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Abstract 

The characteristics of long-term, symbolic learning were 
investigated using Soar and ACT-R models of a task to 
rearrange blocks into specific configurations.  Long sequences 
of problems were run collecting data to answer fundamental 
questions about long-term, symbolic learning.  The questions 
were whether symbolic learning continues indefinitely, how 
learned knowledge is used, and whether performance 
degrades over the long term.  It was found that in both 
systems symbolic learning eventually stopped, ACT-R 
produced three observable phases of learning, and both Soar 
and ACT-R suffer from the utility problem of degraded 
performance with continuous on-line learning. 

Introduction 
Humans take years to develop the knowledge necessary 

for reasonably intelligent behavior.  Building systems that 
achieve intelligent behavior is a major goal of the field of 
Artificial Intelligence (AI), but AI systems have not been 
run for the equivalent number of years.  AI’s symbolic 
learning techniques are typically run only long enough to 
show performance improvements attributable to the new 
techniques (Kennedy & De Jong, 2003).  In addition, there 
appears to be a fundamental limit on current AI’s symbolic 
learning techniques.  When symbolic learners have been run 
on series of problems, performance has been found to 
eventually degrade.  This behavior was named the “utility 
problem” (Minton 1990).  On the other hand, humans do not 
suffer from the utility problem and their long-term learning 
is familiar to all of us.  Understanding the nature and 
characteristics of learning over the long term in humans is 
important to achieving intelligent behavior from artificial 
systems.  Explorations into long-term learning that address 
the utility problem in Soar have been done (Kennedy & De 
Jong, 2003).  This paper reports on research comparing 
long-term, symbolic learning in Soar and ACT-R. 

Learning, or skill acquisition, has been proposed to 
include the move from problem solving to retrieval (Logan 
1988) and to go through three stages (Anderson 1982; Fitts 
1964).  In the first stage, the cognitive stage, the knowledge 
is primarily declarative and must be interpreted.  General 
problem solving techniques are employed, such as means-
ends analysis, at this initial stage.  In the second stage, the 

associate stage, there is a mix of declarative and procedural 
knowledge and the problem solving is transitioning from 
general methods to methods specific to the problem domain.  
By the third stage, called the autonomous stage, the 
knowledge is procedural: compiled, fast, and error-free.  In 
this last stage, there is no problem solving and performance 
improvements are based on psychomotor speedup up to 
physical limitations (Anderson et al., 2004). 

The three stages of behavior have been observed in the 
complex Kanfer-Ackerman air traffic controller task and 
correlated with observed behavior on simpler tasks 
(Ackerman, 1998, 1990).  The cognitive stage correlated 
with general intelligence, perceptual speed correlated with 
the associate stage, and psychomotor abilities correlated 
with the autonomous stage.  Taatgen and Lee (2003) applied 
cognitive modeling to this complex task and demonstrated 
learning in the three stages in one cognitive model.   

By long-term symbolic learning (LTSL), we refer to the 
first two stages, i.e., up to the point where the system has 
reached steady-state behavior in a symbolic sense.   

Computational cognitive models of learning have been 
successfully built to simulate long-term learning, 
specifically lifetime learning of arithmetic (Lebiere 1999).  
AI learning systems typically have not been run long 
enough to achieve steady-state behavior (Kennedy & De 
Jong, 2003).  One reason is that a performance problem was 
identified in AI systems with continuous learning by Minton 
(1990).  Problem-solving time grew with the number of 
productions in the system.  His system and others 
demonstrated degraded performance after 100 or fewer 
problems were solved.  Further research suggested the 
problem was universal (Holder 1990).   

On the other hand, Markovitch and Scott (1988) reported 
discovering that their symbolic learner’s performance 
actually improved with forgetting.  After their system had 
learned productions (macros) based on 5000 training 
problems and had established a level of performance in 
terms of a minimum number of nodes searched, as its 
learned productions were incrementally removed, its 
performance improved.  Performance peaked when 
approximately 90 percent of the learned productions had 
been removed.  This surprise finding and the pervasive 
utility problem indicate weaknesses in the implemented 



 

learning techniques and raise questions about our 
understanding of the nature of long-term symbolic learning. 

We have explored long-term learning with two of the 
most widely-used systems implementing substantial 
computational theories of learning, Soar and ACT-R.   

Soar (The Soar Group, 2005) is a symbolic learning 
system with early success modeling the observed power law 
of practice (Rosenbloom 1986).  In 1990, Newell proposed 
Soar as a unified theory of cognition (Newell 1990).  Soar 
uses one form of short term memory, called “work memory” 
and one form of long term memory, “chunks”.  Soar also 
uses a single learning mechanism, “chunking”, in which the 
solution to a subproblem is formulated and kept as a 
production.  Consistent with the learning theory that Soar 
implements, productions are retained forever and working 
memory is transient.  About the same time Soar was 
proposed as a unified theory of cognition, Soar was 
demonstrated to suffer from the utility problem (Tambe, 
Newell, & Rosenbloom, 1990).  A successful remedy was to 
modify the theory and introduce forgetting of learned 
productions based on a threshold of time since last use 
(Kennedy & De Jong, 2003).  

The ACT family of theories (ACT-R Research Group, 
2005) has a long history of integrating and organizing 
psychological data. The current version, ACT-R, derives 
important constraints from asking what cognitive processes 
are adaptive given the statistical structure of the 
environment (Anderson 1990).  It has also been broadly 
tested in psychological and computational terms.  

Within ACT-R, all declarative and procedural knowledge 
is retained, activation levels are calculated which affects the 
model’s ability to recall the knowledge.  Of the productions 
with activation above a threshold, selection of which one to 
fire is made based on the productions’ expected gain.  This 
conflict resolution process allows ACT-R to learn the 
effectiveness of productions.  However, all productions are 
maintained and subsequent experience can raise a 
production’s activation. 

The work reported here is our investigation of the 
characteristics of long-term symbolic learning, comparing 
the behavior of Soar and ACT-R on the same problem 
domain, Blocks World.   

Research Questions 
We focus on three fundamental questions associated with 
the nature of long-term learning as modeled by Soar and 
ACT-R: whether symbolic learning in these computational 
cognitive models will go on forever, how the learned 
knowledge is use in problem solving, and whether the utility 
problem applies to ACT-R as well as symbolic AI learning 
systems. 

The first question addresses fundamental assumptions.  If 
we built a system and started it learning, it seems inevitable 
that it would eventually learn so much knowledge as to 
suffer from the utility problem.  That inevitability is based 
on the expectation that learning continues indefinitely as 
Newell (1990) believed.    The theory behind the ACT-R 

system acknowledges “great reductions in cognitive 
involvement” (Anderson 2000) based on obeying the power 
law (Anderson 1982) although it was also recognized that 
speed up could continue until it reaches the limitations of 
the physical system.  That suggests that the cognitive 
portion of learning ends, i.e., not including the psychomotor 
phase of learning.  So, Soar theory predicts that symbolic 
learning continues indefinitely and ACT-R’s theory predicts 
that symbolic learning eventually stops. 

The second question concerns how learned knowledge is 
used.  In Soar, it was found that many, up to about half, of 
learned productions were never used and that patterns of 
production use justified excising some productions based on 
lack of recent use (Kennedy & De Jong, 2003).  Anderson 
and Lebiere (1998) believed that Soar generated too many 
productions as a result of a general problem with Soar’s 
chunking.  Therefore, ACT-R evolved to include more 
caution in the creations of productions.  Both Soar and 
ACT-R support the learning of new productions based on 
previous productions which would lead to productions being 
subsumed and no longer useful.   

The third question is whether ACT-R, a cognitive 
modeling system, suffers from the utility problem that 
plagues AI’s symbolic learning systems.  Although ACT-R 
has been used to model lifetime learning including 
simulating years of learning by solving tens of thousands of 
problems over hours of computer time (Lebiere 1999), no 
discussions of performance problems such as the utility 
problem were found in the literature.   

Answers to these questions will contribute to both the 
fields of AI and Cognitive Science.  For Cognitive Science, 
results should support the development of a theory of long-
term learning that addresses the utility of forgetting.  For AI, 
results should be directly applicable to developing learning 
robots that are expected to operate autonomously for long 
periods of time. 

Method 
To address these research questions, we review previous 
work on long-term symbolic learning with Soar and other 
symbolic learning systems and report on experiments using 
Soar and ACT-R available from their user groups (ACT-R 
Research Group, 2005; The Soar Group, 2005).  Blocks-
World domain was used because it was simple to 
implement, has a large search space, and can be scaled 
easily by increasing the number of blocks.  For both 
systems, runs were made problems generated randomly, 
with replacement, from the 30 possible three-block 
problems that can be solved in one step. 

The task is set up so that one learned production can solve 
one problem, which would not be true for more complex 
problems or problem domains.  That simplicity allows us to 
isolate long term learning characteristics.  The expectation is 
that if we find characteristics within one-step problems, 
those same characteristics will manifest themselves in more 
complex models. 



 

The version of Soar used was 8.6.1 for Windows, run 
within the Soar Java Debugger (in text view).  The ACT-R 
system, version 6 [R145] was run without modification on 
several desktop PCs and Macintosh computers.  Version 6 
implements the latest theory on the compilation of 
sequentially firing productions into new productions.  For 
both systems, default parameters were used except: for Soar, 
learning was turned on, and for ACT-R, the latency factor 
(:lf) was set to 0.4 and the declarative retrieval threshold 
(:rt) was set to -1, both to keep the memory of the problem 
available during problem solving.  We also enabled 
subsymbolic calculations (:esc T).  To run long series of 
problems in Soar, command files were generated and run in 
batch.  For ACT-R, a Lisp problem generator was run 
calling ACT-R to run each problem in the series.  Traces of 
the systems’ behavior were analyzed off-line.   

Task Description 
The general task was to rearrange a small set of named 
blocks on a table from one configuration to another.  As an 
example, a problem is to change the configuration of block-
A on block-B with block-B and block-C on the table to a 
tower configuration with block-C on block-B, block-B on 
block-A, and block-A is on the table, as shown in Figure 1.  
Moves consist of selecting an available block and moving it 
to the table or on top of another block.  The criteria to move 
a block is that the block be clear, i.e., not having another 
block on top of it, and the destination also be clear.  The 
table is always a legal destination. 

 
Figure 1:  A Blocks World Problem. 

Cognitive Models in Soar and ACT-R 
Cognitive models of this task were implemented in Soar and 
ACT-R.  Both systems blindly select legal moves with no 
prior knowledge.  There is no planning involved because 
that was to be learned.  Both systems chose from available 
legal moves based on its knowledge. 

When either system achieved the goal configuration, it 
learned the effective move.  In Soar, the solution to the 
subproblem of choosing the best move for the problem 
resulted in a “chunk”, the new production.  In ACT-R, the 
move was saved as a “chunk” in declarative memory.  (Note 
the different uses of the term “chunk”.)  When a solution 
was retrieved, a new production compiling that information 
was generated.  After several recreations of the same 
production, in accordance with the ACT-R theory, its utility 
would be increased enough to compete successfully with the 
solution retrieval production and fire (Anderson, et al 2004).  

For Soar, three models of Blocks World are provided with 
the Soar software (The Soar Group, 2005).  The look-ahead 
model was used because it was the only one that learns.  The 
model representation specifies the current and goal states 
based on what each block is on top of, either the table or 
another block.  Soar sequentially selects and applies moves 
of a block to a new location until the current configuration 
matched the goal.  When Soar does not have the knowledge 
to immediately select a move, it establishes a subproblem to 
decide the move to make.  The solution to a subproblem is 
saved as learned production, a Soar “chunk”, which 
eliminates the need to repeat the solving of the subproblem.  
Soar’s chunks are not written for specific blocks but are 
generalized to descriptions of any blocks meeting specific 
on-top and clear conditions.   

A similar model was developed for ACT-R following the 
approach common in the ACT-R community (e.g., Lebiere 
1999).  The ACT-R model uses its vision module to read in 
a problem’s initial and goal configurations in terms of what 
the blocks are on.  It then attempts to recall a previous move 
from the current configuration to the goal.  If it finds such a 
move, that move is executed.  If it does not, a legal move is 
created based on any block that is available to be moved and 
any possible destination.  After making the move, the 
resulting configuration is evaluated as to whether it 
achieved the goal.  The move achieving the goal is saved as 
a solution for the problem of achieving the goal from the 
previous configuration.  The model randomly tries moves 
and recognizes and then saves those that achieve the goal.   

Both systems begin by conducting general problem 
solving, note actions that achieve the goal of solving a 
problem, and save that knowledge for future use.  Both 
immediately save the knowledge as production.  Soar makes 
that production immediately available for use and ACT-R 
requires the production to be generated several times to raise 
its activation enough to be fired. 

Results 
For each research question, previous research, experimental 
results, analysis, and observations are discussed.   

Does symbolic learning continue indefinitely? 
Few researchers have run symbolic learning systems on 
long series of problems.  TacAir-Soar with thousands of 
productions has been run for hours but does not employ 
learning (Jones 1994).  ACT-R has been used to model life-
time learning on thousands of arithmetic problems with 
ACT-R run for hours (Lebiere 1999), but its performance 
was not discussed.  We therefore assume its performance 
was not an issue.  When we ran both Soar and ACT-R, on 
Blocks World problems, symbolic learning ended as shown 
in Figures 2 and 3.  The learning curves shown are plots of 
the cumulative number of new productions in the system 
against problem number.  Plots of the average of five runs 
for both systems are shown.   

Both plots have the same general shape, but their units are 
very different.  Figure 2 shows Soar’s learning over only 50 
problems while Figure 3 shows ACT-R’s learning over 
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2500 problems.  The scale is so different because Soar 
learns its last production on problem 15 and ACT-R’s last 
production was learned on problem 1751.  Because Soar 
learns very general productions, it does not need to see 
every possible problem in the domain before learning stops.  
Our ACT-R model must see every problem to compile a 
production.  The number of productions learned is also very 
different.  All of the Soar runs learned exactly eight 
productions, all general. ACT-R eventually learned 34-37 
productions, one for each problem plus a few due to model 
coding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Productions Learned in Soar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Productions Learned in ACT-R 
 
Although symbolic learning in both Soar and ACT-R 
stopped, there are differences in the system’s behavior.  
Soar learned productions that are generalized while ACT-
R’s productions are specific to individual block names.  
Therefore, Soar needs far fewer productions to cover the 
same deductions.  In addition, the ACT-R model includes its 
vision module which introduces noise resulting in additional 
production learning which is not material to the model.  As 
a result, when the learning ends varies between the systems, 
but the fact that both stop learning is significant. 

How is learned knowledge used? 
Learning is based on the expectation of future use of the 
knowledge learned.   But, how and when is it used? 

A possible set of patterns of use based on when 
productions were learned was discussed in Kennedy & De 
Jong (2003).  That pattern was that (1) productions learned 

early are used more frequently than productions learned 
later, (2) the most recently learned productions are used 
more frequently, and (3) production use is independent of 
when learning occurred.   

Previous experiments with Soar demonstrated that in 
some problem domains only about half of Soar’s learned 
productions were ever used and that although there was an 
overall relatively constant number of productions used on 
each problem, more recently learned productions were used 
(Kennedy & De Jong, 2003).   

The use of the learned productions was expected to be 
uniformly distributed due to the environment, a uniform 
distribution of the problems.  To look for patterns in 
production use, the problems in which productions were 
used were plotted by problem number.  However, no 
patterns of use were discernable.  The statistics of 
production use confirm uniform use.  Over five runs of 250 
problems each, Soar learned eight new productions but used 
only four on each run.  Those four productions were each 
used 25 percent of the time (standard deviation was less 
than 0.05 percent).  Over five runs of 2500 problems, the 
ACT-R model learned 36 productions and used 26 in four 
runs and 27 in the other.  Over the 2500 problems, each 
production was each used 3.85 percent of the time (standard 
deviation was less than 1.25 percent).   (Perfectly uniform 
use would have been 1/26.2 = 3.81 percent of the time.) 

On closer examination, a pattern of use, stages of 
learning, in ACT-R was observed.  Anderson described 
three stages of skill acquisition, cognitive stage, associative 
stage, and autonomous stage (Anderson 2000).  ACT-R 
model running these simple Blocks-World problems 
demonstrated three stages of learning.  Figure 4 shows, per 
problem, the number of moves created during problem 
solving, retrievals of previously successful moves, and 
firing of learned productions per 100 problems.  The 
number of productions fired per 100 problems became 
approximately 100, or one production per problem in the 
third stage.   

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  ACT-R Stages of learning 

 
Figure 4 clearly shows three stages of learning.  The first is 
the period when the model is solving problems by creating 
moves based only on what were legal moves.  There was no 
knowledge in the model guiding the generation of moves 
other than their legality.  It also shows the period where the 
model relied on the retrieval of previous solutions from 
memory to solve the current problem.  Finally, it shows the 
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use of compiled knowledge in productions, now procedural, 
rather than the retrieval of declarative facts retrieved from 
memory.  

These runs demonstrated that both systems transitioned 
from problem solving to using learned knowledge.  Soar did 
so immediately and ACT-R took longer.  Both systems 
reused learned knowledge.  Soar used half its learned 
productions and ACT-R used approximately three-fourths.   

Does ACT-R suffer from the utility problem? 
In the same year Soar was proposed as a unified theory of 
cognition, it was confirmed to suffer performance 
degradation with continued learning known as the utility 
problem (Tambe 1990).  One component of Newell’s 
cognitive theory implemented in Soar is that productions are 
the only form of long-term memory and all productions are 
kept indefinitely.  Relaxing this premise led to statistically 
significant improvements in Soar’s performance in long-
term learning experiments (Kennedy & De Jong, 2003). 

To test whether ACT-R suffered from the same problem, 
timing data was collected during long runs of the system on 
Blocks World problems.  Multiple runs were made on 
personal computers running the Windows operating system 
with the standalone version of ACT-R version 6 [R145] 
(Allegro Common Lisp) and on Apple G4 and G5 machines 
running Mac OS X and Macintosh Common Lisp (MCL) 
version 5.  No changes were made to the Lisp garbage 
collection parameters.  Time and memory consumption was 
available from the Lisp implementation (implementation 
specific) and from ACT-R.  Two times were associated with 
solving a problem in ACT-R.  The first was the human’s 
response time calculated by ACT-R as a function of the 
Blocks-World model and ACT-R’s sub-symbolic modeling.  
Figure 5 shows the average ACT-R run times for five runs 
averaged over 10 problems.  The other time available is 
Lisp’s internal clock measured in “ticks”.  This 
measurement is implementation dependent and captures the 
time associated with garbage collection.  For this 
implementation, 1000 ticks equal 1 second.  Figures 6 and 7 
show the Lisp time and memory resources used for five runs 
averaged over 10 problems.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. ACT-R Model Times for Blocks World Problems 

 
 
 

Figure 5 shows a downward trend in the average time to 
solve individual problems.  This trend is the expected output 
of the ACT-R model of improved performance with 
experience.  
  However, all of the systems running our model of the 
Blocks World eventually failed (froze).  Failure ranged from 
as early as 340 problems on the Apple G4 (desktop) with 
384MB of memory to over 32000 problems on a PC with 
1GB of memory.  Figures 5-7 are from the Apple G4 runs.  
Figure 6 shows the increasing Lisp ticks prior to failure.  
Figure 7 shows the corresponding memory allocation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  ACT-R  Run Times in Lisp “ticks” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  ACT-R Memory Allocation 
 
While the ACT-R model’s output shows a downward trend 
in response time consistent with human performance data, 
the calculations necessary to run the model frequently 
required garbage collection and all runs eventually failed.   

The failure of ACT-R on long series of problems appears 
to be independent of hardware and operating system (we 
used both Macintoshes and PCs) and Lisp implementations 
(we used Allegro and Macintosh Lisps).  Other long runs of 
ACT-R (Lebiere 1999) used a different version of ACT-R 
which did not include production compilation nor include 
the use of the vision module of ACT-R.  Therefore, 
although ACT-R models human performance, the system 
suffers from the utility problem like other symbolic learning 
systems.  It is unclear whether the utility problem exists at 
the implementation level (e.g., Lisp), the architectural level 
(e.g., ACT-R version 6), or the theory level. 
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Conclusions and Implications 
We conclude that Soar and ACT-R have demonstrated 
similar long-term learning characteristics. The learning of 
symbolic productions on long series of problems from a 
finite problem domain eventually stops.  We draw no 
conclusions on domains where an infinite number of 
problems are possible.  On the use of learned productions, 
there may be some differences between Soar and ACT-R, 
but our long runs of Blocks World problems did not show 
them.  We found that ACT-R demonstrates three phases of 
learning: cognitive problem solving, recall of previous 
solutions, and finally, proceduralization of knowledge.  
These phases relate to the three stages described by 
Anderson (2000).  Finally, both Soar and ACT-R suffer 
from the utility problem in that performance degrades with 
continued learning and can result in system failure. 

This work demonstrates that the two major, current 
cognitive models of learning, Soar and ACR-R, need 
revision to better address long-term learning.  Human 
cognition does not “fail” with long-term learning.  To 
support long-term, on-line learning that would be expected 
of an intelligent system, both architecture require changes, 
possibly as simple as including a permanent forgetting 
mechanism.  The removal of low-use productions showed a 
statically significant improvement in Soar’s performance 
(Kennedy & De Jong, 2003).  Finally, for humans, the 
“power law of forgetting” (Anderson 2000), i.e., the decay 
of some memories, may support or even be necessary to 
allow continued learning and improved performance.  Most 
studies of forgetting have focused on declarative 
knowledge.  A study of the loss of procedural memories 
should be undertaken. 
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