general shape, but their units are
very different. Figure 2 shows Soar’s learning over only 50
problems while Figure 3 shows ACT-R’s learning over

B

A

C

B C

A

2500 problems. The scale is so different because Soar
learns its last production on problem 15 and ACT-R’s last
production was learned on problem 1751. Because Soar
learns very general productions, it does not need to see
every possible problem in the domain before learning stops.
Our ACT-R model must see every problem to compile a
production. The number of productions learned is also very
different. All of the Soar runs learned exactly eight
productions, all general. ACT-R eventually learned 34-37
productions, one for each problem plus a few due to model
coding.

Figure 2: Productions Learned in Soar

Figure 3: Productions Learned in ACT-R

Although symbolic learning in both Soar and ACT-R
stopped, there are differences in the system’s behavior.
Soar learned productions that are generalized while ACT-
R’s productions are specific to individual block names.
Therefore, Soar needs far fewer productions to cover the
same deductions. In addition, the ACT-R model includes its
vision module which introduces noise resulting in additional
production learning which is not material to the model. As
a result, when the learning ends varies between the systems,
but the fact that both stop learning is significant.

How is learned knowledge used?
Learning is based on the expectation of future use of the
knowledge learned. But, how and when is it used?

A possible set of patterns of use based on when
productions were learned was discussed in Kennedy & De
Jong (2003). That pattern was that (1) productions learned

early are used more frequently than productions learned
later, (2) the most recently learned productions are used
more frequently, and (3) production use is independent of
when learning occurred.

Previous experiments with Soar demonstrated that in
some problem domains only about half of Soar’s learned
productions were ever used and that although there was an
overall relatively constant number of productions used on
each problem, more recently learned productions were used
(Kennedy & De Jong, 2003).

The use of the learned productions was expected to be
uniformly distributed due to the environment, a uniform
distribution of the problems. To look for patterns in
production use, the problems in which productions were
used were plotted by problem number. However, no
patterns of use were discernable. The statistics of
production use confirm uniform use. Over five runs of 250
problems each, Soar learned eight new productions but used
only four on each run. Those four productions were each
used 25 percent of the time (standard deviation was less
than 0.05 percent). Over five runs of 2500 problems, the
ACT-R model learned 36 productions and used 26 in four
runs and 27 in the other. Over the 2500 problems, each
production was each used 3.85 percent of the time (standard
deviation was less than 1.25 percent). (Perfectly uniform
use would have been 1/26.2 = 3.81 percent of the time.)

On closer examination, a pattern of use, stages of
learning, in ACT-R was observed. Anderson described
three stages of skill acquisition, cognitive stage, associative
stage, and autonomous stage (Anderson 2000). ACT-R
model running these simple Blocks-World problems
demonstrated three stages of learning. Figure 4 shows, per
problem, the number of moves created during problem
solving, retrievals of previously successful moves, and
firing of learned productions per 100 problems. The
number of productions fired per 100 problems became
approximately 100, or one production per problem in the
third stage.

Figure 4. ACT-R Stages of learning

Figure 4 clearly shows three stages of learning. The first is
the period when the model is solving problems by creating
moves based only on what were legal moves. There was no
knowledge in the model guiding the generation of moves
other than their legality. It also shows the period where the
model relied on the retrieval of previous solutions from
memory to solve the current problem. Finally, it shows the

0

20

40

60

80

100

0 500 1,000 1,500 2,000 2,500

Problems

C
o

u
n

t
p

e
r

1
0

0

P
ro

b
le

m
s

Moves Created Retrievals Production Firings

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Problems

L
e
a
rn

e
d

 P
ro

d
u

c
ti

o
n

s

0

5

10

15

20

25

30

35

40

0 500 1,000 1,500 2,000 2,500

Problems

L
e
a
rn

e
d

 P
ro

d
u

c
ti

o
n

s

use of compiled knowledge in productions, now procedural,
rather than the retrieval of declarative facts retrieved from
memory.

These runs demonstrated that both systems transitioned
from problem solving to using learned knowledge. Soar did
so immediately and ACT-R took longer. Both systems
reused learned knowledge. Soar used half its learned
productions and ACT-R used approximately three-fourths.

Does ACT-R suffer from the utility problem?
In the same year Soar was proposed as a unified theory of
cognition, it was confirmed to suffer performance
degradation with continued learning known as the utility
problem (Tambe 1990). One component of Newell’s
cognitive theory implemented in Soar is that productions are
the only form of long-term memory and all productions are
kept indefinitely. Relaxing this premise led to statistically
significant improvements in Soar’s performance in long-
term learning experiments (Kennedy & De Jong, 2003).

To test whether ACT-R suffered from the same problem,
timing data was collected during long runs of the system on
Blocks World problems. Multiple runs were made on
personal computers running the Windows operating system
with the standalone version of ACT-R version 6 [R145]
(Allegro Common Lisp) and on Apple G4 and G5 machines
running Mac OS X and Macintosh Common Lisp (MCL)
version 5. No changes were made to the Lisp garbage
collection parameters. Time and memory consumption was
available from the Lisp implementation (implementation
specific) and from ACT-R. Two times were associated with
solving a problem in ACT-R. The first was the human’s
response time calculated by ACT-R as a function of the
Blocks-World model and ACT-R’s sub-symbolic modeling.
Figure 5 shows the average ACT-R run times for five runs
averaged over 10 problems. The other time available is
Lisp’s internal clock measured in “ticks”. This
measurement is implementation dependent and captures the
time associated with garbage collection. For this
implementation, 1000 ticks equal 1 second. Figures 6 and 7
show the Lisp time and memory resources used for five runs
averaged over 10 problems.

Figure 5. ACT-R Model Times for Blocks World Problems

Figure 5 shows a downward trend in the average time to
solve individual problems. This trend is the expected output
of the ACT-R model of improved performance with
experience.
 However, all of the systems running our model of the
Blocks World eventually failed (froze). Failure ranged from
as early as 340 problems on the Apple G4 (desktop) with
384MB of memory to over 32000 problems on a PC with
1GB of memory. Figures 5-7 are from the Apple G4 runs.
Figure 6 shows the increasing Lisp ticks prior to failure.
Figure 7 shows the corresponding memory allocation.

Figure 6. ACT-R Run Times in Lisp “ticks”

Figure 7. ACT-R Memory Allocation

While the ACT-R model’s output shows a downward trend
in response time consistent with human performance data,
the calculations necessary to run the model frequently
required garbage collection and all runs eventually failed.

The failure of ACT-R on long series of problems appears
to be independent of hardware and operating system (we
used both Macintoshes and PCs) and Lisp implementations
(we used Allegro and Macintosh Lisps). Other long runs of
ACT-R (Lebiere 1999) used a different version of ACT-R
which did not include production compilation nor include
the use of the vision module of ACT-R. Therefore,
although ACT-R models human performance, the system
suffers from the utility problem like other symbolic learning
systems. It is unclear whether the utility problem exists at
the implementation level (e.g., Lisp), the architectural level
(e.g., ACT-R version 6), or the theory level.

0

250

500

750

1,000

1,250

1,500

0 50 100 150 200 250 300

Problems

M
e

m
o

ry
 A

ll
o

c
a

ti
o

n
 (

K
 b

y
te

s
)

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300

Problems

A
C

T
-R

 S
e

c
o

n
d

s

0

250

500

750

1000

1250

1500

0 50 100 150 200 250 300

Problems

L
is

p
's

 I
n

te
rn

a
l

T
ic

k
s

 (
in

c
lu

d
e

s
 G

C
)

Conclusions and Implications
We conclude that Soar and ACT-R have demonstrated
similar long-term learning characteristics. The learning of
symbolic productions on long series of problems from a
finite problem domain eventually stops. We draw no
conclusions on domains where an infinite number of
problems are possible. On the use of learned productions,
there may be some differences between Soar and ACT-R,
but our long runs of Blocks World problems did not show
them. We found that ACT-R demonstrates three phases of
learning: cognitive problem solving, recall of previous
solutions, and finally, proceduralization of knowledge.
These phases relate to the three stages described by
Anderson (2000). Finally, both Soar and ACT-R suffer
from the utility problem in that performance degrades with
continued learning and can result in system failure.

This work demonstrates that the two major, current
cognitive models of learning, Soar and ACR-R, need
revision to better address long-term learning. Human
cognition does not “fail” with long-term learning. To
support long-term, on-line learning that would be expected
of an intelligent system, both architecture require changes,
possibly as simple as including a permanent forgetting
mechanism. The removal of low-use productions showed a
statically significant improvement in Soar’s performance
(Kennedy & De Jong, 2003). Finally, for humans, the
“power law of forgetting” (Anderson 2000), i.e., the decay
of some memories, may support or even be necessary to
allow continued learning and improved performance. Most
studies of forgetting have focused on declarative
knowledge. A study of the loss of procedural memories
should be undertaken.

Acknowledgments
This work was performed while the first author held a
National Research Council Research Associateship Award
at the Naval Research Laboratory. The views and
conclusions contained in this document should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the U. S. Navy.

References
Ackerman, P. I. (1990). A correlation analysis of skill

specificity: learning, abilities, and individual differences.
Journal of experimental psychology: Learning, memory,
and cognition. 15(5) 883-901.

Ackerman, P. I. (1998). Determinants of individual
differences during skill acquisition: Cognitive abilities
and information processing. Journal of experimental
psychology: General. 117(3) 288-318.

ACT-R Research Group. (2005) Retrieved August 4, 2005,
from http://act-r.psy.cmu.edu/

Anderson, J. R. (1982). Acquisition of cognitive skill.
Psychological Review, 89, 369-406.

Anderson, J. R. (1990). The adaptive character of thought.
Hillsdale, NJ: Erlbaum.

Anderson, J. R. (2000). Learning and memory: an
integrated approach. 2nd ed. Hoboken, NJ: John Wiley &
Sons.

Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Lawrence Erlbaum
Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111, (4) 1036-1060.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A.
W. Melton (Ed.), Categories of human learning. New
York: Academic Press.

Holder, L. B. (1990). The general utility problem in
machine learning. Proceedings of the Seventh
International Conference on Machine Learning (pp. 402-
410). San Mateo: Morgan Kaufmann.

Jones, R., Laird, J. and Nielsen, P., (1994). Coordinated
Behavior of Computer Generated Forces in TacAir-Soar.
Proceedings of the Fourth Conference on Computer
Generated Forces and Behavioral Representation,
Orlando, FL.

Kennedy, W. G. & De Jong, K. A. (2003). Characteristics of
long-term learning in Soar and its application to the utility
problem. Proceedings of the Twentieth International
Conference on Machine Learning (pp. 337-344). Menlo
Park: AAAI Press.

Lebiere, C. (1999). The dynamics of cognition: An ACT-R
model of cognitive arithmetic. Kognitionswissenschaft., 8
(1), pp. 5-19.

Logan, G. D. (1988). Toward an instance theory of
automatization. Psychological Review 96, 492-527.

Markovitch, S. & Scott, P. D. (1988). The role of forgetting
in learning. Proceedings of the fifth international
conference on machine learning (pp. 725-750). San
Mateo: Morgan Kaufmann.

Minton, S. (1990). Quantitative results concerning the
utility of explanation-based learning, Artificial
Intelligence, 42, 363-392.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Newell, A. & Rosenbloom, P.S. (1981) Mechanisms of skill
acquisition and the law of practice. In J.R. Anderson
(Ed.), Cognitive skills and their acquisition. Hillsdale, NJ:
Lawrence Erlbaum Associates.

The Soar Group (2005) Retrieved July 7, 2005, from
http://sitemaker.umich.edu/soar

Tambe, M., Newell, A., & Rosenbloom, P.S. (1990) The
problem of expensive chunks and its solution by
restricting expressiveness. Machine Learning. V, pp. 299-
348.

Taatgen, N. A. (2002). A model of individual differences in
skill acquisition in the Kanfer-Ackerman Air Traffic
Control Task. Cognitive Systems Research, 3(1), 103-112.

Taatgen, N.A. & Lee, F.J. (2003). Production Compilation:
A simple mechanism to model Complex Skill
Acquisition. Human Factors, 45(1) 61-76.

Tambe, M., Newell, A, & Rosenbloom, P. S. (1990). The
problem of expensive chunks and its solution by
restricting expressiveness. Machine Learning, V. pp. 299-
348.

